Title

Transgenerational Evidence of Increases in Dopamine D2 Receptor Sensitivity in Rodents: Impact on Sensorimotor Gating, the Behavioral Response to Nicotine and BDNF

Document Type

Article

Publication Date

10-1-2021

Description

Background/Aims: Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 (DAD2) receptor sensitivity in adult animals. We investigated if increased DAD2 sensitivity would be passed to the next (F1) generation, and if these animals demonstrated sensorimotor gating deficits and enhanced behavioral responses to nicotine. Methods: Male and female rats were intraperitoneal (IP) administered quinpirole (1 mg/kg) or saline (NS) from postnatal day (P)1–21. Animals were either behaviorally tested (F0) or raised to P60 and mated, creating F1 offspring. Results: Experiment 1 revealed that F1 generation animals that were the offspring of at least one NQ-treated founder increased yawning behavior, a DAD2-mediated behavioral event, in response to acute quinpirole (0.1 mg/kg). F1 generation rats also demonstrated increased striatal β arrestin-2 and decreased phospho-AKT signaling, consistent with increased G-protein independent DAD2 signaling, which was equal to F0 NQ-treated founders, although this was not observed in all groups. RNA-Seq analysis revealed significant gene expression changes in the F1 generation that were offspring of both NQ-treated founders compared to F0 NQ founders and controls, with enrichment in sensitivity to stress hormones and cell signaling pathways. In Experiment 2, all F1 generation offspring demonstrated sensorimotor gating deficits compared to controls, which were equivalent to F0 NQ-treated founders. In Experiment 3, all F1 generation animals demonstrated enhanced nicotine behavioral sensitization and nucleus accumbens (NAcc) brain-derived neurotrophic factor (BDNF) protein. Further, F1 generation rats demonstrated enhanced adolescent nicotine conditioned place preference equivalent to NQ-treated founders conditioned with nicotine. Conclusions: This represents the first demonstration of transgenerational effects of increased DAD2 sensitivity in a rodent model.

Share

COinS