Radical Formation in X-Irradiated Single Crystals of Guanine Hydrochloride Monohydrate. II. ESR and ENDOR in the Range 10-77 K

Document Type


Publication Date



In a study of guanine·HCl·H2O (Gm) single crystals X-irradiated at temperatures between 10 and 77 K, three radical species were found and characterized by ESR and ENDOR spectroscopy. All three are primary products in that they were present immediately following irradiation at T < 10 K. Radical I, which apparently can exist in two slightly different conformations, was identified as the product of electron gain by the parent molecule and subsequent protonation at O6. Radical I decayed only after warming the crystals beyond 250 K. Radical II was the guanine cation previously reported (D. M. Close, E. Sagstuen, and W. H. Nelson, J. Chem. Phys. 82, 4386 (1985)); however, ENDOR data are reported here which confirm the previous results. The guanine cation in Gm resulted from electron loss from the parent and subsequent deprotonation at N7. It is proposed that Radical III results from OH attack at C8 of the parent molecule, followed by rupture of the C8-N9 bond and ring opening. The OH radicals thought to produce Radical III result from electron loss by the cocrystallized water molecules. The reaction leading to Radical III, unusual in solid-state radiation chemistry, is thought to be mediated by the specific hydrogen bonding network in this crystal.