Degree Name
MS (Master of Science)
Program
Biology
Date of Award
8-2024
Committee Chair or Co-Chairs
Erik Petersen
Committee Members
Ranjan Chakraborty, Sean Fox
Abstract
Acinetobacter baumannii is an increasingly multidrug-resistant pathogen contributing to hospital-acquired infections, necessitating a greater understanding of how it interacts with its surroundings. Many bacteria utilize different methods of bacterial motility to move about and interact with these surroundings. A bacterial second messenger, cyclic diguanosine monophosphate (c-di-GMP), can regulate various motility factors that are potentially advantageous for survival in and adaptation to their environment. Concentrations of c-di-GMP are regulated by specific synthesizing and degrading enzymes. Controlled levels of c-di-GMP allow interaction between the c-di-GMP and its binding effectors that induce changes in bacterial phenotypes such as biofilm formation and motility. A search of the A. baumannii genome identified two proteins that contain the c-di-GMP-binding PilZ domain. The PilZ protein for which this PilZ domain was named was initially discovered in Pseudomonas aeruginosa where it has been demonstrated to be a part of the type IV pilus machinery. Type IV pili play roles in twitching motility, adhering to surfaces, DNA uptake, protein secretion, and predation. One of the PilZ-containing proteins from A. baumannii resembled this original PilZ protein (PilZ), while the second PilZ-containing protein contained a hydrolase domain with unknown substrate specificity (HydP). I investigated whether these PilZ-containing proteins play a role in motility of A. baumannii by testing two strains: AB5075 that displays twitching motility, and ATCC17978 that displays an uncharacterized form of surface-associated motility. Results suggest PilZ plays a role in twitching motility, while its effect on surface-associated motility phenotypes3 is possibly due to polar effects from mutation. Results also suggest HydP plays a role in surface-associated motility, although its mechanism is not understood. Testing of both proteins’ PilZ domains indicates they may not bind c-di-GMP, implying they may be playing roles in motility regulation through other mechanisms outside of binding c-di-GMP. These findings give us greater insight into the regulatory mechanisms used by A. baumannii to move about its environment.
Document Type
Thesis - embargo
Recommended Citation
Smith, Gabriel, "PilZ Domain-Containing Proteins Regulate Motility in Acinetobacter baumannii" (2024). Electronic Theses and Dissertations. Paper 4454. https://dc.etsu.edu/etd/4454
Copyright
Copyright by the authors.
Included in
Bacterial Infections and Mycoses Commons, Bacteriology Commons, Microbial Physiology Commons, Pathogenic Microbiology Commons