Degree Name

MS (Master of Science)

Program

Chemistry

Date of Award

12-2023

Committee Chair or Co-Chairs

Scott Kirkby

Committee Members

Reza Mohseni, Marina Roginskaya

Abstract

Melatonin is a natural antioxidant that has been investigated for properties as a potential spin trap to identify short-lived free radicals. Computational quantum chemistry studies have been performed for the oxidation of melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine. This research focused on modification of melatonin into derivatives and analyzing the change in total molecular energy from melatonin to its oxidation product, as well as the corresponding derivatives. Each of the molecular geometries were optimized at the DFT/B3LYP/6-31G(d), DFT/B3LYP/cc-pVXZ (X = D, T), HF/6-31G(d), HF/cc-PVXZ (X = D, T), MP2/6-31G(d), and MP2/cc-PVXZ (X = D, T) levels of theory. Single point energies were extrapolated to the complete basis set. The results demonstrated that some electron-withdrawing groups increased the total energy of the system. The electron-withdrawing functional group which lowered the total energy of the system was a peroxyl functional group, and this is believed to be due to overlapping constructive interference between molecular orbitals.

Document Type

Thesis - embargo

Copyright

Copyright by the authors.

Share

COinS