Degree Name
MS (Master of Science)
Program
Chemistry
Date of Award
5-2023
Committee Chair or Co-Chairs
Scott Kirkby
Committee Members
Dr. Marina Roginskaya, Dr. David Close
Abstract
Melatonin (N-acetyl-5-methoxytryptamin, MLT) is a naturally occurring antioxidant which has shown some potential for use as a spin trap. Spin traps react with short lived hydroxyl radicals (HO·) to produce more stable products called spin adducts which may be characterized by electron paramagnetic resonance spectroscopy. However, the relative stability of hydroxyl spin adducts of melatonin derivatives (MLTD) compared to 2-hydroxymelatonin (HO-MLT) has not been examined computationally. Computational studies have been done on four selected MLTD; methylmelatonin (Me-MLT), chloromelatonin (Cl-MLT), cyanomelatonin (CN-MLT), and nitromelatonin (NO2-MLT). Geometry of the structures were optimized at the HF/6-31G(d), cc-pVXZ, (X=D and T) and DFT/B3LYP/6-31G(d), cc-pVDZ and cc-pVTZ levels of theory and extrapolated to the complete basis set limit using cc-pVXZ (X=D, T) basis sets. The lowest relative energy was found to be a mix of results for 2-OH-MLT-Me at HF and 2-OH-MLT-NO2 at DFT.
Document Type
Thesis - embargo
Recommended Citation
Caesar, Aaron, "Spin Trapping Behavior of Some Selected Melatonin Derivatives for Hydroxyl Radicals: A Computational Study" (2023). Electronic Theses and Dissertations. Paper 4218. https://dc.etsu.edu/etd/4218
Copyright
Copyright by the authors.