Degree Name

MS (Master of Science)

Program

Mathematical Sciences

Date of Award

5-2023

Committee Chair or Co-Chairs

Mostafa Zahed

Committee Members

Robert Price, JeanMarie Hendrickson

Abstract

Over the years, cancer has increasingly become a global health problem [12]. For successful treatment, early detection and diagnosis is critical. Radiomics is the use of CT, PET, MRI or Ultrasound imaging as input data, extracting features from image-based data, and then using machine learning for quantitative analysis and disease prediction [23, 14, 19, 1]. Feature reduction is critical as most quantitative features can have unnecessary redundant characteristics. The objective of this research is to use machine learning techniques in reducing the number of dimensions, thereby rendering the data manageable. Radiomics steps include Imaging, segmentation, feature extraction, and analysis. For this research, a large-scale CT data for Lung cancer diagnosis collected by scholars from Medical University in China is used to illustrate the dimension reduction techniques via R, SAS, and Python softwares. The proposed reduction and analysis techniques were PCA, Clustering, and Manifold-based algorithms. The results indicated the texture-based features

Document Type

Thesis - embargo

Copyright

Copyright by the authors.

Included in

Data Science Commons

Share

COinS