Degree Name
MS (Master of Science)
Program
Mathematical Sciences
Date of Award
5-2021
Committee Chair or Co-Chairs
Nicole Lewis
Committee Members
Price Robert , Hendrickson JeanMarie
Abstract
Missing data continues to be one of the main problems in data analysis as it reduces sample representativeness and consequently, causes biased estimates. Multiple imputation methods have been established as an effective method of handling missing data. In this study, we examined multiple imputation methods for quantitative variables on twelve data sets with varied sizes and variability that were pseudo generated from an original data. The multiple imputation methods examined are the predictive mean matching, Bayesian linear regression and linear regression, non-Bayesian in the MICE (Multiple Imputation Chain Equation) package in the statistical software, R. The parameter estimates generated from the linear regression on the imputed data were compared to the closest parameter estimates from the complete data across all twelve data sets.
Document Type
Dissertation - embargo
Recommended Citation
Onyame, Vincent, "Performance Comparison of Multiple Imputation Methods for Quantitative Variables for Small and Large Data with Differing Variability" (2021). Electronic Theses and Dissertations. Paper 3915. https://dc.etsu.edu/etd/3915
Copyright
Copyright by the authors.