Degree Name

MS (Master of Science)

Program

Geosciences

Date of Award

5-2020

Committee Chair or Co-Chairs

Steven C. Wallace

Committee Members

Timothy A. Joyner, Christopher C. Widga

Abstract

This study investigated selective pressures associated with encephalization in mammals and discussed broader implications. Relative brain size as measured by EQ (Encephalization Quotient) was compared between ecological categories. Omnivores had higher average EQ than ecological specialists. Since specialists are disproportionately affected by extinction events, selection for ecological generalism is proposed as encephalization mechanism. This mechanism may reinforce the more widely known Cognitive Buffer Hypothesis (CBH)—the idea that possessing relatively large brains has buffered lineages against environmental change. CBH is tested here by comparing EQs in Procyon lotor (raccoon) in urban and rural environments. CBH predicts that raccoons in the most radically altered environment, the city, experience the strongest selection for encephalization. Urban raccoons studied here exhibit a higher EQ. Although results are preliminary, data suggest that encephalization is accelerated during abrupt periods of environmental change. Finally, implications for the evolution of biological complexity more generally are discussed.

Document Type

Thesis - unrestricted

Copyright

Copyright by the authors.

Share

COinS