Degree Name
PhD (Doctor of Philosophy)
Program
Sport Physiology and Performance
Date of Award
8-2019
Committee Chair or Co-Chairs
Kimitake Sato
Committee Members
Jeremy Gentles, Caleb Bazyler, David J. Szymanski
Abstract
Load-velocity relationships may vary between people of different strength levels and across different loads. The purpose of this dissertation was to investigate how external loads influence the velocity characteristics of the back squat exercise, and the influence of strength on these variables. Healthy male students with a history of resistance training completed repetitions at specified intensities of their estimated one-repetition maximum (1RM) until they reached 1RM. Back squat 3D motion analysis was captured using four Vicon T010 cameras (Vicon Motion Systems Ltd.; Oxford, UK) and Vicon Nexus 1.8.5 software. Data were transported into R custom coding statistical analysis software (version 3.5.2; The R Foundation) to calculate velocity analyses which determined mean and peak concentric (MCV, PCV) and eccentric (MEV, PEV) values. Participants were grouped by their relative strength (body mass/1RM) in the back squat, as well as their ability to move often prescribed loads with greater speed (63-70%1RM, 83-87%1RM). Between-groups comparisons were made for MCV at all loading conditions, and correlational relationships between all velocity measures (MEV, PEV, MCV, PCV) were examined for each group. For all subjects, there was a significant effect for relative intensity (%1RM) on MCV, but only for the groups organized by MCV at 63-70%1RM and 83-87%1RM was there a between-subjects effect for group. Correlational analyses between velocity measurements during concentric and eccentric phase of the back squat showed a tendency for high relationships (r = 0.5-0.69) between all phases that weakened as the relative intensity increased. These differences were illustrated uniquely between subject grouping conditions. These results indicate that load-velocity characteristics of the back squat cannot necessarily be positively related to strength level in the movement, and that profiling athletes by their velocities at specific relative intensities could be an effective means of organization.
Document Type
Dissertation - unrestricted
Recommended Citation
Light, Thaddeus, "The Influence of Strength in Load-Velocity Relationships in the Back Squat" (2019). Electronic Theses and Dissertations. Paper 3611. https://dc.etsu.edu/etd/3611
Included in
Biomechanics Commons, Exercise Physiology Commons, Exercise Science Commons, Musculoskeletal System Commons