Degree Name

MS (Master of Science)

Program

Biology

Date of Award

8-2014

Committee Chair or Co-Chairs

Istvan Karsai

Committee Members

Thomas F. Laughlin, Christopher D. Wallace

Abstract

The ant colony, known as a self-organized system, can adapt to the environment by a series of negative and positive feedbacks. There is still a lack of mechanistic understanding of how the factors, such as temperature and food, coordinate the labor of ants. According to the Metabolic Theory of Ecology (MTE), the metabolic rate could control ecological process at all levels. To analyze self-organized process of ant colony, we constructed an agent-based model to simulate the energy and population dynamics of ant colony. After parameterizing the model, we ran 20 parallel simulations for each experiment and parameter sweeps to find patterns and dependencies in the food and energy flow of the colony. Ultimately this model predicted that ant colonies can respond to changes of temperature and food availability and perform differently. We hope this study can improve our understanding on the self-organized process of ant colony.

Document Type

Thesis - unrestricted

Copyright

Copyright by the authors.

Share

COinS