Degree Name
MPH (Master of Public Health)
Program
Public Health
Date of Award
12-2007
Committee Chair or Co-Chairs
John Wanzer Drane
Committee Members
Timothy E. Alich, James L. Anderson
Abstract
Surveys ordinarily ask questions in an ordinal scale and often result in missing data. We suggest a regression based technique for imputing missing ordinal data. Multilevel cumulative logit model was used with an assumption that observed responses of certain key variables can serve as covariate in predicting missing item responses of an ordinal variable. Individual predicted probabilities at each response level were obtained. Average individual predicted probabilities for each response level were used to randomly impute the missing responses using a uniform distribution. Finally, likelihood ratio chi square statistics was used to compare the imputed and observed distributions. Two other forms of multiple imputation algorithms were performed for comparison. Performance of our imputation technique was comparable to other 2 established algorithms. Our method being simpler does not involve any complex algorithms and with further research can potentially be used as an imputation technique for missing ordinal variables.
Document Type
Thesis - unrestricted
Recommended Citation
Ahmed, Andaleeb Abrar, "New Technique for Imputing Missing Item Responses for an Ordinal Variable: Using Tennessee Youth Risk Behavior Survey as an Example." (2007). Electronic Theses and Dissertations. Paper 2154. https://dc.etsu.edu/etd/2154
Copyright
Copyright by the authors.