Degree Name
MS (Master of Science)
Program
Mathematical Sciences
Date of Award
8-2005
Committee Chair or Co-Chairs
Robert B. Gardner
Committee Members
Anant P. Godbole, Teresa W. Haynes
Abstract
In the study of triple systems, one question faced is that of finding for what order a decomposition exists. We state and prove a necessary and sufficient condition for the existence of a bicyclic mixed triple system based on the three possible partial orientations of the 3-cycle with twice as many arcs as edges. We also explore the existence of rotational and reverse mixed triple systems. Our principal proof technique applied is the difference method. Finally, this work contains a result on packing of complete mixed graphs on v vertices, Mv, with isomorphic copies of two of the mixed triples and a possible leave structure.
Document Type
Thesis - unrestricted
Recommended Citation
Bobga, Benkam Benedict, "Bicyclic Mixed Triple Systems." (2005). Electronic Theses and Dissertations. Paper 1043. https://dc.etsu.edu/etd/1043
Copyright
Copyright by the authors.