Synthesis and Characterization of Potentially Catalytic Tolunitrile Adducts of Rhodium(II) Acetate

Authors' Affiliations

Malachi Cope | Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, TN. Alain Beauparlant | Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, TN. Dr. Cassandra Eagle | Department of Chemistry, College of Arts and Sciences, East Tennessee State University, Johnson City, TN.

Location

Culp Center Ballroom

Start Date

4-25-2023 9:00 AM

End Date

4-25-2023 11:00 AM

Poster Number

116

Faculty Sponsor’s Department

Chemistry

Name of Project's Faculty Sponsor

Cassandra Eagle

Classification of First Author

Undergraduate Student

Competition Type

Competitive

Type

Poster Presentation

Project's Category

Inorganic Chemistry

Abstract or Artist's Statement

The objective of this research is to synthesize, fully characterize, and investigate the catalytic properties of a series of rhodium(II) acetate derivatives. On its own, rhodium(II) acetate possesses the ability to catalyze the formation of cyclopropanes—strained, three-carbon rings that are a defining structural feature of the group of insecticides known as permethrins (found naturally in chrysanthemum flowers). Alone, though, the rhodium(II) acetate ‘paddlewheel’ structure does not selectively catalyze the formation of the biologically active version of the cyclopropane product; a mix of products is created that must then be separated. The separation process is expensive in time and % yield. With every step in the purification of the permethrin mixture, a significant amount of product is sacrificed. Thus, the permethrins in their commercial pure form are prohibitively expensive for most desired applications. Extracted permethrins are only used in the treatment of head lice and as flea/tick treatment of pets. With the goal of enhancing the catalytic complex’s selectivity for the biologically active cyclopropane confirmation (atomic arrangement), a p-tolunitrile ligand (molecular ‘adduct’) has been attached to rhodium(II) acetate. The complexes thus synthesized have been characterized by Single Crystal X-ray Crystallography, IR, NMR and UV-visible spectroscopies and elemental analysis. The catalytic properties of such nitrile adducts of rhodium(II) acetate are currently under investigation.

This document is currently not available here.

Share

COinS
 
Apr 25th, 9:00 AM Apr 25th, 11:00 AM

Synthesis and Characterization of Potentially Catalytic Tolunitrile Adducts of Rhodium(II) Acetate

Culp Center Ballroom

The objective of this research is to synthesize, fully characterize, and investigate the catalytic properties of a series of rhodium(II) acetate derivatives. On its own, rhodium(II) acetate possesses the ability to catalyze the formation of cyclopropanes—strained, three-carbon rings that are a defining structural feature of the group of insecticides known as permethrins (found naturally in chrysanthemum flowers). Alone, though, the rhodium(II) acetate ‘paddlewheel’ structure does not selectively catalyze the formation of the biologically active version of the cyclopropane product; a mix of products is created that must then be separated. The separation process is expensive in time and % yield. With every step in the purification of the permethrin mixture, a significant amount of product is sacrificed. Thus, the permethrins in their commercial pure form are prohibitively expensive for most desired applications. Extracted permethrins are only used in the treatment of head lice and as flea/tick treatment of pets. With the goal of enhancing the catalytic complex’s selectivity for the biologically active cyclopropane confirmation (atomic arrangement), a p-tolunitrile ligand (molecular ‘adduct’) has been attached to rhodium(II) acetate. The complexes thus synthesized have been characterized by Single Crystal X-ray Crystallography, IR, NMR and UV-visible spectroscopies and elemental analysis. The catalytic properties of such nitrile adducts of rhodium(II) acetate are currently under investigation.