Project Title

Theranostic Nanoparticles Folic acid-Carbon Dots-Drug(s) for Cancer

Authors' Affiliations

Godwin Kweku Babanyinah Department of Chemistry College of Arts and Sciences East Tennessee State University, Johnson City, TN

Faculty Sponsor’s Department

Chemistry

Additional Sponsors

Dr. Greg Bishop, Dr. Catherine McCusker

Type

Oral Competitive

Classification of First Author

Graduate Student-Master’s

Project's Category

Analytical Chemistry, Organic Chemistry, Cancer or Carcinogenesis

Abstract Text

The main aim of this study is to synthesize theranostic nanoparticles (NPs) that will drastically increase the diagnostics and therapeutic efficacy for cancer. In this research, we had prepared the NPs which constitute carbon dots (CDs), the imaging agent, Folic acid, the targeting agent, and Doxorubicin (DOX) or Gemcitabine (GEM) as the chemotherapy agents. The prepared NPs include noncovalent FA-CDs-DOX, covalent CDs-FA-DOX, and covalent FA-CDs-GEM. The spectroscopy, ultraviolet-visible spectroscopy (UV-vis), fluorescence spectroscopy, and Fourier transform-infrared spectroscopy (FT-IR), were used to confirm the successful fabrication of these complexes. Through UV-vis analysis, the drug loading capacity (DLC) and drug loading efficiency (DLE) of the complexes were determined. The noncovalent series had a higher DLE of about 83% while the covalent series showed higher DLC, 70% on average indicating high drug content. The in-vitro pH-dependent drug release shows that the noncovalent FA-CDs-DOX and the covalent FA-CDs-GEM series release more drugs into the cancer cells (pH of 5.0) than into healthy normal (pH of 7.4). The sizes of NPs were measure around 2-5 nm with Dynamic light Scattering (DLS). The toxicity of CDs, CDs-drug, and FA-CDs-drug on MDA-MB468 breast cancer cell was tested through the methylthiazolytetrazolium (MTT) assay and found that the FA bonded NPs exhibited strong therapeutic efficacy. More pharmaceutical data towards the cancer cells are investigated by our research collaborators – the pharmaceutical department at ETSU and Xavier University at Louisiana.

This document is currently not available here.

Share

COinS
 

Theranostic Nanoparticles Folic acid-Carbon Dots-Drug(s) for Cancer

The main aim of this study is to synthesize theranostic nanoparticles (NPs) that will drastically increase the diagnostics and therapeutic efficacy for cancer. In this research, we had prepared the NPs which constitute carbon dots (CDs), the imaging agent, Folic acid, the targeting agent, and Doxorubicin (DOX) or Gemcitabine (GEM) as the chemotherapy agents. The prepared NPs include noncovalent FA-CDs-DOX, covalent CDs-FA-DOX, and covalent FA-CDs-GEM. The spectroscopy, ultraviolet-visible spectroscopy (UV-vis), fluorescence spectroscopy, and Fourier transform-infrared spectroscopy (FT-IR), were used to confirm the successful fabrication of these complexes. Through UV-vis analysis, the drug loading capacity (DLC) and drug loading efficiency (DLE) of the complexes were determined. The noncovalent series had a higher DLE of about 83% while the covalent series showed higher DLC, 70% on average indicating high drug content. The in-vitro pH-dependent drug release shows that the noncovalent FA-CDs-DOX and the covalent FA-CDs-GEM series release more drugs into the cancer cells (pH of 5.0) than into healthy normal (pH of 7.4). The sizes of NPs were measure around 2-5 nm with Dynamic light Scattering (DLS). The toxicity of CDs, CDs-drug, and FA-CDs-drug on MDA-MB468 breast cancer cell was tested through the methylthiazolytetrazolium (MTT) assay and found that the FA bonded NPs exhibited strong therapeutic efficacy. More pharmaceutical data towards the cancer cells are investigated by our research collaborators – the pharmaceutical department at ETSU and Xavier University at Louisiana.

Project Video