Project Title

UPREGULATING OF CYP2E1 IN ETHANOL-FED MICE WITH TRANSGENIC OVEREXPRESSION OF CTRP3

Authors' Affiliations

Zachary C. Warren, Jonathan M. Peterson, Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN.

Location

Ballroom

Start Date

4-5-2018 8:00 AM

End Date

4-5-2018 12:00 PM

Poster Number

49

Name of Project's Faculty Sponsor

Jonathan Peterson

Faculty Sponsor's Department

Health Sciences

Type

Poster: Competitive

Classification of First Author

Undergraduate Student

Project's Category

Biomedical and Health Sciences

Abstract Text

INTRODUCTION: The liver is the primary organ responsible for the removal of toxic substances from the body by means of a variety of metabolic pathways. One class of proteins responsible for much of the body’s xenobiotic drug and alcohol metabolism is the Cytochrome P450 family of proteins. One protein, Cytochrome P450 Class E Subclass 2 (Cyp2E1), has an integral role in alcohol metabolism by the liver. Cyp2E1 becomes fully activated after an organism has consumed excessive amounts of alcohol excessive alcohol and works with aldehyde dehydrogenase (ALDH) to metabolize ethanol to acetaldehyde. Another metabolic protein, C1q TNF Related Protein 3 (CTRP3), has been shown to effectively prevent alcoholic fatty liver disease (AFLD), specifically with long-term alcohol-induced lipid accumulation.

METHODS: In this experiment, 12-week old male mice were fed a Lieber-Decarli alcohol diet (5% ETOH by volume) for 6-weeks. The food intake and body weight of the mice was recorded each day. The mice in the experiment included both wild type and transgenic CTRP3 overexpressing mice. At the end of the 6-week period the mice were euthanized, and the liver was carefully removed, flash-frozen, and prepared for immunoblot analysis of the proteins.

RESULTS: Cyp2E1 levels increased significantly in response to ethanol consumption. Cyp2E1 levels were further elevated in ethanol-fed CTRP3 transgenic overexpressing mice. Cyp2E1 levels in CTRP3 transgenic mice were nearly twice that of wild type ethanol-fed mice.

CONCLUSIONS: The results of the experiment show a significant increase in Cyp2E1 in mice which overexpress CTRP3. This upregulation of Cyp2E1 with CTRP3 overexpression could explain the mechanism for reduced hepatic lipid accumulation in ethanol-fed CTRP3 transgenic mice.

This document is currently not available here.

Share

COinS
 
Apr 5th, 8:00 AM Apr 5th, 12:00 PM

UPREGULATING OF CYP2E1 IN ETHANOL-FED MICE WITH TRANSGENIC OVEREXPRESSION OF CTRP3

Ballroom

INTRODUCTION: The liver is the primary organ responsible for the removal of toxic substances from the body by means of a variety of metabolic pathways. One class of proteins responsible for much of the body’s xenobiotic drug and alcohol metabolism is the Cytochrome P450 family of proteins. One protein, Cytochrome P450 Class E Subclass 2 (Cyp2E1), has an integral role in alcohol metabolism by the liver. Cyp2E1 becomes fully activated after an organism has consumed excessive amounts of alcohol excessive alcohol and works with aldehyde dehydrogenase (ALDH) to metabolize ethanol to acetaldehyde. Another metabolic protein, C1q TNF Related Protein 3 (CTRP3), has been shown to effectively prevent alcoholic fatty liver disease (AFLD), specifically with long-term alcohol-induced lipid accumulation.

METHODS: In this experiment, 12-week old male mice were fed a Lieber-Decarli alcohol diet (5% ETOH by volume) for 6-weeks. The food intake and body weight of the mice was recorded each day. The mice in the experiment included both wild type and transgenic CTRP3 overexpressing mice. At the end of the 6-week period the mice were euthanized, and the liver was carefully removed, flash-frozen, and prepared for immunoblot analysis of the proteins.

RESULTS: Cyp2E1 levels increased significantly in response to ethanol consumption. Cyp2E1 levels were further elevated in ethanol-fed CTRP3 transgenic overexpressing mice. Cyp2E1 levels in CTRP3 transgenic mice were nearly twice that of wild type ethanol-fed mice.

CONCLUSIONS: The results of the experiment show a significant increase in Cyp2E1 in mice which overexpress CTRP3. This upregulation of Cyp2E1 with CTRP3 overexpression could explain the mechanism for reduced hepatic lipid accumulation in ethanol-fed CTRP3 transgenic mice.