Honors Program
Midway Honors
Date of Award
5-2020
Thesis Professor(s)
Patrick C. Bradshaw
Thesis Professor Department
Biomedical Sciences
Thesis Reader(s)
Joseph R. Bidwell, Hugh A. Miller III
Abstract
The nicotinamide riboside (NR) form of vitamin B3and the ketone body ß-hydroxybutyrate (BHB) are two of the most promising natural compounds yet identified for the treatment of aging and aging-related diseases. Forms of vitamin B3are precursors for the synthesis of the coenzymes nicotinamide adenine dinucleotide (NAD(H)) and nicotinamide adenine dinucleotide phosphate (NADP(H)). In aged cells levels of NAD+decline, decreasing metabolism and decreasing activity of protective sirtuin protein deacetylases. In aged cells NR, but not more common forms of vitamin B3, boost NAD+levels. BHB is naturally produced by the body when individuals fast or consume a ketogenic (KD) or calorically restricted (CR) diet. These diets have been shown to extend lifespan in mice, while they are also protective in many disease models. Caenorhabditis elegans, a roundworm with a short mean lifespan of roughly 2 to 3 weeks depending upon the temperature, is used as a model system to study aging. BHB has been previously shown to increase lifespan by roughly 20% when administered to C. elegans.We administered NR and BHB individually and together to C. elegans starting at two different developmental stages (larval stages 1 and 4) and measured lifespan. We found that administration of 20 mM DL-BHB decreased lifespan when first given at the L1 stage, while it robustly increased lifespan when first given at the L4 stage. Administration of 0.5 mM NR increased lifespan when first given at L1, with only a very slight increase when first given at L4. When initiating administration at L1, NR greatly mitigated the BHB-mediated decline in longevity, however, NR did not increase BHB-mediated lifespan extension when first administered at L4.
Publisher
East Tennessee State University
Document Type
Honors Thesis - Open Access
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Recommended Citation
Peters, Jeffery, "Effects of Nicotinamide Riboside and Beta-hydroxybutyrate on C. elegans Lifespan" (2020). Undergraduate Honors Theses. Paper 531. https://dc.etsu.edu/honors/531
Copyright
Copyright by the authors.
Included in
Biochemical Phenomena, Metabolism, and Nutrition Commons, Biochemistry Commons, Chemical Actions and Uses Commons, Genetic Phenomena Commons, Medical Biochemistry Commons, Medical Cell Biology Commons, Medical Physiology Commons, Organic Chemicals Commons