Ontogeny of Adenosine Deaminase in the Mouse Decidua and Placenta: Immunolocalization and Embryo Transfer Studies

Document Type


Publication Date



This study has determined the cellular site of adenosine deaminase (ADA) expression in the mouse during development from Days 5 through 13 (day vaginal plug was found = Day 0) of gestation. Developmental expression of ADA progressed in two overlapping phases defined genetically (maternal vs. embryonal) and according to region (decidual vs. placental). In the first phase, ADA enzyme activity increased almost 200-fold in the antimesometrial region (decidua capsularis + giant trophoblast cells) from Days 6 through 9 of gestation but remained low in the mesometrial region. Immunohistochemical staining revealed a major localization of ADA to the secondary decidua. In the second phase, ADA activity increased several-fold in the placenta (labyrinth + basal zones) from Days 9 through 13 of gestation but remained low in the embryo proper. Immunohistochemical staining revealed a major localization of ADA to secondary giant cells, spongiotrophoblast, and labyrinthine trophoblast. Regression of decidua capsularis and growth of the spongiotrophoblast population accounted for an antimesometrial to placental shift in both ADA enzyme activity and a 40-kDa immunoreactive protein band. To verify a shift from maternal to fetal expression, studies were performed with two strains of mice (ICR, Eday) homozygous for a different ADA isozyme (ADA-A, ADA-B). Blastocysts homozygous for Adab were transferred to the uterus of pseudopregnant female recipients homozygous for Adaa. The isozymic pattern in chimeric embryo-decidual units analyzed at Days 7, 9, 11, and 13 revealed a predominance of maternal-encoded enzyme at Days 7 through 11 of gestation and a shift to fetal-encoded enzyme by Day 13. Thus, maternal expression of ADA in the antimesometrial decidua may play a role during establishment of the embryo in the uterine environment, whereas fetal expression of ADA in the trophoblast might be important to placentation.