Degree Name

MS (Master of Science)


Mathematical Sciences

Date of Award


Committee Chair or Co-Chairs

Jeff Knisley

Committee Members

Nicole Lewis, Michele Joyner


Recent advancements in sports information and technology systems have ushered in a new age of applications of both supervised and unsupervised analytical techniques in the sports domain. These automated systems capture large volumes of data points about competitors during live competition. As a result, multi-relational analyses are gaining popularity in the field of Sports Analytics. We review two case studies of dimensionality reduction with Principal Component Analysis and latent factor analysis with Non-Negative Matrix Factorization applied in sports. Also, we provide a review of a framework for extending these techniques for higher order data structures. The primary scope of this thesis is to further extend the concept of tensor decomposition through the use of function spaces. In doing so, we address the limitations of PCA to vector and matrix representations and the CP-Decomposition to tensor representations. Lastly, we provide an application in the context of professional stock car racing.

Document Type

Thesis - unrestricted


Copyright by Justin Reising