Degree Name

MS (Master of Science)

Program

Chemistry

Date of Award

8-2019

Committee Chair or Co-Chairs

Gregory W. Bishop

Committee Members

Dane W. Scott, Hua Mei

Abstract

Studies of single, isolated nanoparticles provide better understanding of the structure-function relationship of nanoparticles since they avoid complications like interparticle distance and nanoparticle loading that are typically associated with collections of nanoparticles distributed on electrode supports. However, interpretation of results obtained from single nanoparticle immobilization studies can be difficult to interpret since the underlying nanoelectrode platform can contribute to the measured current, or the immobilization technique can adversely affect electron transfer. Here, we immobilized ligand-free gold nanoparticles on relatively electrocatalytically inert nitrogen-doped carbon ultramicroelectrodes that were prepared via a soft nitriding method. Sizes of the particles were estimated by a recently reported electrochemical method and were found to vary linearly with deposition time. The particles also exhibited electrocatalytic activity toward methanol oxidation. This immobilization strategy shows promise and may be translated to smaller nanoelectrodes in order to study electrocatalytic properties of single nanoparticles.

Document Type

Thesis - Withheld

Copyright

Copyright by the authors.

Available for download on Saturday, July 15, 2023

Share

COinS