Degree Name

PhD (Doctor of Philosophy)

Program

Biomedical Sciences

Date of Award

5-2018

Committee Chair or Co-Chairs

Brooks Pond

Committee Members

Stacy Brown, David Roane, Donald Hoover, Russell Brown

Abstract

The synthetic cathinones, 3,4- methylenedioxypyrovalerone (MDPV), 4-methylmethcathinone (mephedrone), and 3,4- methylenedioxymethcathinone (methylone), gained worldwide notoriety as the psychoactive components of ‘bath salts;’ a marketing term used to circumvent federal drug laws and permit their legal sale. Previous studies have shown that these drugs share pharmacological characteristics with cocaine and the amphetamines, however, descriptions of their neurotoxic properties are limited. Moreover, while forensic analysis has revealed that the most frequently abused bath salts ‘brands’ contain binary and ternary mixtures of MDPV, mephedrone, and methylone, the majority of preclinical research has focused on explicating the individual effects of these drugs. Therefore, the present dissertation aimed to address this limitation and characterize the acute and chronic effects of combined synthetic cathinone exposure on dopaminergic tone in mesolimbic and nigrostriatal brain regions. To accomplish this, male Swiss-Webster mice were administered MDPV, mephedrone, and methylone, individually or concomitantly, 1 time or 7 times over the course of two weeks and the corresponding effects of each treatment on mesolimbic and nigrostriatal brain tissue levels of dopamine (DA) and DA metabolites were analyzed using a high performance liquid chromatography – electrochemical detection (HPLC-ECD) assay. Additionally, motor-stimulant activity was evaluated after both dosing regimens using locomotor activity assays, while immunoblot and immunostaining techniques were used to evaluate the chronic effects of co-synthetic cathinone exposure on tissue levels of tyrosine hydroxylase (TH), dopamine transporter (DAT), monoamine oxidase B (MAO-B), catechol-O-methyltransferase (COMT), and glial fibrillary acidic protein (GFAP). Results from these studies provide evidence of a significant pharmacological interaction among major bath salt constituents, MDPV, mephedrone, and methylone. This was observed acutely as enhanced DA responses and chronically as functional toxicity at the DA synapse. Furthermore, such interactions may contribute to the deleterious effects reported by bath salt users. Together, these findings have shown that the composition of bath salts preparations can significantly influence their psychostimulant and toxic effects, substantiating the importance of modeling bath salts as drug mixtures.

Document Type

Dissertation - Open Access

Copyright

Copyright by the authors.

Share

COinS