Degree Name

PhD (Doctor of Philosophy)


Biomedical Sciences

Date of Award


Committee Chair or Co-Chairs

Douglas Thewke

Committee Members

Antonio Rusinol, Rob Schoborg, Krishna Singh, Eric Beaumont


Atherosclerosis is a chronic inflammatory disorder of medium and large vessels. Immune signaling and dyslipidemia are two of several processes which influence lesion development in atherosclerosis. Cannabinoids, such as those found in marijuana, exert their effects through two cannabinoid receptors, CB1 and CB2. Recent studies using CB2 knockout mice and CB2-selective ligands have shed light on a protective role of CB2 in early stages of atherosclerosis. However, the role of CB2 in advanced stages of atherosclerosis remains unclear. To determine if CB2 plays a role in advanced atherosclerotic lesion composition and progression, we investigated the effects of systemic CB2 gene deletion on advanced atherogenesis in Ldlr-null mice fed an atherogenic high fat diet (HFD) for 20-24 weeks. CB2 deficiency did not significantly affect aortic root lesion area, however, CB2-/- mice had a significant increase (~1.9 fold) in the percentage of abdominal aorta surface occupied by lesion. CB2-/- mice also displayed increased lesional macrophage content (~2.3 fold) and an unstable phenotype characterized by significantly reduced smooth muscle cell/macrophage ratio and increased matrix metalloproteinase-9 activity and mineralization. These results suggest that although CB2 does not affect the size of atherosclerotic lesions, it does modulate the cellular and extracellular matrix composition and promotes a stable phenotype. CB2+/+ and CB2-/- mice were also subjected to treatments with either CB2-selective agonist, JWH-015, or antagonist, SR144528, over the last four weeks of a 24 week atherogenic diet to identify the effects of CB2 stimulation on calcification of advanced lesions. No change was observed in body weight or cholesterol in response to either treatment. SR144528 reduced triglycerides and mineralization of aortic root lesions in CB2+/+ mice only. Aortic Runx2 and osteopontin were increased in response to JWH-015 by a CB2-dependent mechanism. Administration of synthetic cannabinoids in an ex vivo organ culture of CB2+/+ aortas revealed increased vascular calcification in response to CB2 blockade and decreased vascular calcification in response to CB2 activation. All together, these results support a protective role for CB2 in late stages of atherosclerosis and suggests that drugs targeting CB2 may be beneficial in the treatment of advanced atherosclerosis by affecting osteogenic mechanisms implicated in the mineralization of lesions.

Document Type

Dissertation - unrestricted


Copyright by the authors.