Degree Name

PhD (Doctor of Philosophy)


Kinesiology and Sport Studies

Date of Award


Committee Chair or Co-Chairs

Dr. Kimitake Sato

Committee Members

Dr. Michael H. Stone, Dr. Brad, DeWeese, Dr. Bing Yu


The purpose of the study was to explore and determine kinetic and kinematic variables that related to D-I male sprinters maximal running velocity performance. The current study was separated into 3 individual chapters: 1.) Kinematic analysis magnitude of acceleration for braking and propulsion phases during foot contact phase at maximal speed sprinting; 2.) Using kinetic isometric mid-thigh pull variables to predict D-I male sprinters’ 60m performance; 3.) Relationship of whole and lower body angular momentum cancellation during terminal swing phase to sprint performance.

Methods: for sprint measurement all the athletes were participated 2 trials of 100% effort running through 60 meters. The sprint time was measured by an electronic timing gate system. The electronic timing gate system was placed at every 10 meter intervals from the start line for 60 m. Six cameras were placed between 50 m and 60 m for kinematic data collection and analysis. Volume captured by the cameras is 7.5 m long, 1.2 m wide, and 1.95 m high. Reflective markers were attached on the body landmarks based on Vicon Nexus full body plugin model. The strength assessments were performed in a customized power rack, and kinetic values were collected via a dual force plate setup (2 separate 91 cm x 45.5 cm force plates, Roughdeck HP, Rice Lake, WI). The position for each isometric pull was established before each trial using goniometry, with each bar height corresponding to a 125±5º knee angle and a near-vertical trunk position.

Results: current study partially support previous assumption that fast sprinters can minimize braking phase during foot contact phase when they are running maximal velocity. However, those minimizing effects did not impact maximal running velocity performance. Second, the study showed that fast sprinters can produce greater force during a short period of time than slower sprinters. Moreover, a certain trend of statistical significance was observed from the third study that angular momentum cancellation between lower bodies at frontal plane may be related to maximal running velocity performance.

Discussion: the current study confirmed that fast sprinters can produce greater force in a short period time. However, the current study did not show statistical significance of angular momenta cancellation and sprint performance. Only a level of trend was observed. Thus, further study should examine sprinters with different training background, especially elite level sprinters is definitely needed.

Document Type

Dissertation - unrestricted


Copyright by the authors.

Included in

Kinesiology Commons