Degree Name
MS (Master of Science)
Program
Biology
Date of Award
12-2014
Committee Chair or Co-Chairs
Dhirendra Kumar
Committee Members
Bert C. Lampson, Shivakumar Devaiah
Abstract
Abscisic acid (ABA) induces RD22, responsive to dehydration stress gene. Salicylic acid (SA) has been the focus of research due to its role against pathogens and abiotic stress. Interaction between ABA and SA signaling pathways is still poorly understood. SA-Binding Protein 2 (SABP2) converts methyl salicylate to SA. An attempt was made to identify proteins that interact with SABP2 using a yeast 2-hybrid screening. Several interactors were identified. One of them, SA-Binding Protein 2 Interacting Protein-355 (SBIP-355), showed high homology to RD22. Bioinformatic approaches showed that SBIP-355 contains a BURP domain. Phylogenetic analysis reveals that SBIP-355 clustered into the clade of RD22-like proteins. Thus, SBIP-355 gene might be a stress-inducible gene and encodes a dehydration-responsive protein, which is important for the stress tolerance of tobacco. The complementary DNA (cDNA) of tobacco SBIP-355 was cloned into pDEST-17 vector and then expressed in E. coli to detect the expression of SBIP-355 protein.
Document Type
Thesis - unrestricted
Recommended Citation
Almazroue, Hanadi Abdulaali, "Identification, Cloning, and Expression of Tobacco Responsive to Dehydration like Protein (RD22), SBIP-355 and Its Role in SABP2 Mediated SA Pathway in Plant Defense" (2014). Electronic Theses and Dissertations. Paper 2456. https://dc.etsu.edu/etd/2456
Copyright
Copyright by the authors.