Degree Name

MS (Master of Science)

Program

Mathematical Sciences

Date of Award

8-2011

Committee Chair or Co-Chairs

Jeff R. Knisley

Committee Members

Teresa W. Haynes, Debra J. Knisley

Abstract

This thesis presents the use of a new sigmoid activation function in backpropagation artificial neural networks (ANNs). ANNs using conventional activation functions may generalize poorly when trained on a set which includes quirky, mislabeled, unbalanced, or otherwise complicated data. This new activation function is an attempt to improve generalization and reduce overtraining on mislabeled or irrelevant data by restricting training when inputs to the hidden neurons are sufficiently small. This activation function includes a flattened, low-training region which grows or shrinks during back-propagation to ensure a desired proportion of inputs inside the low-training region. With a desired low-training proportion of 0, this activation function reduces to a standard sigmoidal curve. A network with the new activation function implemented in the hidden layer is trained on benchmark data sets and compared with the standard activation function in an attempt to improve area under the curve for the receiver operating characteristic in biological and other classification tasks.

Document Type

Thesis - Open Access

Copyright

Copyright by the authors.

Share

COinS