Honors Program

Honors in Health Sciences: Microbiology

Date of Award


Thesis Professor(s)

Diego J. Rodriguez-Gil

Thesis Professor Department

Biomedical Sciences

Thesis Reader(s)

Abbas G. Shilabin, Erik M. Petersen


The olfactory system is a great model for studying regeneration due to the olfactory epithelium’s regenerative capability which makes it a potential a source of neural stem cells. The olfactory epithelium presents three types of cells: sustentacular cells which provide support and act as glial supporting cells; olfactory sensory neurons that are in charge of detecting odorant molecules in the air; and the stem cells that generated the aforementioned cell types. Olfactory sensory neurons are constantly dying and being replaced by new neurons originating from the stem cells that lie at the base of the olfactory epithelium. We have used an injury model that allows us to remove all the olfactory sensory neurons from the olfactory epithelium, via a single injection of methimazole. Then, at different timepoints after injury we measure the functional recovery of the olfactory epithelium by analyzing the expression of specific synaptic associated markers. Specifically, we analyzed the expression of synaptophysin, tyrosine hydroxylase, vesicular glutamate transporter 1, and vesicular glutamate transporter 2. Simultaneously, we measured glomerular size in order to serve as an indicator of anatomical recovery. Finally, we correlate these findings with previously generated data in the lab associated with functional recovery through behavior.


East Tennessee State University

Document Type

Honors Thesis - Withheld

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.


Copyright by the authors.