Document Type


Publication Date



β-Adrenergic receptor (β-AR) stimulation induces cardiac myocyte apoptosis and plays an important role in myocardial remodeling. Here we investigated expression of various apoptosis-related genes affected by β-AR stimulation, and examined first time the role of ataxia telangiectasia mutated kinase (ATM) in cardiac myocyte apoptosis and myocardial remodeling following β-AR stimulation. cDNA array analysis of 96 apoptosis-related genes indicated that β-AR stimulation increases expression of ATM in the heart. In vitro, RT-PCR confirmed increased ATM expression in adult cardiac myocytes in response to β-AR stimulation. Analysis of left ventricular structural and functional remodeling of the heart in wild-type (WT) and ATM heterozygous knockout mice (hKO) 28 days after ISO-infusion showed increased heart weight to body weight ratio in both groups. M-mode echocardiography showed increased percent fractional shortening (%FS) and ejection fraction (EF%) in both groups 28 days post ISO-infusion. Interestingly, the increase in %FS and EF% was significantly lower in the hKO-ISO group. Cardiac fibrosis and myocyte apoptosis were higher in hKO mice at baseline and ISO-infusion increased fibrosis and apoptosis to a greater extent in hKO-ISO hearts. ISO-infusion increased phosphorylation of p53 (Serine-15) and expression of p53 and Bax to a similar extent in both groups. hKO-Sham and hKO-ISO hearts exhibited reduced intact β1 integrin levels. MMP-2 protein levels were significantly higher, while TIMP-2 protein levels were lower in hKO-ISO hearts. MMP-9 protein levels were increased in WT-ISO, not in hKO hearts. In conclusion, ATM plays a protective role in cardiac remodeling in response to β-AR stimulation.

Copyright Statement

This document is an author manuscript from PMC. The publisher's final edited version of this article is available at Molecular and Cellular Biochemistry.