Document Type


Publication Date



Introduction Insulin resistance in obesity is decreased after successful diet and exercise. Aerobic exercise training alone was evaluated as an intervention in subjects with the metabolic syndrome.

Methods Eighteen nondiabetic, sedentary subjects, 11 with the metabolic syndrome, participated in 8 wk of increasing intensity stationary cycle training.

Results Cycle training without weight loss did not change insulin resistance in metabolic syndrome subjects or sedentary control subjects. Maximal oxygen consumption (V˙O2max), activated muscle AMP-dependent kinase, and muscle mitochondrial marker ATP synthase all increased. Strength, lean body mass, and fat mass did not change. The activated mammalian target of rapamycin was not different after training. Training induced a shift in muscle fiber composition in both groups but in opposite directions. The proportion of type 2x fibers decreased with a concomitant increase in type 2a mixed fibers in the control subjects, but in metabolic syndrome, type 2x fiber proportion increased and type 1 fibers decreased. Muscle fiber diameters increased in all three fiber types in metabolic syndrome subjects. Muscle insulin receptor expression increased in both groups, and GLUT4 expression increased in the metabolic syndrome subjects. The excess phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser337 in metabolic syndrome muscle tended to increase further after training in spite of a decrease in total IRS-1.

Conclusions In the absence of weight loss, the cycle training of metabolic syndrome subjects resulted in enhanced mitochondrial biogenesis and increased the expression of insulin receptors and GLUT4 in muscle but did not decrease the insulin resistance. The failure for the insulin signal to proceed past IRS-1 tyrosine phosphorylation may be related to excess serine phosphorylation at IRS-1 Ser337, and this is not ameliorated by 8 wk of endurance exercise training.


This document is an author manuscript from PMC. The publisher's final edited version of this article is available at The Journal of Strength & Conditioning Research.