Factors Affecting Effectiveness and Efficiency of DNAPL Destruction Using Potassium Permanganate and Catalyzed Hydrogen Peroxide

Document Type


Publication Date



This paper describes laboratory studies conducted to evaluate the impact of varying environmental conditions (dense non-aqueous phase liquid (DNAPL) type and mass, and properties of the subsurface porous media) and design features (oxidant type and load) on the effectiveness and efficiency of in situ chemical oxidation (ISCO) for destruction of DNAPL contaminants. Porous media in 160 mL zero-headspace reactors were employed to examine the destruction of trichloroethylene and perchloroethylene by the oxidants potassium permanganate and catalyzed hydrogen peroxide. Measures of oxidation effectiveness and efficiency include (1) media demand (mg-oxidant/kg-porous media), (2) oxidant demand (mol-oxidant/mol-DNAPL), (3) reaction rate constants for oxidant and DNAPL depletion (min-1), (4) the percent (%) DNAPL destroyed, and (5) the relative treatment efficiency, i.e., the rate of oxidant depletion versus rate of DNAPL destruction. While an obvious goal of ISCO for DNAPL treatment is high effectiveness (i.e., extensive contaminant destruction), it is also important to focus on oxidation efficiency, or to what extent the oxidant is utilized for contaminant destruction instead of competing side reactions, for improved cost effectiveness and/or treatment times. Results indicate that DNAPL contaminants can be treated both effectively and efficiently under many environmental and design conditions. In some cases, DNAPL treatment was more effective and efficient than dissolved/sorbed phase treatment. In these experiments, permanganate was a more effective oxidant, however catalyzed hydrogen peroxide treated contaminants more efficiently (e.g., less oxidant required per mass contaminant treated). Results also indicate that oxidation treatment goals can be dictated by environmental conditions, and that specific treatment goals can dictate remediation design parameters (e.g., faster contaminant destruction was realized in catalyzed hydrogen peroxide systems, whereas greater contaminant destruction occurred in permanganate systems). Journal of Environmental Engineering