Theoretical Elucidation of Conflicting Experimental Data on Vertical Ionization Potentials of Microhydrated Thymine

Document Type


Publication Date



In a recent article we reported calculations of the ionization energy thresholds (IET) of microhydrated thymine (Close; et al. J. Phys. Chem. A, 2006, 110, 7485). Calculations showed a distinct effect of microhydration on the IET's of thymine. The first water molecule was seen to decrease the IET by about 0.1 eV, and the second and third water molecules caused a further decrease of less than 0.1 eV each. These changes in IET calculated for the canonical form of thymine with 1-3 waters of hydration are smaller than the experimental values determined by Kim et al. (J. Phys. Chem. C 1996, 100, 7933). In the present study it has been shown that there is considerable reorientation of the water molecules in microhydrated thymine upon ionization. This leads to the expectation that the experimental ionization energies may therefore represent an adiabatic process. The results presented here show that the changes in experimental ionization energies determined by Kim et al. for microhydrated thymine are in good agreement with the calculated adiabatic ionization energies.