Star Formation and the Interstellar Medium in Nearby Tidal Streams (SAINTS): Spitzer Mid-Infrared Spectroscopy and Imaging of Intergalactic Star-Forming Objects

Document Type


Publication Date



A spectroscopic analysis of 10 intergalactic star-forming objects (ISFOs) and a photometric analysis of 67 ISFOs in a sample of 14 interacting systems is presented. The majority of the ISFOs have relative polycyclic aromatic hydrocarbon (PAH) band strengths similar to those of nearby spiral and starburst galaxies. In contrast to what is observed in blue compact dwarfs (BCDs) and local giant H II regions in the Milky Way (NGC 3603) and the Magellanic Clouds (30 Doradus and N 66), the relative PAH band strengths in ISFOs correspond to models with a significant PAH ion fraction (<50%) and bright emission from large PAHs (∼100 carbon atoms). The [Ne III]/[Ne II] and [S IV]/[S III] line flux ratios indicate moderate levels of excitation with an interstellar radiation field that is harder than the majority of the Spitzer Infrared Nearby Galaxies Survey and starburst galaxies, but softer than BCDs and local giant H II regions. The ISFO neon line flux ratios are consistent with a burst of star formation ∼6 million years ago. Most of the ISFOs have ∼106 M ⊙ of warm H2 with a likely origin in photo-dissociation regions (PDRs). Infrared Array Camera photometry shows the ISFOs to be bright at 8 μm, with one-third having [4.5]-[8.0] > 3.7, i.e., enhanced non-stellar emission, most likely due to PAHs, relative to normal spirals, dwarf irregulars, and BCD galaxies. The relative strength of the 8 μm emission compared to that at 3.6 μm or 24 μm separates ISFOs from dwarf galaxies in Spitzer two-color diagrams. The infrared power in two-thirds of the ISFOs is dominated by emission from grains in a diffuse interstellar medium. One in six ISFOs have significant emission from PDRs, contributing ∼30%-60% of the total power. ISFOs are young knots of intense star formation.