Title

IL-10 Induces an Immune Repressor Pathway in Sepsis by Promoting S100A9 Nuclear Localization and MDSCdsc Development

Document Type

Article

Publication Date

10-1-2018

Description

The myeloid-related protein S100A9 reprograms Gr1+CD11b+ myeloid precursors into myeloid-derived suppressor cells (MDSCs) during murine sepsis. Here, we show that the immunosuppressive cytokine IL-10 supports S100A9 expression and its nuclear localization in MDSCs to function as immune repressors. To support this new concept, we showed that antibody mediated IL-10 blockade in wild-type mice after sepsis induction inhibited MDSC expansion during late sepsis, and that ectopic expression of S100A9 in Gr1+CD11b+ cells from S100A9 knockout mice switched them into the MDSC phenotype only in the presence of IL-10. Knockdown of S100A9 in MDSCs from wild-type mice with late sepsis confirmed our findings in the S100A9 knockout mice. We also found that while both IL-6 and IL-10 can activate S100A9 expression in naive Gr1+CD11b+ cells, only IL-10 can induce S100A9 nuclear localization. These results support that IL-10 drives the molecular path that generates MDSCs and enhances immunosuppression during late sepsis, and inform that targeting this immune repressor path may improve sepsis survival in mice.

Share

COinS