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Figure 3-11. γH2AX foci were detected in DBH- but not SERT-positive cultured 

neurons after DSP4 treatment. Cultured neurons were treated with DSP4 (50 μM) for 24 h, and 

then IFAs were performed. Only DBH- or SERT-positive cells were counted. Images were 

taken with 60× magnification. (A) No γH2AX foci were detected in SERT-positive cultured 

raphe neurons after DSP4 treatment. (B) γH2AX foci were detected in DBH-positive cultured 

LC neurons after DSP4 treatment. (C) Quantity analysis data for percent of in γH2AX-positive 

cells in (B). At least 100 cells from three random chosen views were counted. (D) γH2AX foci 

in DBH-positive cells. Enlarged images from yellow boxes from B, yellow arrows indicated 

γH2AX foci in nuclei.  In Figure 3-11A, Blue: DAPI, Red: SERT, Green: γH2AX. In Figure 3-

11B and 3-11D, Blue: DAPI, Green: DBH, Red: γH2AX.  
*
p<0.0001, compared to control. 

 

γH2AX and p-p53
ser15

 were measured as DDR markers to evaluate the response to 

DNA damage, as well as the repair rate for CPT- or DSP4-induced DNA damage. As a very 

earlier step in the cellular response to DNA damage, histone H2AX is phosphorylated at C-

terminal serine residues (Ser136 and Ser139) (Rogakou et al. 1998). This phosphorylated 

H2AX, called γH2AX, and γH2AX foci can be detected within minutes after the introduction 

of DNA damages (Kang et al. 2005). H2AX phosphorylation has an important role in the 

initiation of DNA repair (Downs et al. 2000), including the recruitment of DNA repair or 

damage-signaling factors to the damage site, maintenance of the integrity of the DDR, and 

bringing the broken DNA ends closer (Bassing and Alt 2004, Thiriet and Hayes 2005). Known 

as a classic “gatekeeper” of cellular fate, p53 tumor suppressor protein is activated in response 

to genotoxic stress-induced DNA damage (May and May 1999), among which phosphorylation 

of serine-15 is one of the key responses (Hammond et al. 2002). P-p53
ser15

 levels can be rapidly 

increased several folds after DNA damage. Phosphorylated p53 has been linked to DNA repair 

processes, such as activation of DNA repair and stalling the cell cycle (Offer et al. 1999, 

Okorokov 2003, Ford 2005). Therefore, the formation and disappearance of γH2AX and p-

p53
ser15

 can be used to represent a relative time process in CPT-induced DDR and repair rate.  
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LC is important to regulate the amount of norepinephrine in the brain. A deficiency in 

the noradrenergic system of the brain originating from LC cell loss is an early pathological 

indicator in the progression of several neurodegenerative diseases, including PD and AD 

(Marien et al. 2004). Aging-related cognitive decline is associated with accumulation of nDNA 

damage in neurons (Rutten et al. 2003, Rutten et al. 2007), and this effect is due to insufficient 

nDNA repair. Our data shows that noradrenergic SH-SY5Y cells and LC neurons are sensitive 

to CPT-treatment, which results in accumulation of DNA damage (Figure 3-2, 3-3, 3-4). 

Deficiency in DNA repair could be one possible explanation of SH-SY5Y cell and LC neuron 

CPT sensitivity. The repair of DNA damage is depend on functional repair system (Hickson et 

al. 1990).  For example, it has been reported that cells without some DNA repair genes or DNA 

repair enzymes are hypersensitive to CPT and cannot repair CPT-induced DSBs (Nitiss and 

Wang 1988, Chatterjee et al. 1989). Therefore, noradrenergic SH-SY5Y cells and LC neurons 

may be relatively deficient in DNA repair system and consequently sensitive to DNA damage 

produced by CPT. This explanation is consistent with our data that SH-SY5Y cells and LC 

neurons are deficient in repairing CPT-induced DNA damage (Figure 3-5, 3-6, 3-7, 3-8, 3-9).   

Additionally, the literature on oxidative stress induced DNA damage lead to cell cycle 

arrest (Migliore and Coppede 2002). For example, human H2O2-treated fibroblasts undergo 

either cell cycle arrest or apoptosis (Chen et al. 2000). The majority of the apoptotic fibroblasts 

were found in the S phase, whereas growth-arrested cells were predominantly accumulated in 

the G1 or the G2/M phase (Chen et al. 2000). This apoptotic death of fibroblasts in the S phase 

is consistent with the death of neurons that have aberrant cell cycle activity and express S-

phase proteins. Dorsal root ganglion neurons go to apoptosis in the S phase (ElShamy et al. 

1998), and the apoptotic neurons express S-phase proteins (Folch et al. 2012). Hippocampal 
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pyramidal and basal forebrain neurons from AD brains show chromosomal duplication and die 

before mitosis, these are consistent with cell death in the S or G2 phase of the cell cycle (Nagy 

et al. 1997b). It was reported that insufficient nDNA repair system leads to accumulation of 

nDNA in neurons. So if SH-SY5Y cells were in S or G2/M phase when CPT was added, these 

cells might respond severely with much more γH2AX foci in nuclei. This hypothesis also can 

be used to explain our data in Figure 3-6A. The number of γH2AX-positive cells decreased at 

R24 h then increased at R48 h compared to R24 h. This effect might be explained as at R24 h, 

the number of γH2AX-positive cells dramatically decreased due to cells with high amounts of 

DNA damage went to apoptosis. At R48 h, the number of γH2AX-positive cells still decreased 

but higher than that at R24 h, this indicated that cells with lower amount of DNA damage 

recruited γH2AX to repair the damage. To measure the number of survived cells at each time 

point and test if cells with more γH2AX are in S or G2/M phase, these further experiments will 

help to explain why a dramatically decreased expression of γH2AX after wash-out CPT at 24 

h.  

In Figure 3-10, under neutral condition, CPT-induced DNA damage was detected in 

fibroblast cells not in SH-SY5Y cells, which indicates that CPT does not induce DSBs in SH-

SY5Y cells. However, CPT induced-DNA damage could be detected in both SH-SY5Y and 

fibroblast cells under alkaline condition, which suggests that CPT induces SSBs in both cell 

lines. Toxicity of CPT is primarily a result of conversion of SSBs into DSBs during the S 

phase when the replication fork collides with the cleavage complexes formed by DNA and 

Topo I-CPT complex. Therefore, our data suggest that SH-SY5Y probably has special repair 

system, which blocks CPT-induced DSB formation.  

CPT induces DNA DSBs during DNA synthesis (S phase), suggesting that this agent 
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should not be toxic to non-dividing cells, such as neurons. However, CPT induces significant 

and dose-dependent cell death of post-mitotic rat cortical neurons and its neurotoxic activity 

also was found in cultured cerebellar granule neurons (Morris and Geller 1996, Uday Bhanu 

and Kondapi 2010). Taken together, these observations indicate that CPT also exhibits 

significant toxicity toward neuronal cells in vitro. This could explain the results in Figure 3-9 

and 3-11B, which CPT induces DDR in LC neurons.  In the present study, exposure of the 

primary cultures from rat raphe to CPT (Figure 3-10) and DSP4 (Figure 3-11A) did not cause 

obvious DDR. Although to date there is no report about the effects of CPT on serotonergic 

neurons in vitro or in vivo, the result of DSP4 is in agreement with previous studies in that 

DSP4 did not change the amount of 5-hydroxytryptamine and its metabolite 5-

hydroxyindoleacetic acid in the hippocampus (Jackisch et al. 2008) and dorsal raphe nucleus 

(Cassano et al. 2009). Also, previous studies have demonstrated that DSP4 treatment of Fischer 

344 rats affects only noradrenergic neurons, leaving serotonergic and dopaminergic neurons 

intact (Chrobak et al. 1985, Martin and Elgin 1988).  

 In summary, in the present study, SH-SY5Y cells and primary cultures from rat LC are 

sensitive to neurotoxins CPT- or DSP4-induced DNA damage, and deficient in repairing the 

damage, compared to fibroblast cells and raphe neurons, respectively. These pathological 

characteristics may be consistent with the in vivo observation that degeneration of 

noradrenergic neurons occurs earlier than other neuronal systems in the brain of 

neurodegenerative diseases. The present study may serve as an initial effort to explore the 

molecular mechanisms underlying pathophysiological alterations of LC neurons in PD and 

AD.     
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Abstract 

 

DNA damage is a form of cell stress and injury. An increased systemic DNA damage is related 

to the pathogenic development of neurodegenerative diseases. Also, depression occurs in a 

relatively high percentage of patients suffered from degenerative diseases, for whom 

antidepressants are often used to relieve depression symptoms. To date, however, few studies 

have elucidated why different groups of antidepressants have the similar effects on relieving 

depression. Previously, we demonstrate that neurotoxins DSP4 and CPT induce the DDR in 

SH-SY5Y cells. SH-SY5Y cells are predominately arrested in S and G2/M phases with DSP4 

treatment. The current study shows that some antidepressants reduce the DDR, which is 

induced by DSP4 or CPT in SH-SY5Y cells. Flow cytometry data demonstrate that selective 
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antidepressants protect cells from being arrested in S phase. These effects suggest that blocking 

DNA damage may be the common pharmacologic characteristic of antidepressants, which may 

explain why different antidepressants could alleviate depression symptoms in 

neurodegenerative patients.  

 

Introduction 

 

 DNA damage is a form of cell stress and injury. An increased systemic DNA damage 

caused by neurotoxins, psychological and oxidative stress has been found to be related to the 

pathogenic development of neurodegenerative and psychiatric diseases (Martin 2008). 

Progressive neuronal DNA damage in aging brains has been closely linked with the onset of 

neurodegenerative disorders (Lindahl 1993). Brain is one of the most important organs, but 

studies of DNA transactions were neglected for a long time. This is because adult brain cells 

are considered in low levels of DNA synthesis and repair (Subba Rao 2007). However, 

increased evidence shows that oxidative stress in the brain affects the brain's DNA repair 

pathways and genomic stability.  Deficiency in DNA repair system has been linked to 

cognitive decline with aging-related diseases, but the mechanisms that protect neurons from 

genotoxic stress remain unclear (Dobbin et al. 2013).  

 DSP4 has widely been used as a noradrenergic neurotoxin to construct AD and PD 

animal models. Ross first reported the effects of DSP4 on norepinephrine levels in the 

peripheral and central noradrenergic system several decades ago (Ross 1976). It was 

hypothesized that DSP4 selectively damages noradrenergic projections originating from the LC 
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by interacting with the norepinephrine reuptake system and depleting intracellular 

norepinephrine, finally inducing degeneration of noradrenergic terminals (Winkler 1976, 

Ransom et al. 1985, Dooley et al. 1987, Howard et al. 1990, Prieto and Giralt 2001).  

Aberrant cell cycle activity also has been detected during the progression of 

neurodegenerative conditions. Oxidative DNA damage is correlated with cell cycle arrest 

(Migliore and Coppede 2002). For example, human H2O2-treated fibroblasts undergo either 

cell cycle arrest or apoptosis (Chen et al. 2000). The majority of the apoptotic fibroblasts were 

found in the S phase, whereas growth-arrested cells were predominantly accumulated in the G1 

or the G2/M phase (Chen et al. 2000). This apoptotic death of fibroblasts in the S phase is 

consistent with the death of neurons that have aberrant cell cycle activity and express S-phase 

proteins. Dorsal root ganglion neurons go to apoptosis in the S phase (ElShamy et al. 1998), 

and the apoptotic neurons express S-phase proteins (Folch et al. 2012). Hippocampal 

pyramidal and basal forebrain neurons from AD brains show chromosomal duplication and die 

before mitosis, these are consistent with cell death in the S or the G2 phase of the cell cycle 

(Nagy et al. 1997b). Some neurotoxins can arrest the cell cycle in different phases (Klein and 

Ackerman 2003). We demonstrate that DSP4 induces the DDR in SH-SY5Y cells and DSP4 

treatment results in cell cycle arrest predominantly in the S (Wang et al. 2014) and the G2/M 

phase. CPT is found to induce cell death of post-mitotic rat cortical neurons in vitro (Morris 

and Geller 1996) and neurotoxic activity of CPT also was found in cultured cerebellar granule 

neurons (Uday Bhanu and Kondapi 2010). We demonstrated in Chapter 3 that CPT-induced 

DDR occurred in primary cultured LC and raphe neurons in vitro (Wang et al. 2014).  

The common behavioral symptoms of neurodegenerative disorders include depression, 

mood swings, and social withdrawal. The process of neurodegeneration is not well understood, 
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so there is no known cure for this group of diseases. Current therapeutic approaches are limited 

to disease managements and symptomatic relief. Depression symptoms often accompany 

neurodegenerative disorders, which could be relieved by using antidepressants. 

Antidepressants are drugs used for the treatment of major depression disorder and other 

conditions (Briley and Moret 1993, Martin 2008). They can be used alone or in combination 

with other medications. For example, depression in patients with PD can be alleviated by the 

NRI reboxetine (McNamara and Durso 2006).  

The most important classes of antidepressants are the SSRIs (Geddes and Cipriani 

2004), SNRIs, TCAs and MAOIs (Table 1-1). Antidepressants are often used to treat patients 

suffering from depression, however, few studies have shown why these drugs or combination 

of drugs help to alleviate depression symptoms. Furthermore, neurodegenerative diseases 

always accompany depression symptoms for which antidepressants are often prescribed. On 

the other side, DNA damage is associated with the pathophysiological process of 

neurodegenerative diseases and some psychiatric diseases. Therefore, in the present study, we 

tried to examine whether antidepressants influence neurotoxins DSP4- and CPT-induced DNA 

damage. The present results demonstrated that most tested antidepressants could reduce the 

DDR induced by DSP4 or CPT.   

 

Materials and Methods 

 

Cell Culture and Drug Exposure 

The human neuroblastoma SH-SY5Y cells were used in these experiments. Cells were 

maintained in a 1:1 mix of RPMI 1640 and F12 media, which was supplemented with 10 % 
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heat-inactivated fetal bovine serum (FBS), penicillin (100 U/ml) and streptomycin (100 µg/ml) 

at 37°C in humidified air containing 5% CO2. Culture medium and supplements were obtained 

from Gibco-Invitrogen (Carlsbad, CA, USA). Cells were seeded into 6-well or 100-mm plates. 

Drug exposures were started after 24 h of each subculture. DSP4 (Sigma, St Louis, MO, USA) 

was dissolved in distilled water at 50 mM, then diluted with culture media and added to cells to 

a final concentration of 50 µM, alone or in combination with antidepressants for the times as 

indicated in the text. CPT was dissolved in 10 mM dimethyl sulfoxide , then diluted with 

culture media and added to cells to a final concentration of 10 µM, alone or in combination 

with antidepressants for the times as indicated in the text.  Different antidepressants were used 

in this study: fluoxetine (1 and 5 µM), reboxetine (1 and 5 µM), desipramine (1 and 5 µM), 

paroxetine (1 and 5 µM), imipramine (50 and 100 µM), amitricyclin (10 and 50 µM), deprenyl 

(50 and 100 µM), and pargyline (1, 5, 10, 50 µM). Antidepressants were dissolved in water. 

The selection of the concentration of DSP4 was based on our previous data (Wang et al. 2014). 

The concentration of CPT and antidepressants were based on published papers (Lai and Yu 

1997, Leskiewicz et al. 2013, Serrano et al. 2013). Only SH-SY5Y cells prior to passage 15 

were used. Cell viability was determined by exclusion of trypan blue dye; cell viability was 

90–95% in the untreated cells. 

Western Blotting Analysis 

Whole cell extracts for western blot analysis were prepared by lysing cells in ice-cold 

Nonidet P-40 (NP-40; Sigma, St Louis, MO, USA) buffer (0.5% NP-40, 50 mM Tris–HCl pH 

8.0, 150 mM NaCl, 2 mM EDTA) for 30 min, after which nuclei and cell debris were removed 

by centrifugation at 12,000 rpm for 10 min at 4
o
C. An equal volume of sodium dodecyl sulfate 

(SDS) gel-loading buffer then was added to the supernatant and the samples were denatured at 
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70
o
C for 5 min. Protein concentrations in cell extracts were quantified prior to addition of the 

loading buffer with the Micro BCA Protein Assay Kit (Thermo Science, Rockford, IL USA). 

Proteins (40 µg) were electrophoretically separated on a 10% or a 15% SDS–polyacrylamide 

gel and electro-blotted onto a nitrocellulose membrane (Amersham Life Sciences, 

Buckinghamshire, UK). For protein detection, the blots were probed with anti-γH2AX 

antibody (1:1,000 dilution, Bethyl Laboratories, Inc., Montgomery, TX, USA), or an anti-p-

p53
ser15

 antibody (1:1,000 dilution, Cell Signaling Technology, Inc., Danvers, MA, USA). A 

horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody (1:5,000 dilution; 

Amersham Life Sciences, Buckinghamshire, UK) was used as the secondary antibody. The 

membranes were subjected to enhanced chemiluminescence (Amersham Life Sciences, 

Buckinghamshire, UK) or super enhanced ECL (Sigma Chemical Co., St Louis, MO, USA) 

and autoradiography. To check for equal loading and transfer, the membranes were reprobed 

with a mouse IgG monoclonal anti-ß-actin antibody (1:5,000 dilution, Amersham Life 

Sciences, Buckinghamshire, UK). 

Flow Cytometry 

SH-SY5Y cells were sub-cultured in a 6-well plate at 2×10
4 

cells/well, then cells were 

pretreated with fluoxetine (1 and 5 µM), reboxetine (1 and 5 µM), desiprimine (DMI, 1 and 5 

µM), paroxetine (1 and 5 µM), imipramine  (50 and 100 µM), amitricyclin (10 and 50 µM), 

and deprenyl (50 and 100 µM) for 1 h, and then DSP4 (5 μM) was added for another 24 h.  

Cells were washed with 37
o
C warm phosphate buffered saline (PBS), 200 μl of 0.25 % 

trypsin–EDTA (Gibco, Carlsbad, CA, USA) was added per well, and the plate was incubated at 

37
o
C for 1 min. The trypsin was aspirated off and the cells were suspended with 1 ml ice-cold 

PBS containing 0.5 mM EDTA (PBSE). The cells were collected by centrifugation at 3,000 
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rpm for 10 min at 4
o
C and fixed by slowly adding 1 ml ice-cold 70% ethanol to resuspend the 

cells. The cells were stored at -20
o
C overnight, and then collected at 3,000 rpm for 10 min at 

4
o
C. The cells were washed once with ice-cold PBSE, then recentrifuged and resuspended in 

300 μl of freshly prepared PBSE containing 20 μg/ml propidium iodide (Sigma, St Louis, MO, 

USA) and 20 μg/ml DNase-free RNase A (Invitrogen, Grand Island, NY, USA). After 

incubation at 37
o
C for 30 min, the cells were analyzed on the BD Accuri C6 flow cytometer. 

The population of G0/G1, S, and G2/M was determined using C6 Flow Cytometer Software. 

The results are expressed as percentage of the attached cells in each phase. 

Statistics 

All experimental data are presented in the text and graphs as the mean ± SEM. The 

number of replicates is enumerated in the figure legends. Data were analyzed by using one-way 

analysis of variance (ANOVA) in GraphPad Prism.  

 

Results 

 

DSP4-induced DNA Damage Response Can be Reduced by Some Antidepressants 

Our previous study demonstrated that DSP4 as a neurotoxin induced DDR in SH-SY5Y 

cells (Wang et al. 2014). To test the effects of antidepressants on DDR induced by DSP4, in 

this study, SH-SY5Y cells were pretreated with different antidepressants for 1 h before 4 h 

DSP4 (50 µM) treatment. Antidepressants include SSRIs (fluoxetine and paroxetine), NRI 

(reboxetine), TCAs (imipramine, amitriptyline and desipramine) and MAOIs (deprenyl and 

pargyline). As shown in figures 4-1, 4-2, 4-3 and 4-4, SSRIs, NRI and TCAs when given alone 
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to SH-SY5Y cells in the absence of DSP4 did not induce any significant changes in protein 

levels of γH2AX and p-p53
ser15

, as measured by western blottings. However, most tested 

antidepressants significantly attenuated DSP4-induced DDR levels, as compared to DSP4 

alone groups (for effects on γH2AX: desipramine: F5,12=379.6, p<0.0001; imipramine: 

F5,12=46.9, p<0.0001; amitriptyline: F5,18=36.2, p<0.0001; fluoxetine: F5,24=249.6, p<0.0001; 

paroxetine:  F5,15=387.2, p<0.0001; reboxetine: F5,16=203.8, p<0.0001; deprenyl: F5,18=200.0, 

p<0.0001. For effects on p-p53
ser15

: desipramine: F5,16=111.3, p<0.0001; imipramine: 

F5,16=285.2, p<0.0001; amitriptyline: F5,12=369.4, p<0.0001; fluoxetine: F5,18=81.5, p<0.0001; 

paroxetine:  F5,12=159.1, p<0.0001; reboxetine: F5,12=119.3, p<0.0001; deprenyl: F5,12=212.9, 

p<0.0001). Further analyses revealed some specific outcomes: 1) The alleviatory effects of 

some antidepressants on DSP4-induced DDR seem to be concentration-dependent. For 

example, while both concentrations of desipramine (1 and 5 µM), imipramine (50 and 100 

µM), amitriptyline (10 and 50 µM), fluoxetine (1 and 5 µM), paroxetine (1 and 5 µM), 

reboxetin (1 and 5 µM), and deprenyl (50 and 100 μM) significantly inhibited DSP4-induced 

increases of γH2AX and p-p53
ser15

, and lower concentrations of desipramine (1 μM, Figures. 4-

1A and 4-1B), fluoxetine (1 μM, Figs. 2A and 2B) and paroxetine (50 μM, Figures. 4-2E and 

4-2F) showed more significant effects than their higher concentrations on reducing γH2AX and 

p-p53
ser15

 levels. Furthermore, the effect of amitriptyline (Figure 4-1J), reboxetine (Figure 4-

3B) and deprenyl (Figure 4-4B) also reduced the p-p53
ser15

 levels in a concentration-dependent 

manner.  2) Both deprenyl and pargyline are MAOIs to inhibit the activity of monoamine 

oxidase, thus preventing the breakdown of monoamine neurotransmitters and thereby 

increasing their availability. While pargyline (1, 5, 10 and 50 µM) did not have any effects on 

DSP4-induced DDR in SH-SY5Y cells (Figure 4-4E), deprenyl (50 and100 µM) suppressed 
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DDR (Figs. 4-4A and 4-4B). 

 

Figure 4-1. TCAs desipramine, imipramine and amitriptyline reduce DSP4-induced 

DDR in SH-SY5Y cells. Cells were pretreated with desipramine (1 and 5 µM), imipramine (50 

and 100 µM), and amitriptyline (10 and 50 µM) for 1 h, then DSP4 (50 µM) was added for 

another 4 h. γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data were shown 
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in (A), (B), (E), (F), (I) and (J). Quantified data analysis were shown in (C), (D), (G), (H), (K) 

and (L). 
##

p<0.01, 
####

p<0.0001, compared to the control; 
****

p<0.0001, compared to the DSP4 

group; 
&&

P<0.01, 
&&&&

p<0.0001, compared to desipramine (1 μM), imipramine (50 μM), or 

amitriptyline (10 μM). 

 

 

Figure 4-2. SSRIs antidepressants fluoxetine and paroxetine reduce DSP4-induced 

DDR in SH-SY5Y cells. Cells were pretreated with fluoxetine (1 and 5 µM) and paroxetine (1 

and 5 µM) for 1 h, and then DSP4 (50 µM) was added for another 4 h. γH2AX and p-p53
ser15

 

were used as DDR markers. Western blots data were shown in (A), (B), (E) and (F). Quantified 

analysis data were shown in (C), (D), (G) and (H). The graphic data represent averages 

obtained from 3-5 separate experiments. 
#
p<0.05, 

##
p<0.01, 

###
p<0.001, 

####
p<0.0001, 

compared to the control; 
****

p<0.0001, compared to the DSP4; 
&

p<0.05, 
&&

P<0.01, 
&&&

p<0.001, 
&&&&

p<0.0001, compared to groups of fluoxetine (1 μM), or paroxetine (1 μM). 
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Figure 4-3. NRI antidepressant reboxetine reduces DSP4-induced DDR in SH-SY5Y 

cells. Cells were pretreated with reboxetine (1 and 5 µM) for 1 h, and then DSP4 (50 µM) was 

added for another 4 h. γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data 

were shown in (A) and (B). Quantified analysis data were shown in (C) and (D). The graphic 

data represent averages obtained from 3-5 separate experiments. 
###

p<0.001, 
####

p<0.0001, 

compared to the control; 
****

p<0.0001, compared to the DSP4; 
&&

P<0.01, 
&&&

p<0.001, 
&&&&

p<0.0001, compared to the group of reboxetine (1 μM). 
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Figure 4-4. MAOI antidepressant deprenyl reduces DSP4-induced (DDR) in SH-SY5Y 

cells while pargyline does not. SH-SY5Y cells were pretreated with deprenyl (50 and 100 µM) 

or pargyline (1, 5, 10 and 50 µM) for 1 h, then DSP4 (50 µM) was added for another 4 h. 

γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data were shown in (A), (B) 

and (E). Quantified analysis data were shown in (C), (D), (F) and (G). The graphic data 

represent averages obtained from 3-5 separate experiments. 
##

p<0.01, 
###

p<0.001, 
####

p<0.0001, 

compared to the control; 
*
p<0.05, 

**
p<0.01, 

****
p<0.0001, compared to the DSP4. 
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Table 4-1. Summary of the effects of antidepressants on reducing γH2AX (Green) and 

p-p53
ser15

 (Blue) levels.  This table shows two concentrations for each antidepressants. The 

effects of DSP4 on levels of γH2AX and p-p53
ser15 

are considered 100%, which is shown as 

+++. The effects of antidepressants are normalized by DSP4. -: 0-25%; +: 25-50%; ++: 50-

75%; +++: 75-100%; ++++>100%.  
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Selected Antidepressants Reduce CPT-induced DNA Damage Response  

CPT is commonly used as a DNA topo I inhibitor to induce DNA DSBs (Liu et al. 

2000). CPT induces significant DDR in SH-SY5Y cells as early as 1 h (Figure 3-4, 3-6). We 

pretreated SH-SY5Y with antidepressants used above for 1 h then CPT (10 µM) was added for 

another 1 h. Interestingly, we only found that paroxetine (1 and 5 µM), imipramine (10 and 50 

µM) and amitrycycline (50 and 100 µM) could attenuate CPT-induced DDR in SH-SY5Y 

cells, as shown by reduced levels of γH2AX and p-p53
ser15 

(Figure 4-5).  

 

Effects of Selected Antidepressants on Protecting Cells from Arresting in S phase 

Previously, our study showed that DSP4 could arrest SH-SY5Y cells in S (Wang et al. 

2014) and G2 phases. Since G2/M phase was not significantly affected by antidepressants and 

DSP4, therefore we focused on discussing S phase arrest in Chapter 4. To test the effect of 

antidepressants on S phase arrest caused by DSP4, two parallel experiments were carried out. In 

the first experiment, cells were treated with different antidepressants alone for 25 h. In the 

second experiment, cells were pretreated with antidepressants for 1 h, and then DSP4 (5 µM) 

was added for another 24 h. Cells were collected and flow cytometric analyses were performed.  

As shown in Figure 4-6, control cells with neither antidepressants nor DSP4 treatment, 

distributed 51.7/52.1 in G1 phase and 17.6/17.8 % in S phase (See Con in Figures 4-6 and 4-7). 

For the groups treated with 5 µM DSP4 only, cells were distributed 40.1/41.0 in G1 phase and 

30.6/30.4% in S phase (See DSP4 in Figures 4-6 and 4-7). Compared to control cells, DSP4 

significantly decreased G1- and increased S-phase cell populations. In contrast, compared to the 

magnitude of changes in G1 and S phases caused by DSP4, effects of most tested 

antidepressants did not affect G1 and S phases (Figure 4-6).  

http://en.wikipedia.org/wiki/DNA
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Figure 4-5. CPT-induced DNA damage response is reduced by imipramine, 

amitriptyline and paroxetine. SH-SY5Y cells were pretreated with imipramine (50 and 100 

µM), amitriptyline (10 and 50 µM) or paroxetine (1 and 5 µM) for 1 h, then CPT (10 µM) was 

added for another 1 h. γH2AX and p-p53
ser15

 were used as DDR markers. Western blots data 
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were shown in (A), (D) and (G). Quantified analysis data were shown in (B), (C), (E), (F), (H) 

and (I). The graphic data represent averages obtained from 3-5 separate experiments. 
#
p<0.05, 

##
p<0.01, 

####
p<0.0001, compared to the control; 

**
p<0.01, 

***
p<0.001, 

****
p<0.0001, compared 

to the DSP4; 
&

p<0.05, 
&&&

p<0.001, 
&&&&

p<0.0001, compared to of imipramine (50 μM), 

amitriptyline (10 μM), or paroxetine (1 μM). 

 

DSP4 actives intra-S and G2/M checkpoints, therefore cells go through G1 phase and 

accumulate in S (Wang et al. 2014) and G2 phases. Flow cytometric data show significantly 

decreased G1 phase and increased S phase population after DSP4 treatment in SH-SY5Y cells.  

Interestingly, as shown in Figure 4-7 and flow-cytometric histograms in Figure S-1, effects of 

DSP4 on changing of cells distribution partially were decreased when co-treated with some 

antidepressants. After SH-SY5Y cells co-treated with some antidepressants, the effects of 

increased G1 and decreased S phases population were detected (Figure 4-7). However, 1 μM 

fluoxetine, 50 and 100 μM deprenyl, 5 and 10 μM pargyline, they did not show significant 

effects on G1 population. In addition, co-treatment of antidepressants still showed increased S 

phase population except desipramine (1 and 5 μM) and reboxetine (1 and 5 μM), compared to 

control. However, compared to DSP4, significantly decreased S phase population except 50 μM 

deprenyl was detected with antidepressants co-treatment. A summary of antidepressants’ effects 

was shown in Table 4-2. These data suggested that some antidepressants could protect cells 

from arresting in S phase and increasing cell population in G1 phase.  



 119 

 

 

Figure 4-6.  Effects of some antidepressants on cell cycle in SH-SY5Y cells. Cells were 

pretreated with imipramine (50 and 100 µM), amitriptyline (5 and 10 µM), desipramine (1 and 

5 µM), fluoxetine (1 and 5 µM), paroxetine (1 and 5 µM), reboxetine (1 and 5µM) and 

deprenyl (50 and 100 µM) for 25 h. The percents of cells in G1 and S phases were shown in 

(A) and (B), respectively. Each bar represents data obtained from 3 to 6 separate experiments. 
#
p<0.05, 

##
p<0.01, 

####
p<0.0001, compared to the control; 

*
p<0.0001, compared to the DSP4. 
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Figure 4-7. Effects of some antidepressants on cell cycle transitions in SH-SY5Y cells 

with DSP4 co-treatment. SH-SY5Y cells were pretreated with imipramine (50 and 100 µM), 

amitriptyline (10 and 50 µM), desipramine (1 and 5 µM), fluoxetine (1 and 5 µM), paroxetine 

(1 and 5 µM), reboxetine (1 and 5µM) and deprenyl (50 and 100 µM) for 1 h, and then DSP4 

(5 µM) was added for 24 h. The percents of cells in G1 and S phase were shown in (A) and 

(B), respectively. Each bar represents data obtained from 3 to 7 separate experiments. 
#
p<0.05, 

##
p<0.01, 

###
p<0.001, 

####
p<0.0001, compared to the control; 

*
p<0.05, 

**
p<0.01, 

***
p<0.001, 

****
p<0.0001, compared to the DSP4. 
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Table 4-2. Summary of the effects of some antidepressants on cell cycle transitions in 

SH-SY5Y cells with (B) or without (A) DSP4 co-treatment. /p<0.05, /p<0.01, 

/p<0.001, /p<0.0001, compared to the control; /p<0.05,  

/p<0.01, /p<0.001, /p<0.0001, compared to the DSP4. 

Blank boxes show no significant difference.  
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Discussion 

 

In the present study, we attempt to elucidate potential new mechanisms of 

antidepressants, SH-SY5Y cells co-treated with SSRIs, NRI and TCAs and MAOIs 

antidepressants and neurotoxins DSP4 and CPT. Our results showed that pretreatment of SH-

SY5Y cells with antidepressants resulted in protection effects on reducing DSP4-induced 

DDR. For example, exposure of cells to TCAs SSRIs, NRI and deprenyl blocked DSP4-

induced elevation of γH2AX and p-p53
ser15 

(Table 4-1). Furthermore, pretreatment of cells with 

imipramine, amitriptyline and paroxetine also showed a similar protective effect on CPT-

induced DNA damage. Moreover, flow cytometric data showed that selective antidepressants 

could reduce the effects of DSP4-induced S-phase arrest in SH-SY5Y cells. These results 

reveal that although these tested antidepressants have different pharmacologic mechanisms 

regarding their clinical use, they may have a common feature to protect cells from DNA 

damage, specifically by protecting cells from S-phase arrest. This is because the majority of 

dead neurons are in S phase (Yang et al. 2001). 

 The common behavioral symptoms of neurodegenerative disorders include depression, 

mood swings, and social withdrawal. About 30-50% of AD patients have depression symptoms 

(Brown and Jahanshahi 1995, Cummings and Masterman 1999, Lee and Lyketsos 2003). 

Several pathological events have been explained that the coborbility may be due to depletion of 

the LC neurons (Zubenko and Moossy 1988). In Chapter 2, DSP4 has been found to reduce 

expression of DBH in SH-SY5Y cells, mediated by its action of DDR (Wang et al. 2014). 

Further study in Chapter 3 shows that primary-cultured LC neurons are sensitive to DSP4- and 

CPT-induced DNA damage. Recent post-mortem study demonstrated that major depression 
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disorder was associated with oxidative stress (Shelton et al. 2011) and accumulated oxidative 

DNA damage was detected in brain cells of AD (Kadioglu et al. 2004) and PD (Zhang et al. 

1999) patients.  

Antidepressants are used for the treatment of major depression disorder and depression 

symptoms in other diseases (Briley and Moret 1993, Martin 2008). They can be used alone or 

in combination with other medications in other diseases. Although antidepressant drugs have 

been clinically used in the treatment of depression for decades, the precise mechanism of their 

therapeutic action is still unclear. Currently, the pharmacological mechanisms of the most 

clinically used antidepressants are related to the “monoamine hypothesis” (Schildkraut 1965), 

which states that antidepressants, such as SSRIs, NRIs, TCAs and MAOIs, increase 

neurotransmitter levels, especially serotonin and norepinephrine, in the synapses. This action in 

turn restore the neurotransmission and functions of brains caused by deficiency of these 

neurotransmitters. However, this hypothesis has been challenged due to the conflict between 

rapid increases in serotonin and norepinephrine levels induced by antidepressants and the 

delayed appearance of therapeutic efficacy. Therefore, new molecular mechanisms are needed 

for antidepressant actions. In the present study, almost all tested antidepressants effectively 

ameliorate the DDR caused by neurotoxins, indicating that blocking neuronal damage, such as 

DNA damage, may be the common pharmacologic action of antidepressants.  This notion is 

supported by some new observations related to the etiology of depression. For example, 

oxidative and nitrosative stress are involved in the pathophysiology of depression (Maes et al. 

2009, Maes et al. 2011). DNA is perhaps one of the major targets for oxyradicals, therefore, 

oxidative stress may cause DNA damage. Furthermore, antidepressants may protect cells 

against neurotoxicity caused by several toxic compounds. For example, fluoxetine suppresses 
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kainic acid-induced neuronal loss in the rat hippocampus, which might be associated with its 

anti-inflammatory effects. It was reported that both R and S isomers of fluoxetine attenuated 

chronic neurodegeneration induced by a commonly used inflammogen lipopolysaccharide 

(Zhang et al. 2012). Moreover, some studies suggest that antidepressants and mood stabilizers 

may act as antioxidant mechanisms (Berk et al. 2011, Maes et al. 2011), and antioxidants have 

antidepressant properties (Berk et al. 2008, Scapagnini et al. 2012). Therefore, it is important to 

elucidate potential mechanisms of antidepressants for new drug target discovery in the 

treatment of depression. 

It is important to note that in the present study, pargyline is the only antidepressant that 

did not inhibit the formation of DSP4- or CPT-induced DNA damage and cell cycle arrest. In 

contrast, the MAOI deprenyl exhibited the similar effects on DNA damage as other 

antidepressants. Currently, we do not have a satisfactory explanation for this difference. One 

potential explanation is that at least monoamine inhibition activity of these MAOIs does not 

account for the effect of blocking DDR. Rather, it depends upon the other specific 

pharmacologic activity of these compounds.  It was reported that pretreatment with deprenyl 

prevented the effect of specific neurotoxins like DSP4. Deprenyl pretreatment prevented the 

depletion of norepinephrine induced by DSP4 in the rat hippocampus (Magyar and Haberle 

1999). This could be due to the uptake inhibitory effect of deprenyl and mainly to its 

metabolite methylamphetamine, which is a more potent inhibitor of the re-uptake than the 

parent compound. Moreover, pretreatments of SH-SY5Y cells with imipramine, amitriptyline, 

desipramine, reboxetine, paroxetine, fluoxetine, and deprenyl showed protective effects on 

DSP4-induced DNA damage. However, only imipramine, amitriptyline and paroxetine showed 

protective effects on CPT-induced DNA damage. It is difficult to explain why DSP4 and CPT 
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have different responses to these antidepressants, since the mechanisms of DSP4 and CPT to 

induce DNA damage are not totally understood.  

In Chapter 2, we showed that DSP4 decreased G1 and increased S phase cell population 

in SH-SY5Y cells. In this Chapter, our data showed that co-treatment some antidepressants 

with DSP4 increased G1 and decreased S phase cell population. Damage and loss of LC 

noradrenergic neurons is accelerated in certain progressive neurodegenerative diseases 

including AD (Mann and Yates 1983, Bondareff et al. 1987, German et al. 1992, Weinshenker 

2008) and PD (Mann et al. 1983, Rommelfanger and Weinshenker 2007), representing an early 

pathological indicator of AD and PD.  It is believed that a neuron loses its capacity to divide 

and differentiate once it is born. Differentiated neurons were considered to be irreversibly post-

mitotic, however, some cell cycle proteins were found in neuronal-programmed apoptotic cells, 

such as cyclins and CDKs have been found to be up-regulated after exposure to severe 

conditions, such as oxidative stress (Kruman et al. 2004, Murray 2004 Currais et al. 2009). 

Cyclins, CDKs, and other cell cycle proteins can be expressed in the AD brain after exposuring 

to stress (Nagy et al. 1997a, Vincent et al. 1997, Smith et al. 1999). Flow cytometric data 

revealed that a significant increased S-phase neuron population after exposure to different 

genotoxic insults (Kruman et al. 2004).  Also a significant percent of apoptotic neurons with 

incorporate BrdU indicated that neurons underwent apoptosis during S phase (Kruman et al. 

2004). Our data indicated that antidepressants might play a role in preventing cell cycle activity 

in noradrenergic LC neurons, therefore to decrease LC neurons loss in AD and PD. LC 

dysfunction plays an important role in the development of neurodegenerative diseases, so the 

present data may provide experimental evidence for reasonable use of antidepressants in the 

neurodegenerative diseases to eliminate depression symptoms and DNA damage in the LC 
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region.  

In summary, our data showed that selective antidepressants protected SH-SY5Y cells 

from DSP4- or CPT-induced DNA damage and cell cycle arrest, indicating a new potential 

mechanism of antidepressants. The effects of antidepressants against DNA damage can be used 

to explain their clinical uses to relieve depression symptoms in psychiatric and 

neurodegenerative diseases. Further exploration of underlying mechanism may shed light on 

the efforts to improve therapeutic strategies for treatment of these diseases. 
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CHAPTER 5 

 

SUMMARY AND CONCLUSIONS 

 

Neurodegenerative diseases primarily affect in middle to late life period; therefore, the 

incidence increases as the population ages. It is estimated that approximately 1 in 5 Americans 

will be over the age of 65, and more than 12 million will suffer from age-related 

neurodegenerative diseases including AD and PD by the year 2030. Neurodegenerative 

diseases are incurable and debilitating conditions that result in progressive loss of neuronal 

structure and function and neuronal death. It is reported that LC cell numbers are reduced 

during normal aging, as are brain norepinephrine levels (Marien et al. 2004). Accumulated 

oxidative DNA damage was found in brain cells of patients with AD (Kadioglu et al. 2004) and 

PD (Zhang et al. 1999). Damage and loss of LC noradrenergic neurons is accelerated in certain 

progressive neurodegenerative diseases including AD (Mann et al. 1983, Bondareff et al. 1987, 

German et al. 1992, Weinshenker 2008) and PD (Mann et al. 1983, Rommelfanger et al. 2007), 

representing an early pathological indicator of these diseases. Both increased DNA damage and 

decreased DNA repair were detected in AD patients (Fishel et al. 2007), and oxidative stress 

and DNA damage also are implicated in PD (Fukae et al. 2005). The number of LC neurons 

during aging and some neurodegenerative disorders might be reduced because of a high 

amount of nDNA damage and their deficiency in repairing the damage. 

 In Chapter 3, our data show that noradrenergic SH-SY5Y cells and LC neurons are 

sensitive to CPT-induced DNA damage. γH2AX and p-p53
ser15

 were measured as DDR 
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markers that are persistent in noradrenergic SH-SY5Y cells and LC neurons, indicating a 

deficiency in repairing the DNA damage caused by CPT. These pathological characteristics 

may be consistent with the in vivo observation that degeneration of noradrenergic neurons 

occurs earlier in the brains of patients with neurodegenerative diseases. The present study may 

serve as an initial trial to explore the molecular mechanisms underlying pathophysiological 

alterations of LC neurons in PD and AD. Also, SH-SY5Y cells should be considered as an 

ideal noradrenergic in vitro model. Further studies are preferred to elucidate whether CPT or 

DSP4 have similar effects on LC in vivo, which will provide strong supportive evidence for the 

current hypothesis.  

DSP4 has been used as a noradrenergic neurotoxin in the development of AD or PD 

animal models with LC degeneration (Heneka et al. 2006, Rey et al. 2012). It is hypothesized 

that neurotoxin DSP4 selectively damages noradrenergic projections originating from the LC 

by interacting with the norepinephrine reuptake system and depleting intracellular 

norepinephrine, finally inducing degeneration of noradrenergic terminals (Winkler 1976, 

Ransom et al. 1985, Dooley et al. 1987, Howard et al. 1990, Prieto et al. 2001).  Our data in 

Chapter 2 support this hypothesis. The expression levels of DBH and NET were down-

regulated by DSP4 in SH-SY5Y cells. However, limited data have been reported from in vitro 

studies on the mechanism of DSP4-induced neuronal degeneration. Thus, elucidating the 

molecular mechanism by which DSP4 evokes its neurodegenerative effect may promote the 

effort to find novel therapeutic strategies for treatment of degenerative diseases. The study in 

Chapter 2 of this dissertation also shows that DSP4 induces DNA SSBs and arrested cells in 

the S and the G2/M phases. According to Figure 2-5C, we primarily focused on discussing the 

S-phase arrest caused by DSP4 when we published the paper. In addition, the proportion of 
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cells remaining in the G2/M phase was relatively constant after DSP4 treatment. These 

cytometric results demonstrated that the S-phase and the G2/M-phase checkpoints were 

activated by DSP4 treatment of SH-SY5Y cells. This arrest resulted in cells transiting G1 

phase or already in S phase to be accumulated in S phase, while those cells in G2/M phases 

remained there.  In addition, as shown in Fig 2-6, arrested cells resumed cycle transit within 12 

or 24 h after DSP4 removal. Although there still are more cells in S phase compared to the 

control, the proportion of cells in G1 phase returned to normal. Interestingly, after removal of 

DSP4 for 24 h, fewer cells were in G2 phase compared to the control group. These data 

indicate that DSP4-arrested cells were able to resume cell cycle transit after removal of DSP4. 

It is important for cells to delay mitotic entry, which allows cells to repair any DNA damage 

that may have accumulated after S phase. Our data are consistent with the death of neurons that 

have aberrant cell cycle activity. Dorsal root ganglion neurons go to apoptosis in the S phase 

(ElShamy et al. 1998), and the apoptotic neurons express S-phase proteins (Folch et al. 2012). 

Hippocampal pyramidal and basal forebrain neurons from AD brains show chromosomal 

duplication and die before mitosis. These are consistent with cell death in the S or the G2 phase 

of the cell cycle (Nagy et al. 1997b). In addition, DNA damage in apoptotic neurons is 

dependent on ATM activation, which suggests that neurons are affected by the same cell cycle 

checkpoints that regulate apoptosis in other cell types (Kruman 2004). Our data showed that 

DSP4 treatment activated the ATM pathway as part of the DDR (Wang et al. 2014). Taken 

together, these results suggest that down-regulation of the noradrenergic phenotypes caused by 

DSP4 stems from the DSP4-induced DDR and replication stress, which affected the 

transcriptional rate of the DBH and NET. 

Based on our findings in Chapters 2, we demonstrate that DSP4 induces the DDR in 
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SH-SY5Y cells. How does DSP4 cause DDR? Oxygen radicals are involved in many 

biochemical activities of cells such as signaling transduction and gene transcription (Uttara et 

al. 2009). Although oxygen is imperative for life, imbalanced oxidative metabolism and excess 

production of ROS lead to several disorders such as AD and PD. Toxicity of these free radicals 

contributes to damage of proteins and DNA, inflammation, and subsequent cellular apoptosis. 

The most common cellular free radicals are hydroxyl (OH·), superoxide (O2–·), and nitric 

monoxide (NO·). One of the hypotheses indicates that DSP4 depletes intracellular 

norepinephrine to induce LC degeneration. Norepinephrine is synthesized inside the nerve 

axon and stored in vesicles (Figure 1-1). Many enzymes are involved in the process of 

norepinephrine synthesis, such as tyrosine hydroxylase, DOPA decarboxylase, and DBH. 

These processes lead to formation of some ROS. ROS are a product of processes taking place 

during the oxygen metabolism. Therefore, we might explain that DSP4 induces oxidative 

stress, which damages DNA because of excessive ROS formation due to excessive intracellular 

norepinephrine synthesis. To elucidate this explanation, we need to test if DSP4 induces 

oxidative DNA damage in SH-SY5Y cells. We could treat SH-SY5Y and fibroblast cells with 

DSP4 and measure 8-hydroxyguanosine, which is a classical marker of oxidative damage to 

DNA. We expect to see a higher level of 8-hydroxyguanosine in SH-SY5Y cells than in 

fibroblast cells, because fibroblast cells do not express noradrenergic phenotypes and no 

norepinephrine is synthesized. Moreover, it has been reported that stress hormones such as 

norepinephrine can increase DNA damage (Flint et al. 2007). It has been proposed that the 

mechanism why norepinephrine induces DNA damage is by creation of ROS (Djelic et al. 

2003). Both DSP4 hypotheses support that excessive norepinephrine is released extracellularly. 

So cells are exposed to a higher concentration of norepinephrine, which induces oxidative 
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DNA damage.  

 

Figure 5-1. Enzymes involved in norepinephrine synthesis 

 

The exact mechanisms of neurodegeneration are still unknown, so there is no cure for 

neurodegenerative diseases. Therefore, it is urgent to find treatments and cures for 

neurodegenerative diseases. Depression symptoms often accompany neurodegenerative 

disorders. Antidepressants are used to treat major depression disorder (Briley et al. 1993, 

Martin 2008) and are clinically used to relieve depression symptoms in neurodegenerative 

patients. The “monoamine theory” of depression has been proposed for a long time, but the 

pathologies and mechanisms for depression disorders remain unclear. Within the last decade, 

increasing evidence showed oxidative/antioxidant effects of antidepressants and discussed the 

relevance of intracellular oxidative pathways in the pathophysiology of depression (Michel et 

al. 2007, Maes et al. 2009, Maes et al. 2011, Behr et al. 2012, Michel et al. 2012). It has been 

reported that some antidepressants could protect cells form oxidative stress. For example, 
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fluoxetine reduces oxidative stress in brain (Omar M.E. Abdel-Salam 2011), and desipramine’s 

protective effect against ischemia/reperfusion-induced oxidative stress was found in mice 

(Gaur et al. 2010). Also, it has been reported that venlafaxine protects against stress-induced 

oxidative neuronal DNA damage (Abdel-Wahab et al. 2011), and deprenyl was found to 

protect neurons in the substantia nigra from oxidative stress (Wu et al. 1993). Considering that 

the pathophysiology of depression is not fully clarified, the present findings suggest that one 

important action of antidepressants that may contribute to therapeutic efficacy in the treatment 

of depression is protection from DNA damage. In Chapter 4, the experiments demonstrate that 

some antidepressants reduce DSP4-induced DDR in SH-SY5Y cells. These effects might be 

ascribed to the abilities of some antidepressants in scavenging hydroxyl radicals or up-

regulating the expression of antioxidant defense enzymes. In all, the present findings that some 

antidepressants could protect cells from DSP4-induced DNA damage may add a new feature to 

the neuroprotective potency of these antidepressants. To test this hypothesis, we could pretreat 

SH-SY5Y cells with these antidepressants before DSP4 treatment. 8-hydroxyguanosine also 

can be used to measure oxidative stress level. We expect to see a lower level of 8-

hydroxyguanosine after cotreatment with antidepressants. 

In addition, it is shown that DSP4 irreversibly inhibits the human NET, SERT, and 

dopamine transporter (DAT) (Wenge et al. 2009). However, this inhibition includes a 

reversible component at the DAT and SERT but not at the NET. Thus, DSP4's high-affinity 

uptake through the NET and its interaction with NET may support it to be a noradrenergic 

neurotoxin. Moreover, although SSRIs and NRIs antidepressants are clinical important, key 

aspects of their molecular mechanisms such as the binding sites of these antidepressants are 

still unclear. Recently, it has been reported many antidepressants bind to key residues in S1 
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pocket; Sorensen et al. mutated 6 S1 residues in SERT and NET to determine the potency of 

some SSRIs and NRIs antidepressants (Sorensen et al. 2012). This finding can serve as a future 

model for studying the molecular mechanisms of antidepressants at SERT and NET. Another 

explanation for the protective effects of some antidepressants on reducing DSP4-induced DDR 

in SH-SY5Y cells is that these antidepressants compete with DSP4 for binding to the 

transporters. Further experiments are needed to demonstrate this explanation. For example, we 

need to test if antidepressants bind to DSP4 or antidepressants bind to the transporters to block 

DSP4 uptake.  

In this ease, deprenyl and pargyline belong to the type B MAOIs. The enzyme in SH- 

SY5Y cells is only type A (Maruyama et al. 1997), so deprenyl and pargyline did not function 

as type B MAOIs. This is probably why deprenyl and pargyline have less effect on reducing 

DSP4-induced DDR in SH-SY5Y cells. 

In summary (Figure 5-2), our data indicate that the neurotoxin DSP4 can be used to 

cause LC degeneration, which is because of its effects on inducing the DDR. Noradrenergic 

SH-SY5Y cells and LC neuron cultures are sensitive to DNA damage and deficient in repairing 

the damage, which might be an explanation of why LC degeneration is an early indicator of 

AD and PD. The DNA damage caused by DSP4 activates the ATM pathway and arrests cells 

in S and G2/M phases. Some antidepressants partially protect cells from DDR and cell cycle 

arrested caused by DSP4, which suggests a common mechanism of antidepressants to explain 

their clinical use to ameliorate depression symptom in AD or PD.   
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Figure 5-2. Proposed mechanisms of neurotoxins-induced DNA damage response. The 

presence of neurotoxin leads to replicative stress or DNA damage, which further results in 

activation of the ataxia-telangiectasia-mutated (ATM) protein kinase or ataxia telangiectasia 

and Rad3-related (ATR) protein kinase. ATM or ATR phosphorylate downstream targets; 

including p53 and the histone H2AX. In this way, ATM/ATR can influence cell cycle 

transititions and DNA damage response, transcription, in addition to cell death through 

apoptosis. The orange bars in cell cycle transitions indicate the three main cell-cycle 

checkpoints. Selective antidepressants reduce neurotoxins-induced DNA damage response.  
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APPENDICES 

 

APPENDIX A 

 

SUPPLEMENTAL FIGURES 

 

Figure S-1. Representative flow-cytometric histograms show effects of antidepressants 

on cell cycle with or without DSP4 co-treatment. Different colors show different drugs 

treatments.  
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APPENDIX B 

 

ABBREVIATIONS 

 

AD, Alzheimer’s Disease 

ATM, Ataxia telangiectasia mutated  

ATR, Ataxia telangiectasia mutated and RAD 3-related  

CDKs, cyclin-dependent kinases  

CPT, camptothecin  132  

DAPI, 4’,6-diamidino-2-phenylindole  

DAT, dopamine transporter  

DBH, dopamine -hydroxylase  

DDR, DNA damage response  

DMEM, Dulbecco’s modified Eagle’s medium 

DMSO, dimethyl sulfoxide  

DNA, deoxyribonucleic acid 

DIV, day in vitro 

DSBs, double-strand breaks  

DSP4, N-(2-chloroethyl)-Nethyl-2-bromobenzylamine  
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EDTA, ethylenediaminetetraacetic acid  

FBS, fetal bovine serum  

HBSS, Hank’s balanced salt solution 

HD, Huntington’s Disease 

IFA, immunofluoresce assay 

LC, locus coeruleus  

MAOIs, monoamine oxidase inhibitors  

nDNA, nuclear DNA 

NE, norepinephrine 

NET, norepinephrine transporter 

NO·, nitric monoxide  

NRIs, norepinephrine reuptake inhibitors 

O2–·, superoxide  

OH·, hydroxyl  

PBS, phosphate buffered saline  

PD, Parkinson’s Disease 

ROS, reactive oxygen species  

RPA, replication protein A  

RPMI, Roswell Park Memorial Institute  
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RNA, ribonucleic acid 

SERT, serotonin transporter 

SSRIs, selective serotonin reuptake inhibitors 

SDS-PAGE, sodium docecyl sulfate-polyacrylamide gel electrophoresis  

topo I: topoisomerase I  
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