A Study of the Effects of the Length of Student-Teaching Experiences on New Teacher Efficacy.

Alan Wayne Addison

East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Educational Sociology Commons

Recommended Citation
A Study of the Effects of the Length of Student-Teaching Experiences on New Teacher Efficacy

A dissertation presented to the faculty of the Department of Educational Leadership and Policy Analysis East Tennessee State University In partial fulfillment of the requirements for the degree Doctor of Education by Alan Wayne Addison December 2010

Keywords: efficacy, student-teach, attrition, new teacher
ABSTRACT

A Study of the Effects of the Length of Student-Teaching Experiences on New Teacher Efficacy

by

Alan Wayne Addison

This study explores the relationship between the length of student-teaching experiences and new teacher efficacy. Each year thousands of prospective new teachers endure the interview processes to be hired, complete induction programs, and begin their careers only to determine that the teaching profession is not what they assumed it would be. Local school districts spend thousands of dollars each year on orientation for these new teachers only to find them resigning within the first 5 years of service. Increasing new teacher efficacy is imperative to reducing new teacher attrition rates. The more student-teaching experiences an individual collects before entering the teaching profession may assist an individual in being prepared to contemplate the decision to enter the workforce.

The purpose of this quantitative study is to determine the effects of the length of student-teaching experiences on new teacher efficacy. Teacher efficacy has been correlated with a variety of factors including student-teaching experiences; however, there is virtually no research comparing the length of the student-teaching experience and those teachers’ self-efficacy. This study also seeks to determine if demographic features including gender, age, ethnicity, and years of professional experience affect the correlation.

The participants in this study were teachers with 5 or fewer years of experience and working in Virginia public school systems throughout the state.
Findings of the study did not reveal a significant relationship between the length of student-teaching experiences and new teacher efficacy, although several factors that were not controlled for could have affected the outcomes.
DEDICATION

This dissertation is dedicated to my Lord and Savior, Jesus Christ, and to all the people who supported me throughout the process of achieving my doctorate degree.

To my wife and the love of my life, Lori, who believed in me even when I didn’t believe in myself. This degree would not have been possible without her love, support, and encouragement.

To my sons, Luke, Lane, and Sam, who were patient and understanding through this entire process.

To my father, J.W. Addison, who taught me tenacity and perseverance and gave me the guidance that has made me the man I am today.

To my step-mother, Perry Addison, for accepting me as her own and for loving me for who I am.

To my surrogate mother and friend, Sylvia Warner, who spent countless hours helping me throughout the course of my master’s degree and for teaching me how to write.

To Wrenda Fuller who taught me to sing, dragged me through high school, filled out my college applications, and spent numerous hours working with me to prepare for scholarship auditions.
ACKNOWLEDGMENTS

I would like to give special thanks to my dissertation committee members for their guidance throughout this process.

I would especially like to thank Dr. Catherine Glascock and Dr. James Lampley for mentoring me and giving encouragement and guidance beyond their call of duty.

To Dr. Susan Twaddle for her expertise in running statistics and ability to explain them in layman’s language.

To Dr. Sheila P. Smith for her editing abilities to clean up the mess I gave her.

To my brothers and sisters, Ronnie, Charlotte, Renee, and Marty, for their love, friendship, and laughter.

To my uncle, Kenneth Addison and aunt, Gerri Addison, who spent several years raising me as their own and for teaching me the work ethic I still employ.

To my in-laws, Don and Margaret Gates, for their love, support, and friendship throughout the years.

To my camping and golfing buddies, Mark VanHook, John DeBord, Jeff Fields, and John Mort, for listening to me complain, making me laugh, and being my friend when I needed it most.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>6</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>10</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>12</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>13</td>
</tr>
<tr>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>16</td>
</tr>
<tr>
<td>Research Questions</td>
<td>17</td>
</tr>
<tr>
<td>Significance of the Study</td>
<td>18</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>18</td>
</tr>
<tr>
<td>Limitations</td>
<td>19</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>21</td>
</tr>
<tr>
<td>Introduction</td>
<td>21</td>
</tr>
<tr>
<td>Teacher Efficacy</td>
<td>21</td>
</tr>
<tr>
<td>Attrition Rates</td>
<td>25</td>
</tr>
<tr>
<td>Mentoring</td>
<td>27</td>
</tr>
<tr>
<td>Professional Development</td>
<td>30</td>
</tr>
<tr>
<td>Induction Programs</td>
<td>31</td>
</tr>
<tr>
<td>Academic Achievement Levels</td>
<td>33</td>
</tr>
<tr>
<td>Student-Teaching Experiences</td>
<td>35</td>
</tr>
<tr>
<td>3. METHODS</td>
<td>41</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>Research Design</td>
<td>41</td>
</tr>
<tr>
<td>Population and Sample</td>
<td>43</td>
</tr>
<tr>
<td>Data Collection Procedures</td>
<td>43</td>
</tr>
<tr>
<td>Research Questions and Null Hypotheses</td>
<td>44</td>
</tr>
<tr>
<td>Data Analyses</td>
<td>46</td>
</tr>
<tr>
<td>Instrument</td>
<td>47</td>
</tr>
<tr>
<td>Summary</td>
<td>48</td>
</tr>
<tr>
<td>4. RESULTS</td>
<td>49</td>
</tr>
<tr>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>Teachers’ Sense of Efficacy Scale</td>
<td>50</td>
</tr>
<tr>
<td>Demographic Characteristics</td>
<td>51</td>
</tr>
<tr>
<td>Student-Teaching Characteristics</td>
<td>52</td>
</tr>
<tr>
<td>Research Question 1</td>
<td>53</td>
</tr>
<tr>
<td>Research Question 2</td>
<td>59</td>
</tr>
<tr>
<td>Research Question 3</td>
<td>64</td>
</tr>
<tr>
<td>Research Question 4</td>
<td>69</td>
</tr>
<tr>
<td>Research Question 5</td>
<td>71</td>
</tr>
<tr>
<td>Research Question 6</td>
<td>76</td>
</tr>
<tr>
<td>5. DISCUSSION</td>
<td>83</td>
</tr>
<tr>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>Summary of Findings</td>
<td>83</td>
</tr>
<tr>
<td>Recommendations for Future Research</td>
<td>86</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>88</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>93</td>
</tr>
<tr>
<td>APPENDIX A: Permission to Use TSES</td>
<td>93</td>
</tr>
<tr>
<td>APPENDIX B: Letter to VEA President</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Means for OSTES Subscales and Total Score for Long and Short Forms</td>
<td>43</td>
</tr>
<tr>
<td>2. Means and Standard Deviations for TSES Subscales</td>
<td>50</td>
</tr>
<tr>
<td>3. Participant Demographic Characteristics (N = 556)</td>
<td>52</td>
</tr>
<tr>
<td>4. Participant Student-Teaching Characteristics (N = 556)</td>
<td>53</td>
</tr>
<tr>
<td>5. Means and Standard Deviations for Efficacy of Student Engagement by the Number of Weeks Enrolled in a Student-Teaching Program</td>
<td>54</td>
</tr>
<tr>
<td>6. Means and Standard Deviations for Efficacy of Instructional Practices by the Number of Weeks Enrolled in a Student-Teaching Program</td>
<td>56</td>
</tr>
<tr>
<td>7. Means and Standard Deviations for Efficacy of Classroom Management by the Number of Weeks Enrolled in a Student-Teaching Program</td>
<td>58</td>
</tr>
<tr>
<td>8. Means and Standard Deviations for Efficacy of Student Engagement by Ethnicity</td>
<td>64</td>
</tr>
<tr>
<td>10. Means and Standard Deviations for Efficacy of Classroom Management by Ethnicity</td>
<td>68</td>
</tr>
<tr>
<td>11. Means and Standard Deviations for Efficacy of Student Engagement by Biological Age of New Teachers</td>
<td>71</td>
</tr>
<tr>
<td>12. Means and Standard Deviations for Efficacy of Instructional Practices by Biological Age of New Teachers</td>
<td>73</td>
</tr>
<tr>
<td>13. Means and Standard Deviations for Efficacy of Classroom Management by Biological Age of New Teachers</td>
<td>75</td>
</tr>
<tr>
<td>14. Means and Standard Deviations for Efficacy of Student Engagement by the Number of Days Spent Student-Teaching in Front of a Classroom</td>
<td>77</td>
</tr>
</tbody>
</table>
15. Means and Standard Deviations for Efficacy of Instructional Practices by the Number of Days Spent Student-Teaching in Front of a Classroom .. 79

16. Means and Standard Deviations for Efficacy of Classroom Management by the Number of Days Spent Student-Teaching in Front of a Classroom 81
LIST OF FIGURES

Figure	Page
1. Boxplot for Efficacy of Student Engagement by the Number of Weeks Enrolled in a Student-Teaching Program | 55
2. Boxplot for Efficacy of Instructional Practices by the Number of Weeks Enrolled in a Student-Teaching Program | 57
3. Boxplot for Efficacy of Classroom Management by the Number of Weeks Enrolled in a Student-Teaching Program | 59
4. Boxplot for Efficacy of Student Engagement by Gender | 60
5. Boxplot for Efficacy of Instructional Strategies by Gender | 62
6. Boxplot for Efficacy of Classroom Management by Gender | 63
7. Boxplot for Efficacy of Student Engagement by Ethnicity | 65
8. Boxplot for Efficacy of Instructional Practices by Ethnicity | 67
9. Boxplot for Efficacy of Classroom Management by Ethnicity | 69
10. Boxplot for Efficacy of Student Engagement by Biological Age of New Teachers | 72
11. Boxplot for Efficacy of Instructional Practices by Biological Age of New Teachers | 74
12. Boxplot for Efficacy of Classroom Management by Biological Age of New Teachers | 76
13. Boxplot for Efficacy of Student Engagement by the Number of Days Spent Student-Teaching in Front of a Classroom | 78
14. Boxplot for Efficacy of Instructional Practices by the Number of Days Spent Student-Teaching in Front of a Classroom | 80
15. Boxplot for Efficacy of Classroom Management by the Number of Days Spent Student-Teaching in Front of a Classroom | 82
CHAPTER 1
INTRODUCTION

Introduction

Attracting and retaining qualified teachers is imperative for the success of any educational program. Yet, new teachers are leaving the profession within the first 5 years at an alarming rate of nearly 30% (Darling-Hammond, 2001). The cost to public education for this turnover is staggering. The National Commission on Teaching and America’s Future (Barnes, Crowe, & Schaefer, 2006) estimated that the national cost of teacher attrition could be over $7 billion a year. An increase in retention rates would improve student achievement, reduce costs, and free additional monies to be spent on student instruction. One of the factors contributing to this attrition rate is low new teacher efficacy (Andrews, Gilbert, & Martin, 2008; Strong, 2005).

Efficacy can be defined as a teacher’s self-perceived ability to perform effectively in a classroom setting (Woolfolk-Hoy, 2000). Efficacy has been related to student motivation, student achievement, student behavior, teacher management skills, and teacher stress. Teacher stress often comes from a lack of confidence induced by a lack of experience (Fives, 2003). Hence, as the amount of teaching experience increases, so does a teacher’s efficacy. This formulates the question of whether new teachers’ efficacies are affected by the length of preservice preparation (Chambers, 2003). Darling-Hammond (2000) stated, “Teachers from short-term programs report less satisfaction with their preparation and less commitment to remaining in teaching than other recruits” (p. 167).

The study also examines other demographic influences on new teacher efficacy including gender, years of experience, ethnicity, and age. Success builds a new mastery experience (Bandura, 1977), which in turn, provides new data that will be shaped for new efficacy beliefs.
Tschannen-Moran, Woolfolk-Hoy, and Hoy (1998) stated, “Greater efficacy leads to greater effort and persistence, which leads to better performance, which in turn leads to greater efficacy” (p. 22). The opposite is also true; a lowered efficacy leads to less effort and persistence, which leads to poorer results, and a lowered efficacy.

Efficacy beliefs are resistant to change and student-teaching experiences are a fundamental part of efficacy development (Woolfolk-Hoy, 2000). Observation of experienced teachers, team teaching with experienced teachers, and teaching while being observed by a mentor with feedback about the experience are all integral parts of a successful teacher preparation program. Working to make these experiences positive is imperative to the development of the new teacher’s efficacy. Bandura (1997) stated, “Self-belief does not necessarily ensure success, but self-disbelief assuredly spawns failure” (p. 77). Bandura added that efficacy values are not fixed. If the task is simple, the efficacy expectation or outcome can reasonably be expected to be high. When the task is generally thought to be difficult, the efficacy expectation would reasonably be lower. A person’s belief in one’s own efficacy can also affect the expectation or outcome.

The No Child Left Behind (NCLB) legislation of 2001 stipulates that highly-qualified teachers are to be in every classroom. Highly qualified means each teacher must hold a bachelor’s degree, have a full-state certification or licensure, and prove competence in the subject areas taught (National Center for Alternative Certification, 2004). However, licensure requirements for student-teaching vary from state-to-state and between colleges and universities. Defiant of their own legislation, the House of Representatives cut spending bill support for the Teacher Quality Enhancement Grants program from $60 million in fiscal year 2007 to $40 million in fiscal year 2008. The Senate Appropriations Committee in June 2009 passed a
spending bill that would cut funding for the program to just $28.5 million – a drop of more than 50% (Klein, 2007).

As a result of the push for qualified teachers, numerous alternative certification programs have developed to meet the demands for additional teachers. Woolfolk-Hoy (2000), wrote that “efficacious beginning teachers rated the quality of their preparation higher and the difficulty of teaching lower than those who were less efficacious” (p. 6). Giallo and Little (2003) added that “teachers who had a greater sense of perceived preparedness were also likely to have a greater sense of self-efficacy” (p. 9).

The average amount of time spent student-teaching in an undergraduate program is 14 ½ weeks (Feistritzer, 1999), which is equivalent to approximately one semester. Feistritzer reports that “about half of enrollees in undergraduate teacher preparation programs and one-third of those in post-baccalaureate programs do their student teaching under the supervision of one teacher within one school” (p. 2). This is a limited amount of time to hone the necessary skills demanded by a highly qualified teacher for the 21st Century. Ample time should be devoted to the student-teaching experience because it is often the students’ first source of mastery (Aydin & Woolfolk-Hoy, 2005). Adding to the dilemma is a realization that it is often the inexperienced teacher who gets the most difficult assignment (Andrews et al., 2008). Large class sizes, inadequate planning time, and lack of resources can overwhelm the inexperienced teacher and result in growing attrition rates (Strong, 2005).

Several schools of education have begun to change traditional thinking on teacher preparation. More than 300 schools of education have programs that expand the limitations of the traditional 4-year program, allowing more study of the disciplines by integrating with more extensive student-teaching in schools. Some are 1- or 2-year graduate programs that tend to serve
recent alumni; others are 5-year plans that permit an extended program for prospective teachers who enter teacher education during their undergraduate years. These programs allow students to devote their time entirely to a mission of preparing to teach (Darling-Hammond, 2000a).

Darling-Hammond (2000b) provided a rationale for these types of programs:

Taking into account the costs to states, universities, and school districts of preparation, recruitment, induction, and replacement due to attrition, the actual cost of preparing career teachers in the more intensive five-year programs is actually significantly less than that of preparing a greater number of teachers in shorter-term programs who are less likely to stay—and, not incidentally, are also less successful in the classroom. (p. 17)

Research has shown a correlation between mentoring in-service teachers and teacher efficacy (Darling-Hammond, 2003; Ingersoll & Smith, 2004; Wong, 2004). This research has been limited to mentoring in-service teachers, which is offered, if at all, through induction programs. The Public Education Network (2003) proclaimed, “The majority of mentors are experienced teachers working at the same school as the teachers they mentor” (p. 34). Student-teachers are also in need of quality mentors to observe their teaching performances and provide feedback in a one-on-one format. Initial performances are critical to establishing self-efficacy. Student-teachers are not cognitively aware of what constitutes good teaching and its relationship with student learning. Student-teacher mentors can provide the necessary encouragement, guidance, and suggestions necessary for good teaching habits to flourish in a classroom situation.

Statement of the Problem

The purpose of this study is to ascertain the comparison between the length of student-teaching experiences and new teacher efficacy. Previous research has shown that in general teacher efficacy affects attrition rates (Henson, 2001; Ingersoll & Smith, 2004; Ross & Bruce,
Teacher efficacy has been measured by mentoring (Ingersoll & Smith, 2004; Woullard & Coats, 2004; Yost, 2002), professional development (Henson, 2001; Ross & Bruce, 2007), induction programs (Ingersoll & Smith, 2004; Wong, 2004), and academic achievement levels in college coursework (Ashton & Webb, 1986; Bandura, 1997). However, there is limited research available on the effect of student-teaching experiences on new teacher efficacy. The Virginia Department of Education’s (2007) requirements for teacher licensure state:

The student teaching experience should provide for the prospective teacher to be in classrooms full time for a minimum of 300 clock hours (including pre- and post-clinical experiences) with at least 150 clock hours spent supervised in direct teaching activities (providing direct instruction) at the level of endorsement. One year of successful full-time teaching experience in the endorsement area in a public or accredited nonpublic school may be accepted in lieu of the supervised teaching experience. (p. 26)

Research Questions

Research questions are a formal statement of the goals for research. These six questions were formulated to address what the researcher needs to know most:

1. Is there a significant difference in the mean scores for the three domains of the TSES (Efficacy in Student Engagement, Efficacy in Instructional Practices, and Efficacy in Classroom Management) for novice teachers in regard to the number of weeks (none, 1 to 5, 6 to 10, 11 to 15, 16 to 20, or more than 20) enrolled in a student-teaching program?

2. Is there a significant difference in the mean scores for the three domains of the TSES between male and female new teachers?
3. Is there a significant difference in the mean scores for the three domains of the TSES in regard to the ethnicity (Caucasian, African-American, or other) of new teachers?

4. Is there a significant relationship among the mean scores for the three domains of the TSES in regard to years (none, 1, 2, 3, 4, or 5) of professional experience?

5. Is there a significant difference in the mean scores for the three domains of the TSES in regard to biological age (20 to 29, 30 to 39, 40 to 49, 50 to 59, or more than 60) of new teachers?

6. Is there a significant difference in the mean scores for the three domains of the TSES in regard to the number of days spent student-teaching (none, 1 to 9, 10 to 19, 20 to 29, 30 to 39, or more than 40) in front of a classroom?

Significance of the Study

This study is important to determine the differences between the length of student-teaching experiences and new teacher efficacy scores. It is also important to determine whether demographic features including gender, age, ethnicity, and years of professional experience affect the comparisons. The findings of this study will enhance knowledge and discussion of state regulations on the required length of student-teaching experiences.

Definition of Terms

Efficacy: A teacher’s self-perceived capacity and power to produce the desired effect in a classroom. (Bandura, 1997)

New Teacher: Currently employed Virginia public school system teachers who have 5 or fewer years of inservice experience including the current school year.
Student-Teacher: A college student who is teaching under the supervision of a certified teacher in order to qualify for a degree in education.

Limitations

Limitations to this study include the targeted population. This study uses nonrandom sampling, which prohibits generalizing the results to a larger population. All participants in the study will be from Virginia, limiting the findings to the characteristics of the participants (McMillan & Schumacher, 2006). Results of the study may also be skewed due to the naiveté of new teachers’ views of themselves. Their lack of experience or self-denial of reality may affect the results.

The self-selecting nature of an on-line survey also limits the study. New teachers across Virginia had the opportunity to participate in the study. However, only those who chose to participate were studied. Self-motivation is a factor in determining the participants.

Other outside factors that were not controlled or factored into analysis include maturity level, personal motivation, and the personal characteristics of individual participants. Another limitation is noted by Wheatley (2005), “Promoting teachers’ efficacy beliefs within teacher education programs may have the unintended effects of promoting problematic types of teachers’ efficacy confidence, suppression of potentially-beneficial teacher doubts, and fostering maladaptive motivation patterns” (p. 758).

This dissertation is divided into 5 Chapters. Chapter 1 has included the introduction, statement of the problem, six research questions, significance of the study, definition of terms, and limitations of the study. Chapter 2 presents a literature review of studies, articles, and existing knowledge related to student-teaching and teacher efficacy. Chapter 3 presents the research methods used in the study. Sections include an introduction, description of the research
design, population and sample, data collection procedures, the 6 research questions and 18 null hypotheses, data analyses, the instrument, and a summary. Chapter 4 reports the results including an introduction, teachers’ sense of efficacy scale, demographic characteristics, student-teaching characteristics, findings for each research question and null hypothesis. Chapter 5 presents a discussion of the research with an introduction, summary of findings, conclusions for each research question, and recommendations for future research and practice. There are also a reference list of the citations used during the research, 5 appendices, and the researcher’s vita.
CHAPTER 2
LITERATURE REVIEW

Introduction

Increasing new teacher efficacy is imperative to reducing new teacher attrition rates. The review of literature provides the reader with the necessary history of self-efficacy and the research that shows the comparison between teacher efficacy and a variety of influences. The researcher seeks to determine the relationship between the length of student-teachers’ experiences and new teacher efficacy. The researcher contemplates if changes to the mandated lengths of student teaching experiences would improve new teacher perceptions of their self-efficacy, thereby decreasing teacher attrition.

Teacher Efficacy

Teacher efficacy has been measured through a variety of instruments (Bandura, 1997; Gibson & Dembo, 1984; Rotter, 1966; Tschannen-Moran et al., 1998). Each researcher of efficacy molded his or her work from predecessors and implemented changes in prior models to reflect changes in educational programs as well as improve on credibility and validity of the constructs.

The first attempts at measuring teacher efficacy were based on Rotter’s social learning theory. “The RAND researchers conceived teacher efficacy as the extent to which teachers believed that they could control the reinforcement of their actions, that is, whether control of reinforcement lay within them or in the environment” (Tschannen-Moran & Woolfolk-Hoy, 2001, p. 786).

The premise states that if a teacher believes the environment overpowers his or her ability to effect student learning, the reinforcement of teaching efforts is external to them. Teachers who
express the confidence to teach unmotivated students regardless of the environment. The teacher’s sense of efficacy proved a strong correlation not only to student performance but to the percentage of goals obtained, to the quantity of teacher adjustments, and to the sustained use of methods and resources after the project ended (Tschannen-Moran & Woolfolk-Hoy, 2001). Gibson and Dembo (1984) created a new instrument for measuring teacher efficacy by combining the RAND researchers’ instrument with Bandura’s self-efficacy theory. This latter theory was constructed with 30 items designed to improve reliability and validity issues from the RAND researchers’ model.

According to Bandura (1997) self-efficacy is based on mastery experiences, physiological and emotional states, vicarious experiences, and social persuasion. Mastery experiences are the cornerstone of self-efficacy. Vicarious experiences are those that are modeled by a mentor or experienced teacher. When the model performs successfully and the observer identifies well with the model, the observer’s sense of efficacy is raised. The more the observer identifies with the model, the more efficacy gained by the observer. If the model performs poorly, the observer’s sense of efficacy is diminished.

Social persuasion involves feedback from other teachers, a mentor, or a supervisor who motivates the new teacher to be persistent and attempt new ideas or encourages positive thought (Bandura, 1982). Alone social persuasion will not develop self-efficacy but does offer assistance with other motivating factors. The power of persuasion rests in the trustworthiness of the persuader.

Research has shown a significant correlation between teacher efficacy and a variety of variables. In the early years of measuring teacher efficacy, many problems confronted researchers related to reliable and valid measures. The illusive construct has taken researchers
years to develop. Tschannen-Moran and Woolfolk-Hoy (2001) achieved this goal with the development of a new measure that was first entitled the Ohio State Teacher Efficacy Scale (OSTES) because of its development at Ohio State University. The developers now refer to the measure as the Teachers’ Sense of Efficacy Scale (Tschannen-Moran & Woolfolk-Hoy, 2002).

The new scale, according to Tschannen-Moran and Woolfolk-Hoy (2001), is “based on Bandura’s Scale, but with an expanded list of teacher capabilities” (pp. 795-796). The scale was examined in three separate studies for factor structure, reliability, validity, and appropriateness for both preservice and inservice teachers. Tschannen-Moran and Woolfolk-Hoy (2001) write that “positive correlations with other measures of personal teaching efficacy provide evidence for construct validity” (p. 801).

The development of the OSTES is a step forward in capturing what has been an elusive construct. It is superior to previous measures of teacher efficacy in that it has a unified and stable factor structure and assesses a broad range of capabilities that teachers consider important to good teaching, without being so specific as to render it useless for comparisons of teachers across contexts, levels, and subjects. (Tschannen-Moran and Woolfolk-Hoy, 2001, pp. 801-802)

Several other researchers have used Tschannen-Moran and Hoy’s efficacy scale as their choice to measure teacher efficacy (Aydin & Woolfolk-Hoy, 2005; Carter, 2006; Chambers, 2003; Parker & Guarino, 2001; Ross & Bruce, 2007; Tagger, 2006). In fact, review of the research has found that Tschannen-Moran and Woolfolk-Hoy’s (2001) Teachers’ Sense of Efficacy Scale was utilized in more research projects than all other efficacy scales combined.

Woolfolk-Hoy (2000) stated, “Teacher efficacy has been associated with such significant variables as student motivation, teachers’ adoption of innovations, superintendents’ ratings of
teachers’ competence, teachers’ classroom management strategies, time spent teaching certain subjects, and teachers’ referrals of students to special education” (p. 2). Tschannen-Moran and Woolfolk-Hoy (2001) added that teachers’ efficacy beliefs also correspond to their discipline in the classroom. Efficacy affects the exertion they devote to teaching, goal setting, and their level of ambition. According to Ware and Kitsantas (2007):

Teachers who report high self-efficacy are more likely to overcome situations that challenge their capability to teach. They tend to be more optimistic than their peers and contribute a greater effort to their jobs, while taking more personal responsibility for their successes and failures. Conversely, teachers who report low self-efficacy are more likely to attribute their successes or failures to outside factors, such as lack of resources. (p. 303)

Teacher efficacy can be divided into two constructs that include general and personal teaching efficacies. General teaching efficacy is the idea that teachers can prevail over the negative manipulation of a student’s environment (Parker & Guarino, 2001). Personal teaching efficacy refers to an “internally held belief about oneself that solidifies with experience and time” (Henson, 2001, p. 12). Personal efficacy tends to increase with the years of teaching experience while general efficacy tends to decrease with the number of years of teaching experience (Ross, 1994).

Self-efficacy feelings may vary with the situation. Teachers may feel confident in one setting but unsure in another setting (Giallo & Little, 2003). The importance of the construct is well documented, but the effects of the interventions to increase teacher efficacy have only been shown in a few studies. More research is needed to show interventions that affect teacher efficacy (Ross & Bruce, 2007).
The question remains as to what the data may reveal to educators. Can teachers interpret the data and use what they learn to influence professional development plans that increase their efficacy? Wheatley (2005) proclaimed:

Traditional teacher efficacy measures will not reveal to teacher educators the meanings underlying teachers’ self-reported global teacher efficacy, or whether teachers’ confidence or doubts are beneficial or problematic. The same is true for teacher efficacy scale items and for the magnitude, strength, and generality of teachers’ efficacy beliefs. The multiple possible meanings of teachers’ efficacy self-ratings make it difficult to imagine consistently wise use of this numerical data. (p. 760)

Henson (2001) added:

Given the current and potential educational value of the teacher efficacy construct, efforts to impact changes in teacher efficacy would be valuable in moving teacher efficacy research beyond the realm of correlational designs. Little experimental or long-term intervention research has been conducted in this area. (p. 20)

Successes form the underlying structure on which a personal efficacy is erected. If the successes can be internalized, efficacy is heightened. Failures tear down personal efficacy especially if they are experienced before the groundwork of positive experience has been laid. The materials for the foundation are gathered through educational coursework, but it is the student-teacher fieldwork that constructs the positive teacher efficacy needed to survive in a classroom (Bandura, 1997).

Attrition Rates

Research has shown that teacher efficacy affects attrition rates (Andrews et al., 2008; Darling-Hammond, 2003; Ingersoll & Smith, 2004). The quest for a better profession and job
dissatisfaction, hence, low efficacy, contribute to nearly 2/3 of all novice teacher attrition (Ingersoll & Smith, 2004). The individual who amasses more student-teaching experience before entering the teaching profession may find contemplating the decision to enter the workforce easier, which could help lower attrition.

Darling-Hammond (2003) declared that “unless we develop policies to stem such attrition through better preparation, assignment, working conditions, and mentor support, we cannot meet the goal of ensuring that all students have qualified teachers” (p. 9). Ingersoll and Smith (2004) said that teaching has perpetually been plagued with high rates of attrition. One rationale is offered by Andrews et al. (2008):

Beginning teachers are often given more challenging teaching assignments than those of their colleagues; are assigned to multiple-class preparations; are likely to be assigned to teach low-performing students; and are not given professional support, feedback, and demonstrations of what it takes to be an effective teacher. (p. 5)

The reason teachers quit can be broadly divided into two aspects: working conditions and personal factors. Working conditions include factors such as salary, administrative support, amount of available resources, and school demographics. Personal reasons include starting a family, health factors, and spouse relocation. Some factors such as starting a family and health factors are immune to reversing the attrition rates. Other factors like administrative support, salary, and available resources may be manipulated or altered to impact attrition rates dramatically (Strong, 2005).

Woolfolk-Hoy (2000) stated that “novice teachers completing their first year of teaching who had a high sense of teacher efficacy found greater satisfaction in teaching, had a more positive reaction to teaching, and experienced less stress” (p. 6). A high sense of efficacy does
not denote a successful teacher, although it does increase the retention rates of new teachers. Darling-Hammond (2003) stated that “a growing body of evidence indicates that teachers who lack adequate initial preparation are more likely to leave the profession” (p. 7).

According to the Public Education Network (2003) a large portion of new teachers do not feel well-prepared upon entering the classroom. When a teacher enters the classroom without feeling properly prepared, a lack of self-efficacy is inevitable and results in higher attrition rates. Extending the time spent student-teaching would broaden the experiences for prospective teachers and expand their knowledge of daily classroom operations, discipline issues, and lesson plans so they can receive a better understanding of school climate and culture. These types of experiences could assist student-teachers in their decision whether to select teaching as their chosen profession before they are hired as a professional educator.

High attrition rates are costly to public education and have negative effects on student achievement (Strong, 2005). Each year thousands of prospective new teachers endure the interview processes to be hired, complete induction programs, and begin their careers only to determine that the teaching profession is not what they assumed it would be. Local school districts spend thousands of dollars each year on orientation for these new teachers only to find them resigning within the first 5 years of service. Darling-Hammond (2003) stated, “High attrition means that schools must take funds urgently needed for school improvements and spend them instead in a manner that produces little long-term payoff for student learning” (p. 8).

Mentoring

Mentoring is an action; it is what mentors do. A mentor’s basic function is to help a new teacher. Typically the help is for survival not for sustained professional learning that leads to

Mentors are often selected by convenience and may not be given adequate time to work with the novice teacher. They are often untrained for the task, and mentoring programs often lack formal organization. The goal of these programs should not only be to improve the retention rate of new teachers. They should seek to lead and facilitate the perpetual learning of novice teachers as they become part of the culture of a school and master educators in their academic discipline (Fulton, Yoon, Lee, & National Commission on Teaching & America’s Future, 2005; Strong, 2005). Ingersoll and Kralik (2004) reported:

Although elementary and secondary teaching involves intensive interaction with youngsters, the work of teachers is largely done in isolation from colleagues. This can be especially difficult for new entrants who, upon accepting a teaching position in a school, are often left on their own to succeed or fail within the confines of their own classrooms.

(p. 2)

Compounding student-teacher problems are the accessibility of good mentors. Mentors are the link between the student-teacher and the teacher-in-charge (Saffold, 2005). Duration and intensity also vary widely. Mentor relations with student-teachers range from a few short meetings to intensified programs with frequent observations and one-on-one discussions between the student and his or her mentor (Ingersoll & Smith, 2004). Darling-Hammond (2003) suggested that “states and districts that want a stable, competent teaching force need to figure out how to invest their training resources in more cost-effective preparation programs” (p. 14). Tschannen-Moran et al. (1998) proposed, “Longitudinal studies across teacher preparation programs and across the first several years in the field could begin to map the development of
efficacy beliefs and could assess the efficacy impact of different teacher preparation programs and practices” (p. 29).

In many situations the supervising teacher is informed by the administration that he or she will be mentoring a student-teacher. The student-teacher is then viewed by the mentor-teacher as an extra burden, while little or no training is provided for the mentor. Many times matching a good mentor with a student-teacher results in the issue of “proximity and availability” rather than quality education (Carter, 2006). The result is detrimental for both the student-teacher and mentor. The mentor-teacher may not be motivated to help his or her apprentice develop the skills necessary to achieve success in the classroom. It is imperative that the mentoring teacher desires to serve as a mentor and wants to enhance the skills of his or her apprentice. Tschannen-Moran et al. (1998) suggested:

An apprenticeship approach of breaking down elements of the complex task of teaching, allowing an apprentice teacher to work on developing one set of skills at a time, should encourage a compounding sense of efficacy over various contexts and skills. Performance feedback (verbal persuasion) early in learning that highlights the positive achievements of the apprentice teacher and that encourages emphasis on attributions that are controllable and variable (e.g., effort and persistence) will have a positive effect on the development of efficacy beliefs. (p. 226)

Parker and Guarino (2001) recommended that because efficacy levels are subject to change, researchers should examine teacher preparation and practice because that is where change is inevitable. Maheady, Jabot, Rey, and Michielli-Pendl (2007) advocated for more studies to explain how the students’ teaching practices develop, how it is inclined by groundwork experiences, and how it is preserved and polished throughout their professional careers.
New teachers also require extra guidance in developing their efficacy. Novice teachers want to observe teachers in their rooms and learn their “tricks of the trade.” They need teachers who can assist them with students who challenge even the most experienced teacher (Wong, 2001). Dangler (2007) expanded:

These activities included having a mentor teacher from the same field, having common plan time with other teachers in the same subject area or having the ability to collaborate with other teachers on instruction, and being part of an external network of teachers. (p. 28)

The idea of mentoring and new teacher support is widely acknowledged as enviable. However, the features that differentiate a highly-effective program from one that provides only superficial support have not been clearly established. It is suggested that funding be approved to study what features of mentoring and induction programs are the most efficient, rather than whether mentoring and induction are meaningful (Strong, 2005).

Professional Development

Professional development is now identified as a vital component to expand the quality of teaching and learning in school. There is increased interest in research that points to what is effective professional development and what types of professional development have the most effect on teacher efficacy. Researchers are looking at new ways to measure the data (Ingvarson, Meiers, & Beavis, 2005).

Good teachers expect more from their students. Ross and Bruce (2007) proclaimed that “teachers with high perceived efficacy view student failure as an incentive to greater teacher effort rather than concluding that the causes of failure are beyond teacher control and cannot be reduced by teacher action” (p. 3). Retaining these good teachers is critical. Good teachers are
retained through structured, sustained, intensive professional development programs that allow new teachers to observe others, to be observed by others, and to be part of networks or study groups where all teachers share together, grow together, and learn to respect each other’s work (Wong, 2004). Ingvarson et al. (2005) added:

Effective professional development programs draw teachers into an analysis of their current practice in relation to professional standards for good practice. They also draw teachers into close comparison of what their students are learning in relation to what students of that age and circumstance are capable of learning. (p. 8)

It is essential to understand that teachers trained through universities have had instruction in pedagogy, classroom management, and teaching strategies. Some other teachers come to teaching through unconventional means such as provisionary status. These teachers may have limited knowledge of these concepts. According to Wong (2004), these teachers need 2 or 3 years to be trained on a continuum of professional development. Henson (2001) concluded that “positively impacting teachers’ beliefs is unlikely outside of longer-term professional development that compels teachers to think critically about their classrooms and behave actively in instructional improvement” (p. 21).

Induction Programs

Induction programs should be intertwined with professional development. A lack of on-the-job support is among the top reasons teachers give for leaving the profession (Dangler, 2007). Without successful induction programs, attrition rates will continue to soar and teacher efficacy will continue to wane. Wong (2004) stated that “induction is a process – a comprehensive, coherent, and sustained professional development process – that is organized by a school district to train, support, and retain new teachers and seamlessly progresses them into a
lifelong learning program” (p. 42). Fulton et al. (2005) added that teachers must integrate their personal knowledge into a collective and cohesive professional knowledge-base that is widely shared. Wong (2004) reiterated:

Only with a structured, sustained, multiyear induction program will a professional culture be created in which teachers thrive and grow throughout their careers, a critical element in reducing the exceedingly high rate of teacher attrition, resulting in quality teaching in all classrooms. (p. 49)

Induction is a comprehensive, multiyear process designed to train and acclimate new teachers in the academic standards and vision of the district. No two induction programs are alike; each caters to the individual culture and specific needs of its unique school or district. There are, however, several common components that underlie the most successful induction programs (Wong, 2004).

Seven components of effective induction programs were noted by Smith and Ingersoll (2004). The induction components included a mentor, common planning time, new teacher seminars, a support network, reduced teaching time, a teacher’s aide, and communication with the administration. There were no data suggesting which of the components is most critical. Additional research is recommended to study which of the induction components is most effective at reducing attrition rates (Strong, 2005).

According to Ingersoll and Kralik (2004), induction programs that are effective include a partnership between the novice teacher and a trained mentor in the same grade and subject level, reduced workload, as well as collaboration and planning time with his or her mentor. Professional development that is continuous and pertinent to novice teachers, time for observation of experienced teachers, and assessment of their progress is essential. Including
ample fiscal resources and a formal assessment of the induction program itself are also recommended.

Few induction programs offer most of these components, and a discrepancy exists between what programs offer and what new teachers value as most important. According to Andrews et al. (2008) novice teachers value most the opportunity to observe other teachers, followed by co-planning time with other teachers. In both cases less than 50% of the new teachers responding to a questionnaire were provided these occasions, although 84% of the administration responded that these opportunities had been provided.

A comprehensive induction program including preparation and partnership experiences with other teachers also has a constructive effect on teacher retention (Darling-Hammond, 2003; Fulton et al., 2005; Smith & Ingersoll, 2004). Yet, “only a third of the states have policies that require, guide, and finance any kind of new teacher induction” (Fulton et al., 2005, p. 6).

A comprehensive induction program is different from the model of one mentor, usually an experienced teacher, simply assisting the novice teacher’s survival during his or her first year in the classroom. States usually rely on districts to fund their own induction programs. Districts are already overburdened with costs but are learning that the price of replacing a teacher is more substantial (Fulton et al., 2005).

Academic Achievement Levels

Each day teachers are faced with the overwhelming task of providing each student an opportunity to progress. All students come to class with individual personalities, expectations, beliefs, abilities, and motivations. In spite of these differences, lack of funding, overcrowded classrooms, and other everyday obstacles, teachers manage to make a difference in the lives of
their students. A teacher must possess a strong self-efficacy to achieve these results. In most cases the higher the teachers’ efficacy, the higher the students’ academic achievement.

Many of the factors that influence student learning are found within the students themselves. These factors include ability, motivation, and family influences. Families’ influence includes language, education achievement levels of parents, number of siblings, and family income. Other factors that influence student learning are found in the schools: textbooks being used, size of the library, school policy issues, and certainly the teachers; teaching style, verbal fluency, education level, years of experience, and efficacy levels name just a few more (Kennedy & Educational Resources Information Center, 1991).

Teacher efficacy influences student achievement through teacher persistence. High efficacy teachers use classroom management approaches that stimulate student autonomy and reduce custodial control. Student achievement is higher because these management strategies tend to be more effective in keeping students on task (Gibson & Dembo, 1984). Ross and Bruce (2007) added that “teacher efficacy leads to changes in teacher behavior which modify students’ perceptions of their academic abilities” (p. 3). Shaughnessy (2004) shared this quote from an interview with the well-known researcher of self-efficacy, Anita Woolfolk:

We will never have the perfect curriculum or teaching strategy, but teachers who set high goals, who persist, who try another strategy when one approach is found wanting – in other words, teachers who have a high sense of efficacy and act on it – are more likely to have students who learn. (p. 157)

Gibson and Dembo (1984) reported that teachers with a higher sense of efficacy spent a higher percentage of time on academics, have many qualities related to effective teachers, and are more willing to persevere during situational learning difficulties. Ross and Bruce (2007)
added that “teachers with high perceived efficacy view student failure as an incentive to greater teacher effort rather than concluding that the causes of failure are beyond teacher control and cannot be reduced by teacher action” (p. 3).

Several factors involve teacher efficacy and student achievement. Teachers with high efficacy scores are more likely to try difficult teaching tasks and are willing to share control of the classroom with students. They also employ classroom management techniques that promote student autonomy and diminish custodial control. These management systems keep students on task. High efficacy teachers also devote more time to academically-challenged students (Ross & Bruce, 2007; Tschannen-Moran & Woolfolk-Hoy, 2002). Gibson and Dembo (1984) reiterated:

Those teachers who in general expect students to learn and who have confidence in their ability to teach may communicate higher expectations by providing less criticism to students and persisting with students until they respond correctly rather than going on to another student or another question. (p. 579)

Teacher efficacy also leads to changes in student perceptions about their abilities. Ashton and Webb (1986) reported that as student efficacy increases, so does their enthusiasm and willingness to interact with the teacher, in turn, raising student achievement.

Student-Teaching Experiences

Student-teaching provides the core of information that is learned through mastery experiences that a teacher will use to shape his or her self-efficacy beliefs (Bandura, 1997). Student-teaching has many facets that can influence self-efficacy. Aydin and Woolfolk-Hoy (2005) stated, “Student teaching is generally considered the most beneficial component of preparation by prospective and practicing teachers and teacher educators” (p. 2). (Darling-Hammond, 2001) added that the most important problem is that the students of teachers with
little preparation for teaching learn less than those students who have properly-prepared teachers.

Tschannen-Moran et al. (1998) reported:

- Once engaged in student teaching, efficacy beliefs also have an impact on behavior.
- Student interns with higher personal teaching efficacy were rated more positively on lesson presenting behavior, classroom management, and questioning behavior by their supervising teacher on their practicum evaluation. (p. 225)

Still, student-teaching is riddled with problems. Wideen, Mayer-Smith, and Moon (1998) found that student-teachers are burdened with the stress of completing their student-teaching experiences and are often preoccupied with living through the experience, not gaining from the experience. Woullard and Coats (2004) assessed that these anxieties assist preservice teachers in recognizing their positive and negative feelings toward the teaching profession. Woolfolk-Hoy (2000) remarked:

- Student teachers often underestimate the complexity of the teaching task and their ability to manage many agendas simultaneously. Interns may both interact too much as peers with their students and find their classes out of control or they may grow overly harsh and end up not liking their “teacher self.” (p. 6)

Through mentoring and student-teaching experiences, a student-teacher learns the capstone of perpetual skills needed to be successful in the classroom. In spite of this necessity, there are limited regulations and standards for colleges and universities regarding the length of the student-teaching experiences or the number of hours required to be observed by the student-teacher’s mentor. Regulations differ from state-to-state and are dependent upon a supply-and-demand basis. Kennedy and the Educational Resources Information Center (1991) remarked that many states give teacher educators significant leeway in their program designs. Thus, teacher
education programs vary greatly from one institution to the next. Many states allow teachers to enter the workforce without completion of a student-teaching practicum. Due to time restraints, many new educators are thrust into the classroom with only a brief student-teaching experience or without the benefit of a teacher educational program. This discrepancy results in a wide array of experiences leading to the new teacher’s first assignment.

Without the student-teaching experience or training in how to teach, teachers often struggle with conveying material to students. When students do not learn with simple direction, the intuitive teacher feels powerless to proceed. The teacher then feels resentment toward the students for not validating his or her efforts. Without teacher education intervention skills, it is also difficult for the new teacher to comprehend the vast experiences, perceptions, and knowledge-bases that manipulate the approaches to learning of those from an array of backgrounds. The ability to understand others is not intrinsic; it is developed through guided incidence, reflection, learning, and inquiry (Darling-Hammond, 2000a).

Many preservice teachers are not aware of the demands of teaching until they enter the classroom as first-year teachers. They often feel unprepared (Woullard & Coats, 2004). According to the Public Education Network (2003), “another reason for why teachers do not feel well prepared is a mismatch between the instructional pedagogy they were exposed to in their education programs and that practiced in the schools to which they are assigned” (p. 12).

One possible solution for lowering attrition rates is to raise self-efficacy through improved teacher preparation programs. Local school districts could form partnerships with college preparation programs where special needs such as classroom management can be addressed (Center for Comprehensive School Reform and Improvement, 2007). Placing student-
teachers in a variety of school settings also provides variety to the student-teaching experiences (Public Education Network, 2003). Tschannen-Moran et al., (1998) suggest that:

Teacher preparation programs need to give pre-service teachers more opportunities for actual experiences with instructing and managing children in a variety of contexts with increasing levels of complexity and challenge to provide mastery experiences and specific feedback. (p. 226)

Other improvements include nonevaluative feedback (Tagger, 2006), portfolios for reflection (Andrews et al., 2008), increased quantity of teacher education classes, and extended research of student-teaching experiences (Kennedy & Educational Resources Information Center, 1991).

Colleges and universities are burdened with the difficulty of providing student-teachers with the expertise and experiences to enter the classroom. If student-teachers do not feel prepared to enter the classroom, they are more apt to struggle with their new teaching assignment. The American Association of State Colleges and Universities (1999) reports that “much of the responsibility of ensuring that teachers are effective must rest with the colleges and universities that prepare them” (p. 5), yet, the length of actual student-teaching varies greatly, ranging from 4 to 16 weeks of field experience. It may be that this variance in preservice experience results in new teachers who do not enter the classroom fully prepared to handle a classroom with confidence (Chan, 2006).

Carter’s 2006 study reported that student-teaching raises self-efficacy beliefs. The study measured efficacy beliefs of students before and after their student-teaching experiences. Post-student-teaching efficacy beliefs were statistically and significantly higher than pre-student-
teaching beliefs. These results give merit to the importance of having all future educators take part in a mandated student-teaching experience.

Chambers (2003) studied student-teaching experiences to determine if the length of the experiences would affect teacher efficacy levels. Results of the study showed no significant changes in efficacy levels due to the amount of time spent on student-teaching. The lack of change may be due to a deficiency in study validity. Two groups of participants were used: students completing the traditional 2 semester student-teaching program and students completing an accelerated 1 semester student-teaching program. Chambers (2003) states, “Students in the 1 semester program had the same experiences as those in the 2 semester program through an intensified semester” (p. 1). These students were in the classroom every day as compared to the 2 semester students who were in the classroom only 2 days each week.

Cole’s (1995) research found the contrary to be true. Comparing the efficacy between students who completed a lengthy field placement with those who completed shorter clinical visits, the efficacy scores increased dramatically for those completing a longer placement. One explanation for these results is that students with the longer placement were awarded time enough to understand the school climate and culture, enabling them to become part of the total classroom experience.

Student-teaching experiences define the role of a new teacher by giving students opportunities to evaluate their capabilities (Aydin & Woolfolk-Hoy, 2005). It is through these experiences that a passion for teaching and an understanding of how to teach are developed. Research has shown that student-teachers who have completed an extended field experience possess a greater sense of self-efficacy than students who complete a shorter field experience. Studies have shown that teachers who enter the profession without full preparation have more
difficulty planning curriculum, managing the classroom, and diagnosing the needs of their students (Darling-Hammond, 2000b). Increasing the duration of the field experience allows the student to become acclimated to the school’s culture, which may also increase their efficacy (Cole, 1995).
CHAPTER 3

METHODS

Introduction

The purpose of this study was to examine the relationship between the length of student-teaching experiences and new teacher efficacy scores. Various student-teacher components related to the length of their experiences were analyzed with new teacher efficacy scores. Components include the number of hours the student-teacher spent teaching in the classroom and number of years of inservice experience. The study sought to discover whether statistically significant comparisons and possible relationships existed among student-teaching times and perceived teacher efficacy scores.

Research Design

A nonexperimental survey design was employed in this study to answer the research questions related to student-teaching experiences and perceived new teacher efficacy. The researcher used the Teachers’ Sense of Efficacy Scale (TSES) developed by Tschannen-Moran and Woolfolk-Hoy (2001) as the instrument for measuring teacher efficacy. This instrument, developed at Ohio State University, is sometimes referred to as the Ohio State Teacher Efficacy Scale (OSTES).

The OSTES scale was examined for validity in three separate studies. In the first study, the item scale was tested on 224 participants and reduced the items from 52 to 32 with no items eliminated based on importance ratings.

The second study employed 217 participants and further reduced the 32-item scale to 18 items by subjecting each to a scree test. Items with the lowest loadings within each of the three factors were removed. Three subscales (eight items in efficacy for student engagement, seven...
items in efficacy for instructional strategies, and three items in efficacy for classroom management) accounted for 51% of the variance and emerged from the varimax rotation (Tschannen-Moran & Woolfolk-Hoy, 2001).

An efficacy sub-scale score was computed for each factor by calculating the mean of the responses to the items retained with each factor. The α reliabilities for the sub-scales were 0.82 for engagement, 0.81 for instruction, and 0.72 for management. The reliability for this 18-item scale was 0.95. (pp. 797-798)

To further test the validity the construct validity was examined by testing the new measure correlation with three other existing measures. The total scores were positively related to all three of the other measures ($r=0.35$, 0.48, 0.30, $p<0.01$).

A third study was used to refine the OSTES by testing 410 participants, adding more items to the classroom management subscale and additional items to the other subscales for a final instrument of 36 items. A scree test that emulated the three factors identified in study two was performed. The scale was reduced to 24 items “by selecting the eight items with the highest loadings on each factor” (Tschannen-Moran & Woolfolk-Hoy, 2001, p. 799). The research further reported “reliabilities for the teacher efficacy subscales were 0.91 for instruction, 0.90 for management, and 0.87 for engagement. Intercorrelations between the subscales were 0.60, 0.70, and 0.58 respectively ($p<0.001$)” (Tschannen-Moran & Woolfolk-Hoy, 2001). Means for the OSTES subscales and total score for the long and short forms are presented in Table 1.
Table 1

Means for OSTES Subscales and Total Score for Long and Short Forms

<table>
<thead>
<tr>
<th>Item</th>
<th>Long Form</th>
<th></th>
<th></th>
<th>Short Form</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>α</td>
<td>Mean</td>
<td>SD</td>
<td>α</td>
</tr>
<tr>
<td>OSTES</td>
<td>7.1</td>
<td>0.94</td>
<td>0.94</td>
<td>7.1</td>
<td>0.98</td>
<td>0.90</td>
</tr>
<tr>
<td>Instruction</td>
<td>7.3</td>
<td>1.1</td>
<td>0.91</td>
<td>7.3</td>
<td>1.2</td>
<td>0.86</td>
</tr>
<tr>
<td>Management</td>
<td>6.7</td>
<td>1.1</td>
<td>0.90</td>
<td>6.7</td>
<td>1.2</td>
<td>0.86</td>
</tr>
<tr>
<td>Engagement</td>
<td>7.3</td>
<td>1.1</td>
<td>0.87</td>
<td>7.2</td>
<td>1.2</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Additional questions were added by the researcher to obtain specific information concerning the participants’ weeks of student-teaching experiences, age, gender, ethnicity, and years of teaching experience.

Population and Sample

The population of this study consisted of 9,500 new teachers (those with 5 years or less of inservice experience) working in Virginia’s public school system. Using a database from the Virginia Education Association, the survey was e-mailed to all teachers meeting the study requirements. Only those teachers who responded with a completed questionnaire were considered for the study. A total of 591 participants responded to the survey. Thirty-five responders were excluded from the sample because of incomplete survey responses. The sample consisted of 556 participants from across the state.

Data Collection Procedures

The electronic survey was distributed by e-mail, using *Survey Monkey* available on the Internet. In order to collect data from as many participants as possible, one follow-up letter was distributed, to encourage participation in the survey. Data were collected through the site and divided into two categories: student-teaching experiences and new teacher efficacy. Subgroups
for each of the student-teachers’ experience questions were determined by a similar number of hours on each question according to participants’ responses.

Research Questions and Null Hypotheses

Six research questions and 18 null hypotheses were formulated to direct the study:

Research Question #1: Is there a significant difference in the mean scores for the three domains of the TSES (Efficacy in Student Engagement, Efficacy in Instructional Practices, and Efficacy in Classroom Management) for novice teachers in regard to the number of weeks (none, 1 to 5, 6 to 10, 11 to 15, 16 to 20, or more than 20) enrolled in a student-teaching program?

Null Hypothesis 1₁: There is no significant difference between the mean scores for the Efficacy in Student Engagement domain in regard to the number of weeks enrolled in a student-teaching program.

Null Hypothesis 1₂: There is no significant difference between the mean scores for the Efficacy in Instructional Practices domain in regard to the number of weeks enrolled in a student-teaching program.

Null Hypothesis 1₃: There is no significant difference between the mean scores for the Efficacy in Classroom Management domain in regard to the number of weeks enrolled in a student-teaching program.

Research Question #2: Is there a significant difference in the mean scores for the three domains of the TSES between male and female new teachers?

Null Hypothesis 2₁: There is no significant difference in the mean scores for the Student Engagement domain of the TSES between male and female new teachers.

Null Hypothesis 2₂: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES between male and female new teachers.
Null Hypothesis 2: There is no significant difference in the mean scores for the Classroom Management domain of the TSES between male and female new teachers.

Research Question #3: Is there a significant difference in the mean scores for the three domains of the TSES in regard to the ethnicity (Caucasian, African-American, or other) of new teachers?

Null Hypothesis 3: There is no significant difference in the mean scores for the Student Engagement domain of the TSES in regard to the ethnicity of new teachers.

Null Hypothesis 3: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES in regard to the ethnicity of new teachers.

Null Hypothesis 3: There is no significant difference in the mean scores for the Classroom Management domain of the TSES in regard to the ethnicity of new teachers.

Research Question #4: Is there a significant relationship among the mean scores for the three domains of the TSES in regard to years (none, 1, 2, 3, 4, or 5) of professional experience?

Null Hypothesis 4: There is no significant relationship among the mean scores for the Student Engagement domain of the TSES in regard to years of professional experience.

Null Hypothesis 4: There is no significant relationship among the mean scores for the Instructional Practices domain of the TSES in regard to years of professional experience.

Null Hypothesis 4: There is no significant relationship among the mean scores for the Classroom Management domain of the TSES in regard to years of professional experience.

Research Question #5: Is there a significant difference in the mean scores for the three domains of the TSES in regard to biological age (20 to 29, 30 to 39, 40 to 49, 50 to 59, or more than 60) of new teachers?
Null Hypothesis 5₁: There is no significant difference in the mean scores for the Student Engagement domain of the TSES in regard to biological age of new teachers.

Null Hypothesis 5₂: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES in regard to biological age of new teachers.

Null Hypothesis 5₃: There is no significant difference in the mean scores for the Classroom Management domain of the TSES in regard to biological age of new teachers.

Research Question #6: Is there a significant difference in the mean scores for the three domains of the TSES in regard to the number of days spent student-teaching (none, 1 to 9, 10 to 19, 20 to 29, 30 to 39, or more than 40) in front of a classroom?

Null Hypothesis 6₁: There is no significant difference in the mean scores for the Student Engagement domain of the TSES in regard to the number of days spent student-teaching in front of a classroom.

Null Hypothesis 6₂: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES in regard to the number of days spent student-teaching in front of a classroom.

Null Hypothesis 6₃: There is no significant difference in the mean scores for the Classroom Management domain of the TSES in regard to the number of days spent student-teaching in front of a classroom.

Data Analyses

Efficacy scores were measured in three categories: Efficacy in Student Engagement, Efficacy in Instructional Practices, and Efficacy in Classroom Management (Tschannen-Moran & Woolfolk-Hoy, 2001).
Efficacy in Student Engagement measures the teacher’s self-perceived ability to motivate students who are not currently motivated, increase students’ beliefs about their abilities, and the teacher’s ability to assist student families in helping children do well in school.

Efficacy in Instructional Practices measures the teacher’s self-perceived ability to craft good questions for students, use a variety of assessment strategies, and determine the extent to which the teacher provides alternative explanations and implements assessment strategies.

Efficacy in Classroom Management measures the teachers’ self-perceived ability to effectively manage classroom behavior. Questions added to the survey by the researcher provided data regarding the number of hours of student-teaching in a classroom situation, the participant’s age, gender, ethnicity, and number of years in-service experience. Subgroups consisting of participants with similar numbers of hours for each question were constructed.

Instrument

The instrument employed was the Teachers’ Sense of Efficacy Scale (TSES), previously called the Ohio State Teacher Efficacy Scale (Tschannen-Moran & Woolfolk-Hoy, 2001). The instrument was available in both a long form with 24 items and a short form with 12 items. The researcher chose the 12-item form to allow participants a shorter survey completion time. The instrument was assessed along a 9-point continuum with anchors at 1 - Nothing, 3 - Very Little, 5 - Some Influence, 7 - Quite A Bit, and 9 - A Great Deal.

Previous factor analyses identified three 4-item subscales: efficacy for student engagement, efficacy for instructional practices, and efficacy for classroom management. In previous research reliabilities for the subscales ranged from .86 to .90, and for the full-scale from .92 to .95 (Tschannen-Moran & Woolfolk-Hoy, 2001). In addition to the TSES the researcher
added demographic questions to determine gender, age, ethnicity, number of years of teaching experience, and number of hours spent student-teaching in front of a classroom.

A series of one-way analyses of variance (ANOVA) were performed on research questions 1, 3, 4, 5, and 6 to test the comparisons (differences) between each subgroup of student-teacher experience and the new teacher efficacy scores. An independent samples t test was used for research question 2, and a Pearson correlation coefficient was used on research questions 2 and 4 to obtain the strength of the relationship between length of student-teaching and teacher efficacy scores. The level of significance for all null hypotheses was established at .05.

Participants were divided into subgroups for each of the demographic questions; each subgroup’s efficacy scores were averaged and compared with other subgroups within that research question to determine differences in efficacy scores for each subgroup.

Summary

The study results were determined by the analyses of the quantitative data compiled by the researcher. The on-line survey provided the quantitative data needed to conduct the study of the effects of student-teacher experiences on new teacher efficacy.

The researcher hoped to show a statistically significant relationship between the length of student-teacher experiences and new teacher efficacy. If this had been the case, future studies in the field would be enhanced by the results and awareness for the need of increased levels on the minimum number of hours required for student-teacher programs.
CHAPTER 4

RESULTS

Introduction

The survey results were analyzed using SPSS. Data from the survey were used to analyze the six research questions and the 18 associated null hypotheses. Research questions 1, 3, 4, 5, and 6 were analyzed using a one-way analysis of variance (ANOVA). Research question 2 was analyzed using an independent-sample t test. Additional Pearson’s correlation coefficients were computed on research questions 2 and 4.

The purpose of this study was to examine the relationship between the lengths of student-teaching experiences and new teacher efficacy scores. An on-line survey was used to collect demographic data and determine new teacher efficacy. Demographic questions included gender, age, ethnicity, number of weeks enrolled in a student-teaching program, number of days spent student-teaching in front of a classroom, and number of years full-time teaching experience. The short form of the Teachers’ Sense of Efficacy Scale (TSES) developed by Tschannen-Moran and Woolfolk-Hoy (2001) was the instrument used for measuring teacher efficacy.

The population consisted of new teachers (those with 5 years or less of in-service experience) working in Virginia’s public school systems and within the Virginia Education Association’s database. E-mail notification was sent to 9,500 prospective participants. One problem with the database was the inability to query for teachers with 5 or fewer years of experience. The database could only be used to query for teachers with 5 or fewer years in the association. The result was that many of the prospective participants did not meet the guideline of 5 or fewer years of experience. Several e-mails were returned because of an incorrect address in the database or which contained names of former teachers who had not been removed from the
database. Other teachers responded personally to inform me they had been teaching for over 5 years. Failure to update the names in the database was determined to be the cause. Other respondents stated they had been teaching for over 5 years but were new to the association. One follow-up e-mail was sent to each prospective participant to encourage participation in the survey. A total of 591 participants (6%) responded to the survey; however, 35 participants were excluded from the results due to incomplete survey responses. Therefore, 556 participants (6%) are included in the results. The percentage of participants is based solely on the number of e-mails sent. There was no measure of the number of prospective participants who did not meet the guidelines. The actual percentage of the population that participated was significantly higher.

Teachers’ Sense of Efficacy Scale

Mean scores were computed for each of the three, four-item subscales, efficacy for student engagement, efficacy for instructional practices, and efficacy for classroom management. Student engagement scores were computed from questions 2, 3, 4, and 11. The mean score for instructional practices was obtained by computing the mean of the responses from questions 5, 9, 10, and 12. Mean scores for classroom management included questions 1, 6, 7, and 8. Table 2 shows the means and standard deviations for the scores.

Table 2
Means and Standard Deviations for TSES Subscales

<table>
<thead>
<tr>
<th>Teacher Efficacy</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Engagement</td>
<td>556</td>
<td>6.46</td>
<td>1.23</td>
</tr>
<tr>
<td>Instructional Practices</td>
<td>556</td>
<td>7.33</td>
<td>1.05</td>
</tr>
<tr>
<td>Classroom Management</td>
<td>556</td>
<td>7.28</td>
<td>1.14</td>
</tr>
</tbody>
</table>
Cronbach’s alpha reliability coefficient was used to test reliability. The student engagement coefficient was .81 and the standardized item alpha was .82. The reliability coefficient for instructional practices was .77, and the standardized item alpha was .77. The reliability coefficient for classroom management was .88, and the standardized alpha was .88. These results indicate satisfactory reliability for each subscale.

Demographic Characteristics

The results of the sample (n = 556) demographic characteristics were as follows: Gender: Male (20%) or female (80%). Ethnicity: White (87%), African American (8%), or Other (5%). Number of years professional experience: None (2%), one (4%), two (17%), three (19%), four (25%), or five (33%). Age: 20-29 (35%), 30-39 (29%), 40-49 (19%), 50-59 (14%), or 60+ (3%). The participant demographic characteristics are reported in Table 3.
Table 3

Participant Demographic Characteristics (n = 556)

<table>
<thead>
<tr>
<th>Demographic Category</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>111</td>
<td>20</td>
</tr>
<tr>
<td>Female</td>
<td>445</td>
<td>80</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>484</td>
<td>87</td>
</tr>
<tr>
<td>African American</td>
<td>46</td>
<td>8</td>
</tr>
<tr>
<td>Other</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>Number of years of professional experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>134</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>175</td>
<td>33</td>
</tr>
<tr>
<td>No Response</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>196</td>
<td>35</td>
</tr>
<tr>
<td>30-39</td>
<td>161</td>
<td>29</td>
</tr>
<tr>
<td>40-49</td>
<td>105</td>
<td>19</td>
</tr>
<tr>
<td>50+</td>
<td>93</td>
<td>17</td>
</tr>
<tr>
<td>No Response</td>
<td>1</td>
<td><1</td>
</tr>
</tbody>
</table>

Student-Teaching Characteristics

The results of the sample (n = 556) student-teaching characteristics were as follows:

Number of weeks enrolled in a student-teaching program: None (32%), 1-5 (4%), 6-10 (12%), 11-15 (18%), 16-20 (21%), or more than 20 (13%). Number of days spent student-teaching in front of a classroom: None (32%), 1-9 (5%), 10-19 (6%), 20-29 (12%), 30-39 (12%), or more than 40 (33%). The participant student-teaching characteristics are reported in Table 4.
Table 4

Participant Student-Teaching Characteristics (n = 556)

<table>
<thead>
<tr>
<th>Experience</th>
<th>Length</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of weeks enrolled in a student-teaching program</td>
<td>0</td>
<td>176</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>1-5</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6-10</td>
<td>66</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>11-15</td>
<td>101</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>16-20</td>
<td>117</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>20+</td>
<td>74</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>No Response</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Number of days spent student-teaching in front of a classroom</td>
<td>0</td>
<td>174</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10-19</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td>69</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>65</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>40+</td>
<td>183</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>No Response</td>
<td>4</td>
<td><1</td>
</tr>
</tbody>
</table>

Research Question 1

Research Question #1: Is there a significant difference in the mean scores for the three domains of the TSES (Efficacy in Student Engagement, Efficacy in Instructional Practices, and Efficacy in Classroom Management) for novice teachers in regard to the number of weeks (none, 1 to 5, 6 to 10, 11 to 15, 16 to 20, or more than 20) enrolled in a student-teaching program?

Null Hypothesis 1: There is no significant difference between the mean scores for the Efficacy in Student Engagement domain in regard to the number of weeks enrolled in a student-teaching program.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of student engagement scores and the number of weeks enrolled in a student-teaching
program. The independent variable was the number of weeks enrolled in a student-teaching program and the dependent variable was efficacy of student engagement scores. The one-way ANOVA, $F(5, 547) = 1.90, p = .09, \eta^2 = .02$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by η^2 was small (.02). That is only 2% of the variance in efficacy of student engagement was accounted for by the number of weeks enrolled in a student-teaching program. Results indicated that the efficacy of student engagement scores were not related to the number of weeks enrolled in a student-teaching program. The means and standard deviations for efficacy of student engagement by the number of weeks enrolled in a student-teaching program are shown in Table 5. The boxplot for efficacy of student engagement by the number of weeks enrolled in a student-teaching program is shown in Figure 1.

Table 5

Means and Standard Deviations for Efficacy of Student Engagement by the Number of Weeks Enrolled in a Student-Teaching Program

<table>
<thead>
<tr>
<th>Number of weeks</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>176</td>
<td>6.38</td>
<td>1.29</td>
</tr>
<tr>
<td>1-5</td>
<td>19</td>
<td>6.76</td>
<td>1.25</td>
</tr>
<tr>
<td>6-10</td>
<td>66</td>
<td>6.22</td>
<td>1.20</td>
</tr>
<tr>
<td>11-15</td>
<td>101</td>
<td>6.45</td>
<td>1.18</td>
</tr>
<tr>
<td>16-20</td>
<td>117</td>
<td>6.50</td>
<td>1.10</td>
</tr>
<tr>
<td>20+</td>
<td>74</td>
<td>6.78</td>
<td>1.33</td>
</tr>
<tr>
<td>Total</td>
<td>553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
null = an observation between 1.5 times to 3.0 times the interquartile range

Figure 1. Boxplot for Efficacy of Student Engagement by the Number of Weeks Enrolled in a Student-Teaching Program.

Null Hypothesis 1: There is no significant difference between the mean scores for the Efficacy in Instructional Practices domain in regard to the number of weeks enrolled in a student-teaching program.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of instructional practices domain and the number of weeks enrolled in a student-teaching program. The independent variable was the number of weeks enrolled in a student-teaching program and the dependent variable was efficacy of instructional practices scores. The
one-way ANOVA, $F(5, 547) = 1.70, p = .14, \eta^2 = .02$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by η^2 was small (.02). That is only 2% of the variance in Efficacy of Instructional Practices was accounted for by the number of weeks enrolled in a student-teaching program. The results indicated that efficacy of instructional practices was not related to the number of weeks enrolled in a student-teaching program. The means and standard deviations for efficacy of instructional practices by the number of weeks enrolled in a student-teaching program are shown in Table 6. The boxplot for efficacy of instructional practices by the number of weeks enrolled in a student-teaching program is shown in Figure 2.

Table 6

<table>
<thead>
<tr>
<th>Number of weeks</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>176</td>
<td>7.33</td>
<td>1.14</td>
</tr>
<tr>
<td>1-5</td>
<td>19</td>
<td>7.61</td>
<td>.83</td>
</tr>
<tr>
<td>6-10</td>
<td>66</td>
<td>7.22</td>
<td>.99</td>
</tr>
<tr>
<td>11-15</td>
<td>101</td>
<td>7.16</td>
<td>1.12</td>
</tr>
<tr>
<td>16-20</td>
<td>117</td>
<td>7.33</td>
<td>.98</td>
</tr>
<tr>
<td>20+</td>
<td>74</td>
<td>7.57</td>
<td>.96</td>
</tr>
<tr>
<td>Total</td>
<td>553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Null Hypothesis 13: There is no significant difference between the mean scores for the Efficacy in Classroom Management domain in regard to the number of weeks enrolled in a student-teaching program.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of classroom management scores and the number of weeks enrolled in a student-teaching program. The independent variable was the number of weeks enrolled in a student-
teaching program and the dependent variable was efficacy of classroom management scores. The one-way ANOVA, $F(5, 547) = .47, p = .80, \eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by η^2 was small ($<.01$). That is less than 1% of the variance in efficacy of classroom management was accounted for by the number of weeks enrolled in a student-teaching program. The results indicated that efficacy of classroom management was not related to the number of weeks enrolled in a student-teaching program. The means and standard deviations for efficacy of classroom management by the number of weeks enrolled in a student-teaching program are shown in Table 7. The boxplot for efficacy of classroom management by the number of weeks enrolled in a student-teaching program is shown in Figure 3.

Table 7
Means and Standard Deviations for Efficacy of Classroom Management by the Number of Weeks Enrolled in a Student-Teaching Program

<table>
<thead>
<tr>
<th>Number of weeks</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>176</td>
<td>7.20</td>
<td>1.20</td>
</tr>
<tr>
<td>1-5</td>
<td>19</td>
<td>7.38</td>
<td>1.08</td>
</tr>
<tr>
<td>6-10</td>
<td>66</td>
<td>7.21</td>
<td>1.10</td>
</tr>
<tr>
<td>11-15</td>
<td>101</td>
<td>7.27</td>
<td>1.11</td>
</tr>
<tr>
<td>16-20</td>
<td>117</td>
<td>7.36</td>
<td>1.06</td>
</tr>
<tr>
<td>20+</td>
<td>74</td>
<td>7.39</td>
<td>1.25</td>
</tr>
<tr>
<td>Total</td>
<td>553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research Question 2

Research Question #2: Is there a significant difference in the mean scores for the three domains of the TSES between male and female new teachers?

Null Hypothesis 2₁: There is no significant difference in the mean scores for the Student Engagement domain of the TSES between male and female new teachers.

An independent samples t test was conducted to evaluate the mean difference in the efficacy of student engagement between male and female teachers. The efficacy of student
engagement was the dependent variable and gender was the independent variable. The independent samples \(t \) test, \(t(554) = 2.91, p < .01, \eta^2 = .02 \), was statistically significant. Therefore, the null hypothesis was rejected, meaning the null hypothesis is believed to be false.

The effect size as assessed by \(\eta^2 \) was small (.02). That is only 2% of the variance in student engagement was accounted for by gender. The mean efficacy of student engagement for male teachers \((M = 6.16, SD = 1.19) \) was a little lower than the mean for female teachers \((M = 6.54, SD = 1.23) \). The 95% confidence interval for the difference in means was -.63 to -.12. The boxplot for efficacy of student engagement by gender is shown in Figure 4.

\[\text{o = an observation between 1.5 times to 3.0 times the interquartile range} \]

Figure 4. Boxplot for Efficacy of Student Engagement by Gender.
Null Hypothesis 2: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES between male and female new teachers.

An independent samples t test was conducted to evaluate the mean difference in the efficacy of instructional practices between male and female teachers. The efficacy of instructional practices was the dependent variable and gender was the independent variable. The independent samples t test, $t(554) = .35$, $p = .74$, $\eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true.

The effect size as assessed by η^2 was small ($< .01$). That is less than 1% of the variance in efficacy of instructional practices was accounted for by gender. The mean efficacy of instructional practices for male teachers ($M = 7.30$, $SD = 1.00$) was almost equal to the mean for female teachers ($M = 7.33$, $SD = 1.06$). The 95% confidence interval for the difference in means was -.26 to .18. The boxplot for efficacy of instructional practices by gender is shown in Figure 5.
Null Hypothesis 2: There is no significant difference in the mean scores for the Classroom Management domain of the TSES between male and female new teachers.

An independent samples t test was conducted to evaluate the mean difference in the efficacy of classroom management between male and female teachers. The efficacy of classroom management was the dependent variable and gender was the independent variable. The independent samples t test, $t(554) = 1.66, p = .71, \eta^2 = .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true.
The effect size as assessed by η^2 was small (.01). That is only 1% of the variance in efficacy of classroom management was accounted for by gender. The mean efficacy of classroom management for male teachers ($M = 7.44$, $SD = 1.15$) was slightly higher than the mean for female teachers ($M = 7.24$, $SD = 1.14$). The 95% confidence interval for the difference in means was -3.70 to .44. The boxplot for efficacy of classroom management by gender is shown in Figure 6.

Figure 6. Boxplot for Efficacy of Classroom Management by Gender.

\circ = an observation between 1.5 times to 3.0 times the interquartile range
Research Question 3

Research Question #3: Is there a significant difference in the mean scores for the three domains of the TSES in regard to the ethnicity (Caucasian, African-American, or other) of new teachers?

Null Hypothesis 3: There is no significant difference in the mean scores for the Student Engagement domain of the TSES in regard to the ethnicity of new teachers.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of student engagement and ethnicity. The independent variable was ethnicity and the dependent variable was efficacy of student engagement scores. The one-way ANOVA, $F(2, 553) = .86, p = .42, \eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by η^2 was small ($<.01$). That is less than 1% of the variance in efficacy of student engagement was accounted for by ethnicity. The results indicated that efficacy of student engagement scores was not related to ethnicity. The means and standard deviations for efficacy of student engagement by ethnicity are shown in Table 8. The boxplot for efficacy of student engagement by ethnicity is shown in Figure 7.

Table 8

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>484</td>
<td>6.44</td>
<td>1.21</td>
</tr>
<tr>
<td>African-American</td>
<td>46</td>
<td>6.58</td>
<td>1.44</td>
</tr>
<tr>
<td>Other (Asian or bi-racial)</td>
<td>26</td>
<td>6.72</td>
<td>1.12</td>
</tr>
<tr>
<td>Total</td>
<td>556</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$\sigma = \text{an observation between 1.5 times to 3.0 times the interquartile range}$

Figure 7. Boxplot for Efficacy of Student Engagement by Ethnicity.

Null Hypothesis 32: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES in regard to the ethnicity of new teachers.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of instructional practices and ethnicity. The independent variable was ethnicity and the dependent variable was efficacy of instructional practices scores. The one-way ANOVA, $F(2, 553) = .70, p = .50, \eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as
assessed by η^2 was small (<.01). That is less than 1% of the variance in efficacy of instructional practices scores was accounted for by ethnicity. The results indicated that efficacy of instructional practices was not related to ethnicity. The means and standard deviations for efficacy of instructional practices by ethnicity are shown in Table 9. The boxplot for efficacy of instructional practices by ethnicity is shown in Figure 8.

Table 9
Means and Standard Deviations for Efficacy of Instructional Practices by Ethnicity

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>484</td>
<td>7.31</td>
<td>1.04</td>
</tr>
<tr>
<td>African-American</td>
<td>46</td>
<td>7.43</td>
<td>1.22</td>
</tr>
<tr>
<td>Other (Asian or bi-racial)</td>
<td>26</td>
<td>7.51</td>
<td>0.98</td>
</tr>
<tr>
<td>Total</td>
<td>556</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Null Hypothesis 3: There is no significant difference in the mean scores for the Classroom Management domain of the TSES in regard to the ethnicity of new teachers.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of classroom management scores and ethnicity. The independent variable was ethnicity and the dependent variable was efficacy of classroom management scores. The one-way ANOVA, $F(2, 553) = 1.50$, $p = .23$, $\eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the
relationship as assessed by η^2 was small (<.01). That is less than 1% of the variance in efficacy of classroom management was accounted for by ethnicity. The results indicated that efficacy of classroom management scores was not related to ethnicity. The means and standard deviations for efficacy of classroom management by ethnicity are shown in Table 10. The boxplot for efficacy of classroom management by ethnicity is shown in Figure 9.

Table 10

Means and Standard Deviations for Efficacy of Classroom Management by Ethnicity

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>484</td>
<td>7.25</td>
<td>1.12</td>
</tr>
<tr>
<td>African-American</td>
<td>46</td>
<td>7.55</td>
<td>1.32</td>
</tr>
<tr>
<td>Other (Asian or bi-racial)</td>
<td>26</td>
<td>7.28</td>
<td>1.23</td>
</tr>
<tr>
<td>Total</td>
<td>556</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research Question #4: Is there a significant relationship among the mean scores for the three domains of the TSES in regard to years (none, 1, 2, 3, 4, or 5) of professional experience?

Null Hypothesis 4: There is no significant relationship among the mean scores for the Student Engagement domain of the TSES in regard to years of professional experience.

A Pearson’s correlation coefficient was used to evaluate the relationship among the student engagement domain in regard to years of full-time teaching experience. The results of the
correlation analysis revealed a weak positive relationship among the student engagement domain in regard to the number of years of full-time teaching experience and a statistically significant correlation \([r(526) = .10, p = .03]\). Therefore, the null hypothesis was rejected, meaning the null hypothesis is believed to be false.

Null Hypothesis 42: There is no significant relationship among the mean scores for the Instructional Practices domain of the TSES in regard to years of professional experience.

A Pearson’s correlation coefficient was used to evaluate the relationship among the instructional practices domain in regard to years of full-time teaching experience. The results of the correlation analysis revealed a weak positive relationship among the instructional practices domain in regard to the number of years of full-time teaching experience and a statistically significant correlation \([r(526) = .15, p < .01]\). Therefore, the null hypothesis was rejected, meaning the null hypothesis is believed to be false.

Null Hypothesis 43: There is no significant relationship among the mean scores for the Classroom Management domain of the TSES in regard to years of professional experience.

A Pearson’s correlation coefficient was used to evaluate the relationship among the classroom management domain in regard to the number of years of full-time teaching experience. The results of the correlation analysis revealed a weak positive relationship among the classroom management domain in regard to the number of years of full-time teaching experience and a statistically significant correlation \([r(526) = .16, p < .01]\). Therefore, the null hypothesis was rejected, meaning the null hypothesis is believed to be false.
Research Question 5

Research Question #5: Is there a significant difference in the mean scores for the three domains of the TSES in regard to biological age (20 to 29, 30 to 39, 40 to 49, 50 to 59, or more than 60) of new teachers?

Null Hypothesis 5: There is no significant difference in the mean scores for the Student Engagement domain of the TSES in regard to biological age of new teachers.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of student engagement and biological age of new teachers. The independent variable was age and the dependent variable was efficacy of student engagement scores. The one-way ANOVA, $F(3, 551) = 1.53, p = .21, \eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by η^2 was small (<.01). That is less than 1% of the variance in efficacy of student engagement scores was accounted for by age. The results indicated that efficacy of student engagement scores was not related to age. The means and standard deviations for efficacy of student engagement by biological age of new teachers are shown in Table 11. The boxplot for efficacy of student engagement by biological age of new teachers is in Figure 10.

Table 11
Means and Standard Deviations for Efficacy of Student Engagement by Biological Age of New Teachers

<table>
<thead>
<tr>
<th>Age</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>196</td>
<td>6.59</td>
<td>1.19</td>
</tr>
<tr>
<td>30-39</td>
<td>161</td>
<td>6.33</td>
<td>1.24</td>
</tr>
<tr>
<td>40-49</td>
<td>105</td>
<td>6.50</td>
<td>1.21</td>
</tr>
<tr>
<td>50+</td>
<td>93</td>
<td>6.38</td>
<td>1.30</td>
</tr>
<tr>
<td>Total</td>
<td>555</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Null Hypothesis 5: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES in regard to biological age of new teachers.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of instructional practices scores and biological age of new teachers. The independent variable was age and the dependent variable was efficacy of instructional practices scores. The one-way ANOVA, $F(4, 550) = 1.17, p = .32, \eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength
of the relationship as assessed by η^2 was small (<.01). That is less than 1% of the variance in efficacy of instructional practices scores was accounted for by age. The results indicated that efficacy of instructional practices was not related to age. The means and standard deviations for efficacy of instructional practices by biological age of new teachers are shown in Table 12. The boxplot for efficacy of instructional practices by biological age of new teachers is shown in Figure 11.

Table 12

Means and Standard Deviations for Efficacy of Instructional Practices by Biological Age of New Teachers

<table>
<thead>
<tr>
<th>Age</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>196</td>
<td>7.30</td>
<td>1.00</td>
</tr>
<tr>
<td>30-39</td>
<td>161</td>
<td>7.39</td>
<td>1.06</td>
</tr>
<tr>
<td>40-49</td>
<td>105</td>
<td>7.23</td>
<td>1.10</td>
</tr>
<tr>
<td>50+</td>
<td>93</td>
<td>7.36</td>
<td>1.11</td>
</tr>
<tr>
<td>Total</td>
<td>555</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Null Hypothesis 5: There is no significant difference in the mean scores for the Classroom Management domain of the TSES in regard to biological age of new teachers.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of classroom management scores and biological age of new teachers. The independent variable was age and the dependent variable was efficacy of classroom management scores. The one-way ANOVA, $F(4, 550) = .18, p = .95, \eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength

$\circ = \text{an observation between 1.5 times to 3.0 times the interquartile range}$

$\ast = \text{an observation that is more than 3.0 times the interquartile range}$

Figure 11. Boxplot for Efficacy of Instructional Practices by Biological Age of New Teachers.
of the relationship as assessed by η^2 was small (<.01). That is less than 1% of the variance in efficacy of classroom management was accounted for by age. The results indicated that efficacy of classroom management scores was not related to age. The means and standard deviations for efficacy of classroom management by biological age of new teachers are shown in Table 13. The boxplot for efficacy of classroom management by biological age of new teachers is shown in Figure 12.

Table 13

Means and Standard Deviations for Efficacy of Classroom Management by Biological Age of New Teachers

<table>
<thead>
<tr>
<th>Age</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>196</td>
<td>7.29</td>
<td>1.10</td>
</tr>
<tr>
<td>30-39</td>
<td>161</td>
<td>7.23</td>
<td>1.19</td>
</tr>
<tr>
<td>40-49</td>
<td>105</td>
<td>7.33</td>
<td>1.13</td>
</tr>
<tr>
<td>50-59</td>
<td>93</td>
<td>7.26</td>
<td>1.17</td>
</tr>
<tr>
<td>Total</td>
<td>555</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research Question 6

Research Question #6: Is there a significant difference in the mean scores for the three domains of the TSES in regard to the number of days spent student-teaching (none, 1 to 9, 10 to 19, 20 to 29, 30 to 39, or more than 40) in front of a classroom?

Null Hypothesis 6: There is no significant difference in the mean scores for the Student Engagement domain of the TSES in regard to the number of days spent student-teaching in front of a classroom.
A one-way analysis of variance was conducted to evaluate the relationship between efficacy of student engagement scores and the number of days spent student-teaching in front of a classroom. The independent variable was the number of days spent student-teaching in front of a classroom and the dependent variable was efficacy of student engagement scores. The one-way ANOVA, $F(5, 546) = 1.97, p = .08, \eta^2 < .02$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by η^2 was small (<.02). That is less than 2% of the variance in efficacy of student engagement scores was accounted for by the number of days spent student-teaching in front of a classroom. The results indicated that efficacy of student engagement was not related to the number of days spent student-teaching in front of a classroom. The means and standard deviations for efficacy of student engagement by the number of days spent student-teaching in front of a classroom are shown in Table 14. The boxplot for efficacy of student engagement by the number of days spent student-teaching in front of a classroom is shown in Figure 13.

Table 14
Means and Standard Deviations for Efficacy of Student Engagement by the Number of Days Spent Student-Teaching in Front of a Classroom

<table>
<thead>
<tr>
<th>Number of Days</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>174</td>
<td>6.38</td>
<td>1.27</td>
</tr>
<tr>
<td>1-9</td>
<td>28</td>
<td>6.25</td>
<td>1.37</td>
</tr>
<tr>
<td>10-19</td>
<td>33</td>
<td>6.25</td>
<td>1.05</td>
</tr>
<tr>
<td>20-29</td>
<td>69</td>
<td>6.38</td>
<td>1.29</td>
</tr>
<tr>
<td>30-39</td>
<td>65</td>
<td>6.33</td>
<td>1.28</td>
</tr>
<tr>
<td>40+</td>
<td>183</td>
<td>6.69</td>
<td>1.14</td>
</tr>
<tr>
<td>Total</td>
<td>552</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Null Hypothesis 62: There is no significant difference in the mean scores for the Instructional Practices domain of the TSES in regard to the number of days spent student-teaching in front of a classroom.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of instructional practices scores and the number of days spent student-teaching in front of a classroom. The independent variable was the number of days spent student-teaching in front of a classroom and the dependent variable was efficacy of instructional practices scores. The
one-way ANOVA, \(F(5, 546) = 1.87, p = .10, \eta^2 < .02, \) was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by \(\eta^2 \) was small (<.02). That is less than 2% of the variance in efficacy of instructional practices scores was accounted for by the number of days spent student-teaching in front of a classroom. The results indicated that efficacy of instructional practices was not related to the number of days spent student-teaching in front of a classroom. The means and standard deviations for efficacy of instructional practices by the number of days spent student-teaching in front of a classroom are shown in Table 15. The boxplot for efficacy of instructional practices by the number of days spent student-teaching in front of a classroom is shown in Figure 14.

Table 15

Means and Standard Deviations for Efficacy of Instructional Practices by the Number of Days Spent Student-Teaching in Front of a Classroom

<table>
<thead>
<tr>
<th>Number of Days</th>
<th>(n)</th>
<th>(M)</th>
<th>(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>174</td>
<td>7.33</td>
<td>1.15</td>
</tr>
<tr>
<td>1-9</td>
<td>28</td>
<td>7.36</td>
<td>.94</td>
</tr>
<tr>
<td>10-19</td>
<td>33</td>
<td>7.02</td>
<td>1.00</td>
</tr>
<tr>
<td>20-29</td>
<td>69</td>
<td>7.11</td>
<td>1.14</td>
</tr>
<tr>
<td>30-39</td>
<td>65</td>
<td>7.28</td>
<td>1.01</td>
</tr>
<tr>
<td>40+</td>
<td>183</td>
<td>7.47</td>
<td>.95</td>
</tr>
<tr>
<td>Total</td>
<td>552</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
o = an observation between 1.5 times to 3.0 times the interquartile range

Figure 14. Boxplot for Efficacy of Instructional Practices by the Number of Days Spent Student-Teaching in Front of a Classroom.

Null Hypothesis 63: There is no significant difference in the mean scores for the Classroom Management domain of the TSES in regard to the number of days spent student-teaching in front of a classroom.

A one-way analysis of variance was conducted to evaluate the relationship between efficacy of classroom management scores and the number of days spent student-teaching in front of a classroom. The independent variable was the number of days spent student-teaching in front of a classroom and the dependent variable was efficacy of classroom management scores. The
one-way ANOVA, $F(5, 546) = 1.47, p = .20, \eta^2 < .01$, was not statistically significant. Therefore, the null hypothesis was retained, meaning the null hypothesis is believed to be true. The strength of the relationship as assessed by η^2 was small ($< .01$). That is less than 1% of the variance in efficacy of classroom management scores was accounted for by the number of days spent student-teaching in front of a classroom. The results indicated that efficacy of classroom management scores was not related to the number of days spent student-teaching in front of a classroom. The means and standard deviations for efficacy of classroom management by the number of days spent student-teaching in front of a classroom are shown in Table 16. The boxplot for efficacy of classroom management by the number of days spent student-teaching in front of a classroom is shown in Figure 15.

Table 16

<table>
<thead>
<tr>
<th>Number of Days</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>174</td>
<td>7.22</td>
<td>1.19</td>
</tr>
<tr>
<td>1-9</td>
<td>28</td>
<td>7.18</td>
<td>1.25</td>
</tr>
<tr>
<td>10-19</td>
<td>33</td>
<td>7.10</td>
<td>1.14</td>
</tr>
<tr>
<td>20-29</td>
<td>69</td>
<td>7.08</td>
<td>1.20</td>
</tr>
<tr>
<td>30-39</td>
<td>65</td>
<td>7.30</td>
<td>.99</td>
</tr>
<tr>
<td>40+</td>
<td>183</td>
<td>7.44</td>
<td>1.10</td>
</tr>
<tr>
<td>Total</td>
<td>552</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
o = an observation between 1.5 times to 3.0 times the interquartile range

Figure 15. Boxplot for Efficacy of Classroom Management by the Number of Days Spent Student-Teaching in Front of a Classroom.
CHAPTER 5
DISCUSSION

Introduction

The importance of this quantitative study was to examine the relationship between the length of student-teaching experiences and new teacher efficacy. The study analyzed data collected from an on-line survey of new teachers with 5 or fewer years of experience. Demographic data collected included age, gender, ethnicity, years of full-time teaching experience, number of weeks enrolled in a student-teacher program, and days spent student-teaching in front of a classroom. The short form of the Teachers’ Sense of Efficacy Scale (TSES), developed by Tschannen-Moran and Woolfolk-Hoy (2001), was the instrument employed for measuring teacher efficacy. The three subscales of the TSES were computed and analyzed with each category of demographic data. This chapter summarizes the findings, conclusions, and recommendations for further research and practice.

Summary of Findings

As a whole, the research did not find a statistically significant relationship between the length of student-teaching experiences and new teacher efficacy. There are several possible explanations for these outcomes. First, 64.6% of all participants were 30 years of age or older. These data suggest that many of the participants were beginning a second career and possess a higher level of efficacy due to experience in other fields, even without student-teaching experiences. It is also noteworthy that those participants without student-teaching experiences may have been encouraged by an effective mentoring program (Dangler, 2007; Strong, 2005). The findings agree with Chamber’s 2003 study finding that length of student-teaching experiences do not significantly raise efficacy scores.
The lack of a statistically significant relationship between the length of student-teaching experiences and new teacher efficacy suggests that the quality of the student-teaching experiences may have a stronger relationship with teacher efficacy scores than the length of those experiences. Results of the study may be skewed due by the naiveté of new teachers’ views of themselves. Their lack of experience or self-denial of reality may have affected the results. Maturity levels and other personal characteristics of individual participants were not controlled in the study and may have also affected the results. The self-selecting nature of the on-line survey also limited the participants to those who were self-motivated to participate. Six research questions were explored; the findings are reported here.

There was no statistically significant difference in the mean scores for the three domains of the TSES in regard to number of weeks enrolled in a student-teaching program among new teachers. Mean scores were slightly lower for the student engagement domain than for instructional practices or classroom management. The results of this study are not in agreement with Carter’s 2006 study or with Cole’s 1995 study. Both found that student-teaching significantly raises efficacy scores; however, Carter’s study looked only at pre- and post-student-teaching efficacy scores. The results of this study may have been affected by world experiences of the older participants. Those teachers entering the profession as a second career would have had more life experiences to raise their efficacy scores than a teacher in their early 20s entering the teaching profession as a first career. The research did not also consider the quality of the student-teaching experiences as a factor affecting the efficacy scores.

There was one statistically significant difference in the mean scores for the TSES between male and female new teachers. The mean scores for males were slightly lower in the student engagement domain and for the instructional practices domain but were slightly higher
for classroom management. The scores for student engagement were the only statistically significant scores for this question. Female teachers are typically more nurturing by nature than male teachers and this societal belief could have raised the efficacy scores for females in student engagement. In addition, only 20% of the participants were males, which may have magnified the differences in efficacy scores. The scores for classroom management resulted in male scores being slightly higher but not significantly higher. This again may be attributed to the low percentage of male participants. Repeating the study with a balanced percentage of both male and female participants may produce different results.

There was no statistically significant difference in the mean scores for the three domains of the TSES in regard to the ethnicity of new teachers. Mean scores for the student engagement domain were slightly lower than the mean scores for the instructional practices domain and for the classroom management domain. These scores may be skewed from the high percentage of Caucasian (87%) participants and a low percentage of all other ethnicities (13%). Repeating the study with a balanced percentage of participants from all three ethnic categories may produce different results.

The results revealed a weak positive relationship between all three TSES domains and the number of years of full-time teaching experience. With each year of teaching experience, a teacher becomes more knowledgeable about a school’s culture and climate, which, in turn, raises teacher efficacy. These findings are consistent with Bandura’s 1997 self-efficacy theories on the benefits of modeling and social persuasion. Orientation, mentoring (Dangler, 2007; Strong, 2005), and induction programs (Smith & Ingersoll, 2004; Wong, 2004) raise new teacher efficacy. Professional development activities also tend to raise efficacy scores (Ross & Bruce, 2007).
There was no statistically significant difference in the mean scores for the three domains of the TSES in regard to biological age of new teachers. The mean scores for the student engagement domain are slightly lower than both the instructional practices and classroom management domains. No difference in these scores suggested that age is not a factor in efficacy scores; however, life experiences, including previous work experiences, were not controlled in this research. The amount of student-teaching experience was also not a factor for this question. Only the age was considered and the results suggest no differences in teacher efficacy scores without considering other factors.

There was no statistically significant difference in the mean scores for the three domains of the TSES among the categories of number of days spent student-teaching in front of a classroom. Mean scores for the student engagement domain were slightly lower than the instructional practices or classroom management domains. Other factors that may have skewed the results, which were not controlled for in the research, include professional development activities, mentoring programs, induction programs, and school climate and culture (Darling-Hammond, 2003). All of these have an effect on efficacy scores. The quality of the number of days spent teaching in front of a classroom during the student-teaching program may have had a greater impact on efficacy scores than the quantity of the days spent teaching. Frequency of time spent observing an experienced teacher, planning time, time spent with an experienced mentoring teacher, and evaluation time with a mentoring teacher were also not controlled in this research. Each factor could have altered the efficacy scores.

Recommendations for Further Research

Results of the study can be used across the educational continuum, including college-level preparation programs, preservice teachers, K-12 hiring supervisors, and to develop a better
understanding of the need for regulating these programs. The student-teaching experience is one of the few preparations beginning teachers acquire before being placed in a classroom.

New teacher perceptions provide useful information about areas where teachers feel most knowledgeable and areas where they feel that they are most lacking. Teacher perceptions and attitudes are important because they play a large role in the decision to remain in the profession (Public Education Network, 2003).

The results of this study can assist in determining if a minimum number of hours should be established for student-teaching as well as a minimum percentage of those hours that are observed by a mentor with feedback related to the experiences. Limiting future studies to participants less than 30 years of age and who are new teachers in their first career would aide in the study of the length of student-teaching experiences on new teacher efficacy. More research is needed to show interventions that affect teacher efficacy (Ross & Bruce, 2007).
REFERENCES

APPENDICES

APPENDIX A: Permission to Use TSES

Anita Woolfolk Hoy, Ph.D.
Professor
Psychological Studies in Education

Dear Alan,

You have my permission to use the Teachers’ Sense of Efficacy Scale in your research. A copy of both the long and short forms of the instrument as well as scoring instructions can be found at:

http://people.ehe.ohio-state.edu/ahoy/research/instruments/

Best wishes in your work,

Anita Woolfolk Hoy, Ph.D.
Professor
From: “Alan Addison” <aaddison@russell.k12.va.us>
To: “Bekah Saxon” <bsaxon@veanea.org>
Subject: Research
Date: Thursday, September 18, 2008 4:39 PM

Dear Bekah Saxon,

My name is Alan Addison and I am Assistant Principal at Russell County Career and Technology Center. I am a VEA member and have been for the past twenty-two years. I have worked in the association as building representative (5 years), local president (3 years) and as PAC chair (about 13 years). I am also currently working on my Doctorate in Educational Leadership at East Tennessee State University.

I am working on my dissertation entitled, “The Effects of Student Teaching Experiences on New Teacher Efficacy.” This research will show the correlation between the length of student teaching experiences and the amount of self-perceived efficacy of new teachers (5 years or less experience). I am also gathering demographic data including gender, age, ethnicity, and years experience to see if any correlation exists between these groups. I believe the VEA research division would benefit from the data and results obtained from this study.

I plan on using an on-line survey to gather this data. I would like to send a letter to these new teachers explaining my intentions for the research along with a link to the survey instrument. No names, addresses, or other teacher identifiers or tracking devices will be used on the survey. I would simply like for the VEA to send out this letter with the link to the survey to their known new members.

This is professional research that I believe is important for study as lowered attrition rates and improved teacher preparation programs could be obtained through use of the research. I would be glad to share any and all data, as well as the results obtained by my study with the VEA.

I believe that Princess Moss would be a reference to my character if needed. You can also contact Dr. Catherine Glascock, Educational Leadership Department chair at ETSU (423-439-7509).

Thank you for consideration to this important research project and to a devoted VEA member. Please contact me if you have any questions.

Sincerely,

Alan Addison
Assistant Principal
Russell County Career and Technology Center
Work: 276-889-6550
Home: 276-889-0081
Fellow educators,

My name is Alan Addison and I am a VEA member in Russell County (23 years). I am also a doctoral student in the Department of Educational Leadership and Policy Analysis at East Tennessee State University. I am in the process of collecting data for my dissertation. Dissertation Topic: *A Study of the Effects of the Length of Student Teaching Experiences on New Teacher Efficacy*. This study has been approved by the VEA Board of Directors and by the ETSU Institutional Review Board.

I know that teachers are extremely busy, but it is important for you to complete the attached questionnaire. The results of this study will be used to make improvements to teacher preparation programs (student teaching), increase the VEA’s research database, and hopefully lower teacher attrition rates.

This survey will provide our state with essential demographic information that will help evaluate our current teacher preparation programs. I am asking for new teachers (with 0 - 5 years of experience, not counting the current year) to participate in the electronic survey. This survey should take about 5-10 minutes for you to complete. Please take advantage of this opportunity to evaluate your student teaching experiences and self-perceived abilities. My dissertation committee chair is Dr. Catherine Glascock and she may be reached about any questions by email at glascock@mail.etsu.edu or by telephone at 423-439-4430.

To take part in this valuable research, simply click on the link below

http://www.surveymonkey.com/s.aspx?sm=oNyISdo6HBSTO_2bdRI3Q8Zg_3d_3d

Please feel free to contact me if you have any questions about this research study or the data collection process. Thank you in advance for your participation and your support of this data collection project.

Alan Addison
Assistant Principal Russell County Career and Technology Center
e-mail: aaddison@russell.k12.va.us
Work: 276-889-6550
Home: 276-889-0081
Cell 276-345-3101
Fax 276-889-6520
Dear Educator,

Thank you for taking 5 -10 minutes of your precious time to complete this survey. Please remember that only teachers with 0 - 5 years of experience are needed to participate. You will not be asked your name or any other identifying questions. The information will only be used to help evaluate our current teacher preparation programs. Please feel free to contact me if you have any questions about this research study or the data collection process.

Thank you again in advance for your participation and your support of this data collection project.

Alan Addison
Assistant Principal Russell County Career and Technology Center
Email: aaddison@russell.k12.va.us
Work: 276-889-6550
Home: 276-889-0081
Cell 276-345-3101
Fax 276-889-6520
APPENDIX E: Survey Questionnaire

Directions

This questionnaire is designed to help us gain a better understanding of the kinds of things that create difficulties for teachers in their school activities. Please enter the demographic information as requested.

Demographic Questions

1. Select your gender.
 - Male
 - Female

2. Select your current age group.
 - 20-29
 - 30-39
 - 40-49
 - 50-59
 - 60+

3. Select your ethnicity.
 - Caucasian
 - African American
 - American Indian
 - Asian
 - Other
4. How many weeks were you enrolled in student teaching program?
 - 0 - No student teaching program
 - 1-5 weeks
 - 6-10 weeks
 - 11-15 weeks
 - 16-20 weeks
 - 20+ weeks

5. How many days did you spend student teaching in front of a classroom?
 - 0 - No student teaching experiences
 - 1-9 days
 - 10-19 days
 - 20-29 days
 - 30-39 days
 - 40+ days

6. How many years of full-time teaching experience do you currently have (not including the current year)?
 - 0 years experience
 - 1 year experience
 - 2 years experience
 - 3 years experience
 - 4 years experience
 - 5 years experience
How much can you do?

Please indicate your opinion about each of the statements below. Your answers are confidential.

1. How much can you do to control disruptive behavior in the classroom?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

2. How much can you do to motivate students who show low interest in school work?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

3. How much can you do to get students to believe they can do well in school work?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

4. How much can you do to help your students value learning?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

5. To what extent can you craft good questions for your students?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

6. How much can you do to get students to follow classroom rules?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

7. How much can you do to calm a student who is disruptive or noisy?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

8. How well can you establish a classroom management system with each group of students?
 - 1 Nothing
 - 2
 - 3 Very Little
 - 4
 - 5 Some Influence
 - 6
 - 7 Quite a Bit
 - 8
 - 9 A Great Deal

9. How much can you use a variety of assessment strategies?
10. To what extent can you provide an alternative explanation or example when students are confused?

11. How much can you assist families in helping their children do well in school?

12. How well can you implement alternative strategies in your classroom?

Thank you for your professional opinions. Your answers will remain confidential. Again, feel free to contact me if you have any questions about this research study or the data collection process.

Alan Addison
Assistant Principal Russell County Career and Technology Center
Email: aaddison@russell.k12.va.us
Work: 276-889-6550
Home: 276-889-0081
Cell 276-345-3101
Fax 276-889-6520
VITA

ALAN W. ADDISON

Personal Data:
Date of Birth: September 12, 1961
Place of Birth: Lebanon, Virginia
Marital Status: Married

Education:
East Tennessee State University, Johnson City, Tennessee; Ed.D.
 Educational Leadership and Policy Analysis, December 2010
Radford University, Radford, Virginia; M.S. Educational Leadership, May 1995
Virginia Intermont College, Bristol, Virginia; B.A. Music Education, May 1985

Professional Experience:
Assistant Principal, Russell County Career and Technology Center,
 Russell County Public Schools, Russell County, VA; 2002–present
Itinerant Choral and General Music Instructor, Russell County Public Schools; 1986–2002

Honors and Awards:
Phi Kappa Phi; National Honor Society

Professional Organizations:
Virginia Association for Trade and Industrial Education
Virginia Education Association
Russell County Education Association
Russell County Political Action Committee
National Education Association