








Figure 10: Infectious Individuals Against Time for SEIRS Seasonal Model when N =

106, β0 = 250, β1 = 0.6, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0.5, Rv = 0.6870 < 1, Rv = 0.7168 < 1(β1 = 0) and t = 1 : 1
52

: 100

Figure 11: Infectious Individuals Against Time for SEIRS Seasonal Model when N =

106, β0 = 250, β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0.005, Rv = 2.3417 > 1, Rv = 2.4657 > 1 and t = 1 : 1
52

: 100
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Figure 12: Infectious Individuals Against Time for SEIRS Seasonal Model when N =

106, β0 = 350, β1 = 0.6, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0.5, Rv = 0.9617 < 1, Rv = 1.0035 > 1 and t = 1 : 1
52

: 100

With fixed parameters defined in Figure 12, Rv ' 0.9617 < 1. Thus, by Theorems

2.1 and 2.2, the disease-free periodic solution (S0, E0, I0, R0) =
(
N(µ+δ)
µ+δ+ξ0

, 0, 0, Nξ0
µ+δ+ξ0

)
is locally asymptotically stable and the disease dies out. Moreover, if β1 = 0, the the

basic reproduction of the autonomous system Rv ' 1.0035 > 1, and we would expect

that the disease persists. This suggests that the eradication policy on the basis of

the basic reproduction number, Rv, of the autonomous system may overestimate the

infectious risk in a scenario where the disease portrays seasonal behavior [61].
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We now assume a form for the vaccination parameter ξ(t), where ξ(t) is nonzero

during periods where the sensitivity depicted in Figure 5 is negative and zero other-

wise. Thus, ξ(t) is defined as a stepwise constant function of the form given in Figure

13

Figure 13: Plots of ξ(t) and I(t) with Respect to ξ(t) when β0 = 370, β1 = 0.0283,

µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0.005 and t = 1 : 1
52

:

100

We study routine vaccination by assuming that, ξ(t) takes the form

ξ(t) =

{
ξ0, t ≤ τ
ξ1, t > τ

(31)

In Figure 14, the blue curve represents the population of the infectives without vac-

cination and the green curve represents the population of the infectious individuals

when routine vaccination of the form (31) is administered. Prevalence of infection

over time for a seasonal SEIRS model where the introduction of routine vaccination
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at time 90 years results in a decrease in the maximum of prevalence of the infectious

individuals in the population, but this decrease is unsustained.

Figure 14: Routine Vaccination from 90−92 of the form (31) when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5

and t = 1 : 1
52

: 100

Thus, we choose another form for the vaccination parameter that takes into account

pulse vaccination, namely,

ξ(t) =


ξ0, t ≤ τ1
ξ1, τ1 < t ≤ τ2
ξ0, τ2 < t ≤ τ3
ξ1, τ3 < t ≤ τ4
ξ0, τ4 < t ≤ τ5.

(32)

This yields the simulations in Figures 15 − 18, together with a specific form of ξ(t)

for each figure.

45



ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ0, 91 < t ≤ 92
ξ1, 92 < t ≤ 92.2
ξ0, 92.2 < t ≤ 92.9
ξ1, 92.9 < t ≤ 93
ξ0, 93 < t ≤ 100

Figure 15: One Year on, One Year off, One Year on and off Onwards Pulse Vaccination

from 90 − 92 Years of the form (32) when N = 1000000, β0 = 250, β1 = 0.0283,

µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5 and

t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ0, 91 < t ≤ 93
ξ1, 93 < t ≤ 93.2
ξ0, 93.2 < t ≤ 93.9
ξ1, 93.9 < t ≤ 94
ξ0, 94 < t ≤ 100

Figure 16: One Year on, Two Years off, One Year on and off Onwards Pulse Vaccina-

tion from 90− 94 Years when N = 106, β0 = 250, β1 = 0.0283, µ = 0.0133, δ = 0.2,

κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5 and t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ0, 91 < t ≤ 92
ξ1, 92 < t ≤ 92.2
ξ0, 92.2 < t ≤ 92.9
ξ1, 92.9 < t ≤ 93
..., ...
ξ0, 99 < t ≤ 100

Figure 17: Every Other Year Pulse Vaccination from 90− 100 Years when N = 106,

β0 = 250, β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0, ξ1 = 0.5 and t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ1, 91 < t ≤ 91.2
ξ0, 91.2 < t ≤ 91.9
ξ1, 92.9 < t ≤ 93
..., ...
ξ1, 99.9 < t ≤ 100

Figure 18: Every Year Pulse Vaccination from 90−100 Years when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5

and t = 1 : 1
52

: 100

Figure 15 depicts one year on, one year off, one year on and off onwards pulse vac-

cination, with the administration of the vaccine during the time intervals [90, 90.2],

[90.9, 91], [92, 92.2], and [92.9, 93]. This leads to a decrease in the maximum of preva-

lence of the infectives at time 90 − 93 years and the maximum peaks above the

maximum for the unvaccinated infectives at time 93 − 95 years. This may be ac-
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counted for from the fact that, once the vaccine is administered, the infective class

shrinks and other classes stretch, since the total population is constant, so that once

the epidemic hits, it has an adverse effect on the population of the infectives. With

a pulse vaccination strategy analogous to Figure 15, but with one year on, two years

off, one year on and off onwards, the maximum of prevalence of the infectives is low-

ered upon the introduction of the vaccine at times t = 90 years, which increases in

the interval [91, 92] and peaks in [92, 93] as depicted in Figure 16. The trend in the

maximum of prevalence is repeated in the interval [93, 95], but with an adverse effect

on the population of the infectious individuals during the subsequent years. Finally,

the introduction of annual pulse vaccination from time t = 90 years to t = 100 years

results in the transition from annual epidemics to biennial epidemics in the interval

[90, 96] years and triennial epidemics in the time interval [96, 98] years, which is a

typical artifact of the seasonal model.

Finally, we propose the following form for the parameter ξ(t) that takes into

consideration an increase in the coverage of the vaccine:

ξ(t) =



ξ0, t ≤ τ1
ξ1, τ1 < t ≤ τ2
ξ0, τ2 < t ≤ τ3
ξ1, τ3 < t ≤ τ4
ξ2, τ4 < t ≤ τ5
ξ0, τ5 < t ≤ τ6
ξ2, τ6 < t ≤ τ7
ξ3, τ7 < t ≤ τ8
ξ4, τ8 < t ≤ τ9
..., ...,

(33)

where ξ0 < ξ1 < ξ2 < ξ3 < ξ4.

For the seasonal model with pulse vaccination in which there is a gradual increase in
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the coverage of vaccination of the form (33), we obtain the simulations depicted in

Figures 19 and 20, together with specific forms of ξ(t).

ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ2, 91 < t ≤ 91.2
ξ0, 91.2 < t ≤ 91.9
ξ2, 91.9 < t ≤ 92
ξ3, 92 < t ≤ 92.2
ξ0, 92.2 < t ≤ 92.9
ξ3, 92.9 < t ≤ 93,

Figure 19: Every Year Pulse Vaccination from 90−100 Years when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5,

ξ2 = 0.7, ξ3 = 0.75, ξ4 = 0.8, ξ5 = 0.85, ξ6 = 0.9, ξ7 = 0.91, ξ8 = 0.92, ξ9 = 0.93,

ξ10 = 0.95 and t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ2, 91 < t ≤ 91.2
ξ0, 91.2 < t ≤ 91.9
ξ2, 91.9 < t ≤ 92
ξ3, 92 < t ≤ 100,

Figure 20: Every Year Pulse Vaccination from 90−100 Years when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.1,

ξ2 = 0.2, ξ3 = 0.3, ξ4 = 0.4 and t = 1 : 1
52

: 100

In Figure 19, we have articulated annual pulse vaccination from time t = 90 years

to t = 100 years with an increasing coverage of the vaccine. The maxima and minima

of prevalence of the infectives is lowered to an order of magnitude, and we reckon this

an articulate strategy for controlling the epidemic. For a vaccination strategy that

articulates an increasing vaccine coverage from 90− 92 years, and a constant vaccine

coverage from 92− 100 years, we notice an appreciable decrease in the maximum of
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prevalence of the infectives as depicted in Figure 20.
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4 TIME SERIES ANALYSIS OF SEASONAL DATA

The seasonal data we present in this chapter are final totals of weekly mortal-

ity data of influenza and pneumonia in the United States from 1993-2010. These

statistics are collected and compiled from reports sent by state health departments

and territories to the National Notifiable Diseases Surveillance System (N.N.D.S.S.),

which is operated by the Centers for Disease Control and Prevention (C.D.C.) in

collaboration with the Council of State and Territorial Epidemiologists (C.S.T.E.)

[13].

4.1 Plots, Trends, Seasonal Variations, and Periodogram

The time series of seasonal data are analyzed to understand the past and predict

the future, enabling epidemiologists to make proper decisions on the variation of

seasonal infections [16]. The time series data we analyze in this chapter consists of

monthly observations of the morbidity and mortality weekly report of pneumonia

and influenza obtained from the Centers for Disease Control and prevention (C.D.C.)

from 1993-2010 [13]. In this chapter, we explore the use of graphical methods for the

purpose of better understanding the underlying variation within and between time

series data. One of the most important steps in a preliminary time series analysis

is to plot the data. Thus, a plot of the mortality data of pneumonia and influenza

against time is displayed in the Figure 21.

Figure 21 depicts mortality trends (a systematic change in time series that does

not appear to be periodic) and seasonal variations (a repeating pattern within each

year) for pneumonia and influenza from 1993-2010. We notice that there is a high
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Figure 21: Seasonal Data of Pneumonia and Influenza

mortality for pneumonia and influenza during the months of December-February and

low mortality from May-August. This may be accounted for from the fact that,

from December-February in the United States, the atmospheric temperature is at

its minimum and thus serves as an ideal breeding ground for multiplication of the

parasite [9].

A useful tool for describing the time series data set above is by means of a pe-

riodogram, where the basic idea is that sinusoids of low frequency are smooth in

appearance whereas sinusoids of high frequency are very wiggy [57]. Figure 22 por-

trays a strong sinusoidal signal for a frequency of 12.1176470588235, for example, as

evident by the peak in the periodogram at this frequency.
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Figure 22: Periodogram of Seasonal Data of Pneumonia and Influenza

4.2 Decomposition

A common approach to time series is to consider them as a mixture of several com-

ponents and decompose the data into trend, seasonality, and an irregular or random

effect. It is of paramount importance to identify the trend and seasonal components,

and deplete them from the time series when modeling relations between time series.

When this is not done, highly seasonal series can appear to be related purely because

of their seasonality rather than because of any real relationship. Time series decompo-

sition methods allow an assessment of the strength of the seasonal component in each

of the mortality variables. After identification, the seasonal component is removed

and the resultant seasonally adjusted series is used in subsequent analysis. Thus,

extracting the seasonal component allows a clearer picture of other characteristics of

the data [9].
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Figure 23: Decomposition of Seasonal Data of Pneumonia and Influenza

For an additive decomposition approach, we assume that

Yt = Tt + St +Rt,

where Yt denotes the time series of interest (or observed series), Tt denotes the trend

component, St denotes the seasonal component and Rt denotes the remainder or

irregular component. The seasonally adjusted series, Y ∗t is computed simply by sub-

tracting the estimated seasonal component, S∗t , from the original series [9, 16], which

yields:

Y ∗t = Yt − S∗t .

A seasonal-trend decomposition consists of a sequence of applications of the loess

smoother to provide robust estimates of the components Tt, St and Rt from Yt. The

Seasonal-Trend decomposition method involves an iterative algorithm to progressively

refine and improve estimates of trend and seasonal components [9]. With this, we

construct a decomposition plot, given in Figure 24, which normally consists of four
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panels: the original series, the trend component, the seasonal component and the

irregular (or random) component. The panels are arranged vertically so that time

is a common horizontal axis for all panels. The trend component consists of the

underlying long-term aperiodic [9] rises and/or falls in the level of the series over time.

The seasonal component is a pattern that is recurrent over time and the irregular

component is the remaining pattern in the series not attributed to trend or seasonality.

Both trend and seasonality are potential confounding variables in any analysis, so

their identification and removal are vital [9].

Figure 24: Additive Decomposition of Seasonal Data of Pneumonia and Influenza

The seasonal effect and irregular components are the same for a general decompo-

sition and the additive decomposition approach but the trend for the general decom-

position is non informative as it is represented by a polynomial, given in the second

panel of Figure 23. In the additive decomposition, the mortality trend is high within

the months of December and January in 2000, 2004, 2005 and 2009, approximately.
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If the seasonal effect tends to increase as the trend increases, a multiplicative

model may be more appropriate [16], where we have

Yt = TtSt +Rt.

This approach leads to Figure 25:

Figure 25: Multiplicative Decomposition of Seasonal Data of Pneumonia and In-

fluenza

There is no visual difference in the trend and seasonal components of the additive

and multiplicative decomposition models. So, we estimate the trend T (t) at time t,

by calculating a moving average centered at Y (t) from the formula [16]

Ŷt =
1
2
Yt−6 + Yt−5 + ...+ Yt+5 + Yt+6

12
,

where t = 7, 6, ..., n − 6. A moving average is an average of a specified number of

time series values around each value in the time series, with the exception of the first

few and last few terms. The length of the moving average is chosen to average twelve

consecutive months, but there is a slight snag, since this average corresponds to a
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time t = 6.5, between June and July as we start at January (t = 1) and average up

to December (t = 12). The estimation of seasonal effects requires moving averages

at integer times, which is achieved by averaging the average of January (t = 1) up to

December (t = 12) and the average of February (t = 2) up to January (t = 13) [16].

Since in Figure 25, the seasonal effect does not increase as the trends increases, the

multiplicative decomposition model is not suitable for the decomposition.

A number of time series decomposition methods are available, one of which is

the classical decomposition. Classical decomposition is a relatively simple method,

but has several disadvantages, including bias problems near the ends of the series

and an inability to allow a smoothly varying seasonal component [9]. To overcome

these difficulties we adopt the Seasonal-Trend decomposition procedure based on loess

smoothing to have the Loess plot for the seasonal data of pneumonia and influenza

from 1993-2010 [13] given in Figure 26 [57]. In Figure 26, we have separated the

smooth curve estimated in Figure 21 into two components due to trend and seasonal-

ity, so that the seasonal component in the third panel of the Loess plot captures the

drop in summer and increase in winter of pneumonia and influenza mortality (as a

result of high and low temperatures, respectively). The bottom panel displays what

remains when the trend and seasonal components are removed from the mortality

data. This gives a way of determining unusual periods of the year without confusing

which occurs as a result of seasonality. Also, the trend increases with decreasing

seasonal effect. Thus, the Loess smoother is not apt for the decomposition.
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Figure 26: Loess Plot of Seasonal Data of Pneumonia and Influenza Mortality

4.3 Correlation

We deseasonalize the time series and remove the trends since these trends and

seasonal effects have been identified. This leaves the random component, which is

not necessarily well modeled by in dependent random variables, in which consecutive

random variables may be correlated [16].

The following definitions will be useful: the expected value, E, commonly called

expectation of a variable X or a function of a variable, is its mean value in the

population, given by µ = E(X) =
∑
xP (X = x), and E(X − µ)2 is the mean of the

squared deviations, commonly called the variance. The square root of the variance is

known as the standard deviation. If there are two variables X and Y , the variance

may be generalized to the covariance, σXY , defined by

σXY = E[(X − µX)(Y − µY )],
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which measures a linear association between the variables. For n data values, the

covariance becomes:

Cov(X, Y ) =
1

n− 1

∑
E[(Xi −X)(Yi − Y )],

with the population and sample correlation defined by

ρ(X, Y ) =
σ(X, Y )

σXσY
,

and Cor(X, Y ) = Cov(X,Y )
sd(X)sd(Y )

. Autocorrelation is the correlation of a variable with itself

at different times, xi and xi+k. A correlogram or autocorrelation plot is a plot of the

sample autocorrelations against lags and is useful for ascertaining the randomness in

a data set, where a lag is the number of time steps between the variable. If the data

set is random, then such correlogram should be near zero for all time lags, else one

or more of the autocorrelations will be significantly non-zero. A time series model

is second-order-stationary if the correlation between variables depend only on the

number of time steps separating them. If the time series is second-order-stationary,

we define the autocovariance function by

γk = E[(xt − µ)(xt+k − µ)].

The ACF or lag k autocorrelation function is defined by

ρk =
γk
σ2
.

In Figure 27, the ACF (which returns the correlogram or sets its argument to

obtain autocovariance function) of the residuals are not strictly iid random normal

variables, but have some seasonal effect on it. The correlation at lags 0.0, 0.1 and
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Figure 27: Correlogram of Seasonal Data of Pneumonia and Influenza Mortality

0.2 are significant, indicating the residuals are not independent, but related to the

previous residual. The correlations at lags 0.3, 0.4, 0.5, 0.6, 0.7 are significant and

negative, which are probably caused by seasonal change.

4.4 Forecasting

In forecasting the mortality of pneumonia and influenza, the following definition

shall be useful: The sum of squared one-step-ahead prediction errors, SS1PE, is

SS1PE =
n∑
t=2

e2t ,

where the one-step-ahead prediction errors, et, are given by

et = xt − x̂t|t−1.

Time-series can be represented as a curve that evolves over time. Forecasting

the time-series entails an extension of historical values into the future where the
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measurements are not available. In the exploration of time series of mortality data,

we use a following multiplicative Holt-Winter’s model.

an = α1

(
xn
sn−p

)
+ (1− α1)(an−1 + bn−1)

bn = β1(an − an−1) + (1− β1)bn−1

sn = γ1

(
xn
an

)
+ (1− γ1)sn−p,

where an, bn and sn are the estimated level, slope and seasonal effect at time n

respectively, xn is an observation and α1, β1 and γ1 are smoothing parameters. For

the multiplicative Holt-Winter’s model with α = β = γ = 0.2 [16], a plot of the

filtered values along with the observed data is given in Figure 28, and the sum of

squared one-step-ahead prediction errors, SS1PE, is 557.4331.
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Figure 28: Filtered and Observed Multiplicative Holt-Winter’s Fit for Seasonal Data

of Pneumonia and Influenza with Specified Smoothing Parameter Values

Using the R Holt-Winter function without giving specific parameters, results in

the optimized Holt-Winter model have a slightly better fit than the previous one,

and SS1PE reduced to SS1PE= 517.4873. Since fit in Figure 29 is better and the

SS1PE is smaller for the optimized Holt-Winter, we use R Holt-Winter function in

our subsequent analysis.
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Figure 29: Filtered and Observed Multiplicative Holt-Winter’s Fit for Seasonal Data

of Pneumonia and Influenza

Figure 30: Multiplicative Holt-Winter’s Decomposition of Seasonal Data of Pneumo-

nia and Influenza
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Figure 31: Multiplicative Holt-Winter’s Forecasts for Seasonal Data of Pneumonia

and Influenza

Figure 30 depicts a multiplicative Holt-Winter decomposition method with SS1PE

value of 517.4873 and parameter values of α = 0.03585968, β = 0, and γ = 0.1269991.

The value of β = 0 is an indication that there is no trend as evident by the horizontal

line in the third panel of Figure 30.

The forecast in Figure 31 is true only when the trend of the pneumonia and

influenza mortality continues as the previous years (that is, no measured deaths occur

that could change the mortality rate from 2010-2015). Forecasts cannot be used for

a long time ahead, since errors will accumulate and may perturb the trend. The

five-year forecast predicts a decrease in the mortality rate as illustrated in Figure 30.
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An additive Holt-Winter’s model is defined by the follwing equations:

at = α1(xt − st−p) + (1− α1)(at−1 + bt−1)

bt = β1(at − at−1) + (1− β1)bt−1

st = γ1(xt − at) + (1− γ1)st−p,

where at, bt and st are the estimated level, slope and seasonal effect at time t re-

spectively, and α1, β1 and γ1 are smoothing parameters. The additive Holt-Winter’s

decomposition is depicted in Figure 32. We notice that the mortality data has an

obvious trend and strong seasonal effect, and the trend+seasonal plot in Figure 33

has a better fit for the additive model. So, the additive Holt-Winter’s model is

most appropriate for decomposition and we let the Holt-Winter’s function ascertain

the optimal parameters automatically. The result shows that SS1PE = 515.0608,

α = 0.05679602, β = 0.00148517, and γ = 0.1277516. Since the SS1PE values is

smaller for the additive Holt-Winter’s model than for the multiplicative model, and

the parameters α, β and γ are all non-zeroes, we conclude that this method is model

suitable for our decomposition.
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Figure 32: Additive Holt-Winter’s Decomposition of Seasonal Data of Pneumonia

and Influenza

Figure 33: Filtered and Observed Additive Holt-Winter’s Fit for Seasonal Data of

Pneumonia and Influenza
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Figure 34: Additive Holt-Winter’s Forecasts for Seasonal Data of Pneumonia and

Influenza

The additive Holt-Winter’s forecast in Figure 34 predicts a decrease in mortality

of pneumonia and influenza in the United States from 2011− 2015. The forecast was

based on the decrease in mortality from 2005− 2010.
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5 CONCLUSION

We began the study by making some assumptions underlying a susceptible-

exposed-infectious-recovered-susceptible (SEIRS) model, and proceeded to derive an

SEIRS model for the dynamics and transmission of seasonal infections in a constant

population. Furthermore, we assumed forms for the transmission rate and derived

non-seasonal (constant transmission rate) and seasonal (sinusoidal transmission rate)

models. For the non-seasonal model, we determined the basic reproduction number

R0, using the next generation operator approach, and examined conditions for the

existence of realistic steady states. We proved, by using the principle of linearized

stability and Routh Hurwitz conditions [47], that the stability of the disease-free and

endemic equilibria are controlled by one threshold parameter; namely, the basic re-

production ratio, R0. We showed that the disease-free equilibrium always exists and

is locally and asymptotically stable if R0 < 1 and unstable if R0 > 1. If R0 > 1,

we showed that there exists an endemic equilibrium which is locally and asymptoti-

cally stable. Deriving and examining a non-seasonal SEIRS model with vaccination,

we obtained analogous results. We showed that the disease-free equilibrium always

exists and is locally and asymptotically stable if Rv < 1 and unstable if Rv > 1,

where Rv is the basic reproduction number of the non-seasonal model with vacci-

nation. If Rv > 1, we showed that there exists an endemic equilibrium which is

locally and asymptotically stable. Numerical simulations for the SEIRS non-seasonal

model with vaccination indicate that orbits for the exposed and infectious individu-

als decay whereas the orbits for the susceptible and recovered or temporary immune

individuals are sustained whenever Rv < 1. When Rv > 1, orbits for the susceptible,
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exposed, infectious and recovered individuals are sustained after a transient state, and

hence the disease persists in the population. These numerical results are congruent

to qualitative results obtained.

For the seasonal model with and without vaccination, we determined the trans-

missibility numbers, Rv and Rv, respectively, through the spectral radius of a linear

integral operator on a space of periodic functions. We showed with numerical solutions

that when Rv < Rv < 1, the disease-free periodic solution is locally asymptotically

stable and hence, the disease dies out. Moreover, when Rv > Rv > 1, the infectives

proliferate in the population and hence, the disease persists. Numerical solutions

indicate that when Rv < 1 < Rv, the infectives become extinct. This suggests that

the eradication policy on the basis of the basic reproduction number, Rv, of the au-

tonomous system may overestimate the infectious risk in a scenario where the disease

portrays seasonal behavior [61].

We carried out numerical experiments on the seasonal model with vaccination by

assuming the vaccination parameter is a stepwise defined function which was moti-

vated by a sensitivity analysis. This analysis revealed that during certain intervals

within one period, an increase in the vaccination parameter would lead to a decrease

in the population of the infectious individuals. We defined the time dependent vac-

cination parameter so that routine and pulse vaccinations are incorporated into our

model. The prevalence of infection over time after the introduction of routine vac-

cination at time 90 years, results in an unsustained decrease in the maximum of

prevalence of the infectious individuals. Annual pulse vaccination from time t = 90

to t = 100 years, results in the transition from annual to biennial epidemics during
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certain periods and triennial epidemics during others. On the other hand, we in-

corporated pulse vaccination with an increasing coverage of the vaccine that depicts

a decrease in the extrema of prevalence of the infectious individuals by an order of

magnitude.

We used some graphical methods for time series analysis of seasonal data of pneu-

monia and influenza. We applied the time series plot of mortality data, periodogram,

and decomposition plots to enable a visual assessment of long-term trend, season-

ality and irregularity in time series data of pneumonia and influenza for 1993-2010

in the United States. We carried out an additive and a multiplicative Holt-Winter’s

decomposition of mortality data of pneumonia and influenza and noticed that the

additive approach was apt for our data since it had a smaller sum of squared one-

step-ahead prediction error (SS1PE). A forecasting procedure based on the additive

Holt-Winter’s model predicts a decrease in the peaks of mortality from 2011-2015 in

the United States.

Some aspects of the model such as the analysis of the seasonal model with vaccina-

tion for Rv < 1 < Rv, and the relationship between the seasonal model and seasonal

data have not been examined closely. These and others are subjects for future work.
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