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ABSTRACT 

 

Host Defense Mechanisms in the Crayfish:  the Effect of Injection with Live or Killed 

Bacteria 

By 

Kimberly R. Goins 

 

An increase in attachment of SRBCs to Procambarus clarkii hemocytes has been shown 

after the crayfish were injected with a live or killed Pseudomonas strain RS2b.  The 

increase in attachment occurred at 8 hours post injection and peaked at 24 hours for both 

experimental groups.  The population of hemocytes with receptors for LPS and mannose 

also increased at 8 hours post injection and peaked at 24 hours for both experimental 

groups.  At 96 hours post injection the number of receptor bearing hemocytes and 

hemocytes bound to SRBCs began to decrease to the level of the control for both groups.  

The protein concentration of hemolymph from the experimental groups remained stable 

at 8 and 24 hours post injection and increased at 96 hours.  The correlation of the protein 

concentration increase at 96 hours with the decrease of receptor bearing hemocytes may 

be due to the degranulation of the receptor bearing hemocytes. 
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 CHAPTER 1 

INTRODUCTION 

 

 The immune system can be divided into two categories: the innate immune 

system and the adaptive immune system.  The innate immune system which is also 

known as the natural immune system is the first line of defense against an infection.  The 

innate immune system responds non-specifically to foreign invasion.  This means that it 

is not able to distinguish one microbial species from another.  Another characteristic of 

the innate immune response is that it does not have memory and, therefore, is not 

improved after repeated exposure to the same invading microbe.  Some examples of the 

innate immune response include phagocytosis, inflammation, and clotting mechanisms 

(1, 2).  The adaptive immune system, also known as the acquired immune system, is a 

specific immune response.  Not only can it distinguish between two different microbial 

species but it can also distinguish between different serotypes within a species.  The 

adaptive immune response does have memory and therefore is improved by repeated 

exposure to the same microbe.  After a second exposure to the same microbe, the 

adaptive immune system will respond stronger and faster than it did after the first 

exposure.   T-cells, B-cells, and antibodies are all part of the adaptive immune system (1, 

2). 

 The adaptive immune system found in humans and other vertebrates is an antigen 

specific immune response.  Lymphocytes such as T-cells and B-cells will respond 

specifically to invading foreign materials.  These foreign materials can be living 

pathogens or simple non-living antigens.  Each lymphocyte will carry receptors for one 

specific antigen.  Therefore, the millions of lymphocytes in the body collectively carry 

millions of different receptor specificities because each lymphocyte carries only one 

antigen receptor specificity (1, 2).   

 Antibodies are produced by an important group of lymphocytes known as B-cells.  

With the help of T-cells, B-cells will produce antibodies when the B-cell binds with high 

affinity to the antigen for which it possesses the specific receptor.  The antibodies will 

then bind to the antigen.  When a B-cell binds to its specific antigen, it also becomes 

activated and will proliferate making many clones of itself.  The B-cell will also 
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differentiate into plasma cells which secrete antibodies and memory cells (2).  The 

memory cells are important during subsequent exposure to the same antigen.  After the 

antigen concentration is reduced to a level that is not high enough to elicit an adaptive 

immune response, the level of antibody production gradually declines.  However, 

memory B-cells will remain and will mount a response if the infection reoccurs.  This 

second response will be stronger and faster than the first response (2).   

 T-cells are an important group of lymphocytes that respond to intracellular 

pathogens and help activate B-cells.  Certain pathogens such as viruses, some 

intracellular bacteria, and parasites will replicate inside cells rather than in the blood and 

extracellular spaces where antibodies are active.  T-cells are important in destroying these 

intracellular pathogens (2).  T-cells will recognize and bind to a specific antigen that is 

presented on the surface of the infected cell.  Cytotoxic T-cells will kill the infected cell 

after it binds to the presented antigen.  TH1 cells recognize macrophages that are infected 

by bacteria such as Mycobacterium tuberculosis which can live in the vesicles of the 

macrophage.  The T H1 cells stimulate the macrophage to destroy the bacteria by inducing 

fusion of the vesicle with a lysosome as well as induce other phagocytic mechanisms.  T-

helper cells are also important in B-cell activation.  Before most B-cells will proliferate 

and differentiate, they require a signal from a T-helper cell that will recognize the same 

antigen that the B-cell recognizes (2).           

Invertebrates in general and crayfish in particular have only nonspecific immune 

responses to infectious agents.  Crayfish immune responses do not show specificity and, 

therefore, cannot distinguish one microbe from another.  The immune response is the 

same for all invading microbes.  Crayfish immune responses do not show long-term 

memory.  For example, if a crayfish is exposed to the same microbe more than once, the 

immune response is not improved after each identical exposure.  Also, the cells that are 

found in the adaptive immune response, such as T-cells and B-cells, are not present in 

crayfish (3).      

 Even though crayfish do not have long-term memory responses, short-term 

changes in the host-defense mechanisms can occur after exposure to bacteria.  McKay 

and Jenkin have shown that phagocytic activity in crayfish can be increased for a short 

period of time after exposure to bacteria (4).   In their assay they used the Australian 
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crayfish Parachaeraps bicarinatus.  First, the crayfish were immunized with four doses 

of endotoxin.  The crayfish hemolymph was extracted at 30 minutes, 60 minutes, and 90 

minutes post injection and allowed to incubate with erythrocytes.  Phagocytic activity of 

the erythrocytes by the hemocytes was shown to increase over the 90 minute time period.  

This assay showed that after immunization of the crayfish phagocytic activity increased 

over a short period of time as compared to non-immunized crayfish (4). 

 Crayfish have an elaborate innate immune system.  Some of the important 

mechanisms of the innate immune system in crayfish include phagocytosis, antibacterial 

peptide production, the pro-phenyloxidase system, clotting mechanisms, and 

encapsulation responses (3).  Phagocytosis is an important mechanism by which 

infectious agents are removed.  First the microbe will attach to the surface of the 

phagocyte.  The phagocyte will then engulf the microbe forming a vesicle inside the 

phagocyte known as a phagosome.  Lysosomes inside of the phagocyte will then fuse 

with the phagosome.  The lysosomes contain digestive enzymes which will digest the 

microbe in the phagolysosome (1, 2).   

 Antibacterial peptides are another important innate immune defense against 

infectious agents.  Antibacterial peptides bind to bacteria and form pores in the cell 

membrane of the bacteria causing the cells to lyse.  Some antibacterial peptides are found 

in the hemolymph of invertebrates permanently while others are produced after the 

invertebrate is exposed to bacteria or bacterial products (5).  The antibacterial peptides of 

insects have been studied in the greatest detail.  Insects have about 15 different 

antibacterial peptides that can be induced after the insects are exposed to bacteria or 

bacterial products.  For example, cecropins are peptides that are produced in insects and 

have a broad spectrum of activity against both Gram positive and Gram negative bacteria 

(6, 7, 8).  Little is known about antibacterial peptide production in crayfish, although they 

are assumed to be present (5). 

 The pro-phenyloxidase system is similar to the complement system in vertebrates.  

The pro-phenyloxidase system produces proteins that can adhere to the surface of foreign 

particles.  This process of coating a particle with proteins is known as opsonization.  The 

opsonized particle is then easier for a phagocyte to bind to and engulf.  The pro-

phenyloxidase system also produces lytic and degranulating factors.  It is an enzyme 
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cascade that is released in the presence of LPS (lipopolysaccharide) or foreign 

polysaccharide and involves at least two serine proteases.  In crayfish the pro-

phenyloxidase system resides within semigranular and granular hemocytes in the 

secretory vesicles (9).    

 Crayfish and other invertebrates use clotting mechanisms as a non-cellular 

chemical method of sealing off an infection or a puncture wound (10).  Sealing off an 

infection is important in preventing the spread of the infection.  Sealing off a puncture 

wound is important to prevent leaking of the hemolymph.  Encapsulation responses use 

cellular methods to seal off infections.  In this case phagocytes are used to create a wall 

around the infection to prevent its spread (3, 9).   

 A population of hemocytes, about 5-8% of adherent cells, expresses receptors for 

both mannose and LPS.  This population of cells contains granules that are believed to be 

released after exposure to either microbes or microbial products (11).  Many active 

molecules are added to the hemolymph after these granules are released from the 

hemocytes.  These active molecules are involved in the innate immune system of the 

crayfish (3, 9).  The activation of this cell population, followed by degranulation, may be 

a key step in many effector mechanisms that are seen in the innate immune system of the 

crayfish.  

 The hemocytes of crayfish can be divided into three categories.  The hyaline cells 

are the most prevalent type of hemocytes found in the hemolymph of crayfish.  About 75-

77% of hemocytes are hyaline cells.  Hyaline cells are phagocytic cells that do not 

contain granules and have a hyaline cytoplasm.  Hyaline means that the cell is 

transparent, colorless, and contains no granules.  Hyaline cells also have a high nucleo-

cytoplasmic ratio (3, 12).   About 8-9% of hemocytes are known as semigranular cells.  

Semigranular cells contain small oval granules that are visible when stained with 

Wright�s stain.  These granules are part of the pro-phenyloxidase system of the innate 

immune response of the crayfish.  Semigranular hemocytes have a low nucleo-

cytoplasmic ratio.  Semigranular cells are fusiform or ovoid in shape and have little 

phagocytic ability.  These specific cells can degranulate when directly exposed to LPS 

and β-1,3-glucans.  They are also involved in the encapsulation response to sealing off 

infections (12).  Between 15-16% of hemocytes are granular hemocytes.  Granular 
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hemocytes contain large granules and have a low nucleo-cytoplasmic ratio.  These 

granules are larger than those of semigranular hemocytes and are also involved in the 

pro-phenyloxidase system.  Granular hemocytes have no phagocytic activity and mainly 

have a circular shape.  The granules can be released into the hemolymph when exposed to 

foreign protein or glycoprotein such as β-1,3-glucans (3, 12). 

 The objective of the work presented here is to examine the effects of injection of 

live or killed bacteria on the innate immune system of the crayfish Procambarus clarkii.  

The effect of injection of bacteria on the percentage of hemocytes with sheep red blood 

cells attached will be analyzed by performing attachment assays.  The effect of injection 

of bacteria on antibacterial production will also be investigated.  LPS and mannose 

receptor bearing hemocytes will be examined to see if an increase in this cell population 

occurs after injection with live or killed bacteria.  The working hypothesis in our lab is 

that when hemocytes are exposed to bacteria or bacterial products the bacteria will attach 

to the hemocyte via the mannose and LPS receptors.  The attachment will then cause the 

hemocyte to degranulate releasing granules which contain chemicals involved in the 

prophenyloxidase system and clotting mechanisms.  The chemicals in the granules may 

also be involved in activating phagocytic hemocytes causing them to phagocytose the 

invading bacteria.  This would result in an increase in phagocytic and attachment activity 

by the hemocytes after exposure to bacteria.  The granules may also be responsible for 

antibacterial peptide production.  The chemicals in the granules may act upon an 

unknown hemocyte population causing the hemocytes to produce antibacterial peptides.  

Another possibility is that the granules may contain antibacterial peptides which are 

released after degranulation.  The antibacterial peptides will attack invading bacteria by 

attaching to the bacterial membrane and forming pores causing the bacteria to lyse.  This 

hypothesis will be supported if an increase in the receptor bearing hemocyte population, 

antibacterial peptide production, and percentage of attachment to sheep red blood cells by 

hemocytes is observed and correlated.       
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CHAPTER 2  

MATERIALS AND METHODS 

 

Animals 

 For all of the experiments the red swamp crayfish, Procambarus clarkii, were 

used.  The crayfish were purchased through Carolina Biological Supply Co. in 

Burlington, NC from Waubun Laboratories in Shriever, LA.  The animals were kept in 

fresh water aerated aquariums at room temperature (25°C) and were fed twice weekly 

with guinea pig food pellets from The Hartz Mountain Corporation in Secaucus, NJ.   

 

Preparation of Reagents 

 Each of the following reagents was made and mixed thoroughly in a beaker with a 

stir bar before being sterilized.   

 

Crayfish Anticoagulant Buffer (13) 

 For a 100ml solution 0.82g NaCl, 1.80g glucose, 0.88g trisodium citrate, 0.50g 

citric acid and 0.37g EDTA were mixed together in a large beaker containing 70ml 

double distilled H2O using a stir bar.  The solution was then brought to 100ml using 

double distilled H2O.  The pH was adjusted to 4.60.  The solution was then filter 

sterilized with a filter pore size of 0.2 um and stored at 4°C.   

 

Crayfish Saline (14) 

 For a 500ml solution 5.84g NaCl, 201.4mg KCl, 555mg CaCl2, 264.4mg MgCl2+6 

H2O and 84.0mg NaHCO3 were mixed together in 450ml double distilled H2O in a large 

beaker using a stir bar until completely dissolved.  The total volume was adjusted to 

500ml using double distilled H2O.  The pH of the solution was adjusted to 6.75.  The 

crayfish saline was then autoclaved for sterilization and stored at 4°C.   
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TMN-FH insect media 

 For a 250ml solution 12.8g of powder cell culture medium was dissolved in 

200ml double distilled H2O in a beaker using a stir bar until completely dissolved.  The 

solution was then adjusted to 250ml using double distilled H2O.  The media was then 

filter sterilized with a filter pore size of 0.2 um and stored at 4°C.  The final concentration 

of the media was 51.2g/L. 

 

Streptomycin Dilutions 

 For a 2ml solution with a concentration of 13.7 mg/ml, 27.4mg of streptomycin 

was dissolved in 2ml of distilled H2O.  The solution was vortexed to ensure homogeneity.  

Dilutions were made by dissolving 1ml of the original solution in 9ml distilled H2O for 

dilution 1 and 1ml of dilution 1 into 9ml of distilled H2O to make dilution 2.  The 

dilutions were thoroughly mixed before each transfer.  The two dilutions were used in the 

antibacterial peptide assay. 

 

Nutrient Agar     

 For a 100ml solution 2.3g of nutrient agar is dissolved in 100ml distilled H2O in a 

250ml volumetric flask.  The solution is then autoclaved with a stir bar for sterilization.  

After autoclaving the nutrient agar solution is allowed to cool in a 45°C water bath. 

 

Bovine Albumin Standard Protein 

 For a concentration of 1mg/ml, 2 mg of bovine albumin was dissolved in 2 ml 

distilled H2O and mixed thoroughly.  The original solution was used to make dilutions of 

standard protein.   

 

Lipopolysaccharide 

 One mg of lyophilized, chromatically purified FITC-LPS (lipopolysaccharide) 

was obtained from Sigma Chemical Co., St. Louis, MO and was stored at 4°C.  The 

FITC-LPS was prepared from the smooth LPS of E.coli, serotype 0111:B4.  It contained 

2-10µg FITC per mg of LPS.  The FITC-LPS was reconstituted and diluted in 0.15M 

NaCl to the concentration of 5 µg ml-1 LPS (1g LPS in 200ml NaCl).  The LPS powder 
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had been detoxified, lyophilized, and chromatographically purified.  Dilutions were then 

stored at -80°C. 

 

Mannose 

 Five mg of FITC-mannose was obtained from Sigma Chemical Co., St. Luis, MO 

and was stored at 4°C.  The FITC-mannose was reconstituted and diluted to a 

concentration of 1µg ml-1.  Dilutions were then stored at -80°C. 

 

Wright�s Stain Solution    

 To stain the hemocytes Wright�s stain was thoroughly mixed with Giordano�s 

buffer in a ratio of 2:1.   

 

Glycine Saline Buffer (Immunofluorescence Mounting Medium) 

 Fourteen grams of glycine, 0.7g NaOH, 17g NaCl, and 1g sodium azide were 

dissolved in 500 ml double distilled H2O with a stir bar (pH 8.6).  Thirty ml of the buffer 

was mixed with 70 ml 30% glycerol.   

 

Bovine Albumin Standard Protein 

 One mg of bovine albumin was dissolved in 1 ml of distilled water to obtain a 

concentration of 1 mg/ml standard protein. 

 

Preparation of Bacterial Cultures 

 

Pseudomonas strain RS2b   

 A Pseudomonas strain RS2b was isolated from the feces of the red swamp 

crayfish, Procambarus clarkii by Dr. Eric Mustain and stored at -80°C.  The frozen 

Pseudomonas was briefly thawed and a sterile needle used to transfer the bacteria into 

nutrient broth.  The Pseudomonas was incubated for 24 hours at 37°C in a shaker to 

aerate.  After incubation the culture was streaked onto a plate to obtain isolated colonies 

and incubated for 24 hours at 37°C for 24 hours.  The isolated colony was Gram stained 
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to verify purity and then inoculated onto a nutrient agar slant or into a nutrient broth and 

incubated for 24 hours at 37°C.  The pure Pseudomonas was used in the experiments. 

 

Staphylococcus aureus 

 S. aureus was inoculated into sterile nutrient broth and incubated at 37°C for 24 

hours in a shaker for aeration.  The S. aureus was then used in the experiments.   

 

Micrococcus luteus 

 M. luteus was inoculated into sterile nutrient broth and incubated at 30°C or 37°C 

for 24 hours.  The M. luteus was then used in the experiments.  M. luteus grew best when 

inoculated from a slant. 

 

Bleeding of Crayfish and Preparation of Hemocytes 

 All crayfish were anesthetized in an ice bath for several minutes before being 

bled.  Only healthy adult crayfish were used for bleeding and immunization.  Immunized 

crayfish were kept in separate labeled aquaria during the course of the experiments.  

Crayfish immunized with live bacteria were kept separate from crayfish immunized with 

killed bacteria.  Control crayfish were separated from immunized crayfish.  Colored nail 

polish was used to mark crayfish that had been bled so that they would not be reused for a 

later time point.  To withdraw the hemolymph from the crayfish the abdominal hemocoel 

is punctured using a 22 gauge sterile needle.  A 3cc sterile syringe (Fisher Scientific, 

Pittsburgh, PA) containing 0.5ml of crayfish anticoagulant buffer is used to collect the 

hemolymph of 2 crayfish from each of the experimental groups (live and killed) and the 

control.  The hemolymph from the individual syringes was then deposited into relevant 

sterile disposable centrifuge tubes (Fisher Scientific, Pittsburgh, PA) labeled live, killed, 

or control.  The tubes were then centrifuged in a swinging bucket centrifuge at 1,200 rpm 

for 10 minutes at 4°C.  After centrifugation the supernatant containing hemolymph and 

anticoagulant buffer was removed with a Pasteur pipette and stored at 0°C.  The pellet 

containing hemocytes was resuspended in 2 ml TMN-FH insect media.  A 0.100 mm 

deep hemocytometer (Hausser Scientific) was used to count the cells from each of the 

groups using a 400x objective lens of an Olympus BH-2-RHCA microscope (Olympus 
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Optical Co., LDT, Japan).  If needed, the cells were diluted to 5x106 cells/ml with TMN-

FH insect media and mixed with a Pasteur pipette.  The cell suspension was then overlaid 

onto sterile 22 x 22 mm coverslips in the bottom of an ethanol treated 6 well tissue 

culture plate (Fisher Scientific, Pittsburgh, PA).  Each well was labeled live, killed, or 

control and the relevant hemocyte suspensions were used for each of the three coverslips.  

The cells were incubated to allow adherence with the coverslips at room temperature 

(25°C) for one hour for the attachment assay and 20°C for 30 minutes for the receptor 

assay.  After incubation the coverslips were washed five times in three changes of 

crayfish saline to removed non-adherent cells.   

 

Attachment Assay 

 The washed coverslips were then placed into clean labeled wells of the 6 well 

plate and flooded with a 5% sheep RBC suspension.  The coverslips were allowed to 

incubate with the SRBCs for 1 hour at room temperature to allow attachment of the 

SRBCs to the hemocytes.  The coverslips were again rinsed 5 times in 3 changes of 

crayfish saline to remove unattached SRBCs.  The coverslips are then fixed in 100% 

methanol for 2 minutes at 25°C.  After fixation, the coverslips were allowed to 

completely air dry standing on labeled paper towels.  Dried coverslips were then stained 

with Wright�s stain for 30 minutes in staining jars.  The coverslips were washed 5 times 

in 3 changes of distilled H2O to remove excess stain and allowed to completely dry as 

before.  The dried coverslips were placed in staining jars with xylenes to clear for 5 

minutes and then mounted onto labeled slides using permount.  Before viewing, the slides 

are allowed to dry for 24 hours.  Several fields are viewed on each slide with a 400x 

objective lens.  Total hemocytes in each field are counted and recorded.  Hemocytes with 

RBCs attached are also counted and recorded.  The attachment assay was performed 

identically for each time point.    

 

Receptor Assay 

 Washed coverslips are fixed in 100% methanol for 2 minutes and washed again 

10 times in 3 changes of crayfish saline.  The fixed hemocytes were then incubated in an 

ethanol treated 6 well plate with FITC-LPS for 30 minutes in the dark at room 
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temperature.  FITC-LPS functioned as the ligand for possible LPS receptors on the 

hemocytes.  For the mannose receptor assay, the fixed hemocytes were incubated with 

FITC-mannose (1 µg/ml) for a ligand for mannose receptors on the hemocytes for 30 

minutes at room temperature in the dark.  After incubation, the coverslips (for both LPS 

and mannose receptor assay) were rinsed 10 times in 3 changes on crayfish saline to 

remove unbound ligand.  The coverslips were mounted face down onto glass slides using 

immunofluorescence mounting medium.  For each slide 250 hemocytes (about 5 fields) 

were counted and recorded as before.  Using fluorescence microscopy with 400x 

magnification, the number of fluorescing hemocytes in each field were counted and 

recorded. 

 

Antibacterial Peptide Assay 

 Two flasks (100ml each) of nutrient agar were made, autoclaved, and allowed to 

cool in a 45°C water bath for 30-45 minutes.  Bacterial cultures of S. aureus, 

Pseudomonas and/or M. luteus are stained and counted using a hemocytometer.  The 

bacterial cultures (either S. aureus and Pseudomonas or M. luteus and Pseudomonas) are 

mixed with the nutrient agar (one culture/agar) using a stir bar so that the concentration is 

104 cells/ml.   The nutrient agar with the bacteria is poured into labeled disposable Petri 

dishes and allowed to solidify.  Three plates for each bacteria (6 plates total) are made.  

Using a core borer wells are punched into the agar (5-6 wells/plate) and labeled.  

Dilutions of streptomycin are made by dissolving 27.4 mg streptomycin in 2 ml distilled 

H2O and vortexing to mix completely.  One ml of the streptomycin is added to 9 ml 

distilled H2O and mixed thoroughly for dilution 1.  One ml of dilution 1 is added to 9 ml 

of distilled water and mixed thoroughly for dilution 2.  Streptomycin dilution 1 and 2 are 

used as the positive control and are added to two of the wells.  Anticoagulant buffer is 

used as a negative control since it is present in the hemolymph samples.  The 

anticoagulant buffer is diluted by mixing 1 ml buffer with 1 ml distilled H2O.  The diluted 

buffer is added to one well.  The remaining wells are used for hemolymph samples (live, 

killed, and control at 8 hours, 24 hours, and 96 hours post-injection).  For all the samples 

the volume added to the wells was 35µL.  Below is an example of a plate used in the 

antibacterial peptide assay: 
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Figure 1.  Example of Antibacterial Peptide Assay Plate.   

 

The plates were incubated at 37°C for 48 hours.  After incubation the plates were 

observed for zones of inhibition.   

 

Immunization Protocol 

 Pseudomonas that was isolated from the feces of the crayfish was used to 

immunize the crayfish.  After incubation, the cells were centrifuged at 1200 rpms for 20 

minutes at 10°C.  The cell pellet was resuspended in 1ml crayfish saline and counted 

using a hemocytometer.  The cell suspension was then diluted to a concentration of one 

million cells per ml.  The cell suspension was separated into 2 aliquots.  One aliquot was 

autoclaved and used as the killed bacterial vaccine.  The other aliquot was left untreated 

and used as the live vaccine.  Crayfish saline was used as a control.  The crayfish were 

then injected with the vaccines.  Six crayfish were injected with 1 ml of the killed 

vaccine, 6 crayfish were injected with 1 ml of the live vaccine, and 6 crayfish were 

injected with 1 ml of crayfish saline control.  The immunized crayfish were used in all 3 

assays.  To decide which concentration of vaccine to use mortality studies were 

performed.  Concentrations of 106, 107, and 108 bacterial cells/ ml were injected into the 
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crayfish.  Because the crayfish were able to tolerate the 106 concentration it was used for 

the immunization protocol.  The mortality studies were repeated twice.    

 

Response of Crayfish to Live Bacteria 

 Pseudomonas was streaked on a nutrient agar plate to obtain isolated colonies.  

The isolated colonies were Gram stained to check for purity and then grown in a nutrient 

broth at 37°C for 24 hours.  Cells were counted and diluted to concentrations of 108, 107, 

and 106 bacterial cells/ml.  Two crayfish were injected with the 108 concentration, 2 

crayfish were injected with the 107 concentration, and 2 crayfish were injected with the 

106 concentration.  Each injection was 1 ml each.  As a control 2 crayfish received an 

injection of crayfish saline.  The crayfish were then observed for mortality. 

 

Protein Concentration Assay 

 A solution of the standard protein bovine albumin was made with a concentration 

of 1 mg/ml.  Clean test tubes are labeled 1- 10.  Into the test tubes 10-100 µg of the 

standard protein is added in increments of 10 (ex: 10 µg, 20µg, ect.).  The total volume of 

the standards is made to be 100 µl with distilled water.  Another tube is used for the blank 

and only contains 100 µl distilled water.  Nine more tubes are used for the unknown 

hemolymph samples from each of the experimental groups at each time point.  Five 

microliters from each of the hemolymph samples are put into the corresponding labeled 

tubes.  The total volume of the tubes is increased to 100 µl with distilled water.  To all of 

the tubes 2 ml of the BCA (bicinchoninic acid) reagent is added and the tubes are mixed 

well and incubated at 37°C for 30 minutes.  After incubation the absorbance of the blank, 

standards and hemolymph samples is measured at 562 nm wavelength.  The blank 

absorbance measurement is subtracted from the absorbance measurements of the 

standards and hemolymph samples.  A graph is made of the standard protein (standard 

absorbance Vs standard concentration) and used to find the concentration of the unknown 

hemolymph samples.    
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CHAPTER 3 

RESULTS 

 

Mortality Studies 

 To determine which concentration of bacteria to use in the immunization assay, 

mortality studies were performed.  Using a pure culture of Pseudomonas dilutions were 

made to obtain concentrations of 106, 107, and 108 bacterial cells/ ml.  Two crayfish were 

injected with the 106 concentration, 2 crayfish were injected with the 107 concentration, 

and 2 crayfish were injected with the 108 concentration.  As a control 2 crayfish were 

injected with a crayfish saline control.  The mortality study was performed twice.  In the 

first study 2 crayfish injected with the 108 concentration and 1 crayfish injected with the 

107 concentration died within 2 weeks after exposure.  In the second study 1 crayfish 

injected with the 108 concentration and 1 crayfish injected with the 107 concentration died 

within 2 weeks after exposure.  Crayfish injected with the 106 concentration were able to 

tolerate the exposure without dying (Table 1).  None of the control animals died.  The 106 

concentration was used in all of the immunization assays. 

 

Table 1.  Mortality Studies.  Mortality studies demonstrated that crayfish were able to 

tolerate injections of 106  bacterial cells/ml without dying.  None of the controls died. 

Concentration 

Bacterial cells/ml 

Mortality Study 1 

(% mortality)  

Mortality Study 2 

(% mortality) 

106 0% 0% 

107 16.7% 16.7% 

108 33.3% 16.7% 

  

   

Effect of Injection of Live or Killed Bacteria on Attachment of Hemocytes to SRBCs 

 The attachment assay was performed to determine the effects of injection with 

live or killed bacteria on the percentage of hemocytes attached to sheep RBCs.  The 

percentage of hemocytes with SRBCs attached was calculated from the data collected at 

each time point.  The hemocytes were harvested at 8 hours post injection, 24 hours post 
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injection, and 96 hours post injection.  The attachment assay was performed identically 

for each time point.  

 An increase in attachment of P. clarkii hemocytes to SRBCs was seen in the 

crayfish immunized with live or killed bacteria.  At 8 hours post injection the percentage 

of hemocytes from the killed group attached to SRBCs was 7.1%.  For the killed group at 

8 hours post injection the percentage was 6.5%.  At 24 hours post injection the 

attachment rate of the hemocytes exposed to live or killed bacteria peaked (20.2% and 

19.8% respectively) and then began to return to the level of the control at 96 hours post 

injection (12.2% for the live group and 15.3% for the killed group)  (Figures 1, 2, and 3).  

Hemocytes from control crayfish injected with crayfish saline did not show an increase in 

attachment to SRBCs at any of the time points.  At 8 hours post injection the percentage 

of hemocytes with SRBCs attached was 3.4% for the control group.  At 24 hours post 

injection 5.4% of the control hemocytes were attached to SRBCs.  At 96 hours post 

injection 4.1% of the control group hemocytes had SRBCs attached.   Hemocytes 

exposed to live bacteria exhibited a slightly higher percentage of attachment than those 

exposed to the killed bacteria (Figures 1 and 2).   
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Figure 2.  Effect of Injection of Crayfish with Live Bacteria on Percentage of Hemocytes 

with SRBCs Attached at 8, 24, and 96 Hours Post Injection.  Combination of 6 

experiments.  Significant difference (p<.05) shown by comparing each time point to 

control data using t-test. 
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Figure 3.  Effect of Injection of Crayfish with Killed Bacteria on Percentage of 

Hemocytes with SRBCs Attached at 8, 24, and 96 Hours Post Injection.  Combination of 

6 experiments. Significant difference (p<.05) shown by comparing each time point to 

control data using t-test. 
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Figure 4.  Effect of Injection of Crayfish with Crayfish Saline Control on Percentage of 

Hemocytes with SRBCs Attached at 8, 24, and 96 Hours Post Injection.  Combination of 

6 experiments. 

 

Effect of Injection of Live or Killed Bacteria on Production of Antibacterial Peptides 

 The antibacterial assay was performed to determine the effect of injection with 

live or killed bacteria on the production of antibacterial peptides by the crayfish 

hemocytes.  The pour plate method was used to make nutrient agar plates containing 104 

bacterial cells per ml.  Six 3mm wells were punched into the agar and labeled.  Two of 

the wells contained dilutions of streptomycin.  One well contained a dilution of crayfish 

anticoagulant buffer (1 part buffer to 1 part distilled water).  The other three wells were 

used for the hemolymph samples from each of the experimental groups and the control 

group.  The plates were then incubated at 37°C for 48 hours.   

 An attempt to develop an antibacterial peptide assay for the crayfish hemocytes 

was unsuccessful.  The results of the crayfish antibacterial peptide assay were not 

reproducible.  Some reduced bacterial colony size was seen around the wells containing 

the crayfish hemolymph but these results were not consistent.  No clear zones of 

inhibition were seen. The protocol for insect antibacterial peptides did not work for the 

crayfish hemocytes. 
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 Efforts were made to modify the antibacterial assay.  Different volumes of 

hemolymph were added to the wells.  Well sizes were adjusted to conform to the new 

volumes.  Hemolymph volumes ranged from 20µL to 100µL.  The volume changes did 

not affect the results of the assay.  Hemolymph including hemocytes was also used in the 

assay rather than using the hemolymph alone to determine if the hemocytes had any 

antibacterial activity.  The addition of hemocytes did not affect the results of the assay.  

To determine if different bacteria might be susceptible to the hemolymph samples M. 

luteus was used in the assay.  The M. luteus was inhibited by the hemolymph samples and 

the positive controls.  However, it was also inhibited by the negative control and the 

control group hemolymph samples.   

The hemolymph samples were also used to determine the protein content of the 

hemolymph from the 2 experimental groups.  A standard protein solution was made from 

bovine albumin.  The hemolymph samples were made identically by using 5µL of 

hemolymph.  BCA reagent is added to the tubes and incubated.  The BCA reagent 

contains copper (Cu2+) with is reduced to Cu+ creating a purple color when protein is 

present.  The more protein that is present the more copper is reduced producing the 

purple color.  The absorbance of the samples and standards is then measured (Table 2).  

A higher absorbance reading is associated with an increase in copper reduction.  

Therefore, a higher absorbance reading will mean that more protein is present.  The graph 

of the standard protein is used to find the concentration of protein in the hemolymph 

samples from each group at each time point.   

An increase in the protein content of the hemolymph samples was seen in the 

crayfish injected with live and killed bacteria (Figures 5, 6, and Table 3).  The increase in 

protein content for the two groups was seen at 96 hours post injection.  The protein 

concentration of the group injected with live bacteria increased from 87.28 and 89.46 

micrograms/ml at 8 and 24 hours respectively to 137.72 micrograms/ml at 96 hours post 

injection.  The protein concentration of the group injected with killed bacteria increased 

from 83.15 and 97.72 micrograms/ml at 8 and 24 hours respectively to 153.59 

micrograms/ml at 96 hours post injection.  At 8 and 24 hours post injection the protein 

content was similar to that of the control group.  The control group did not show a 

significant increase in protein concentration at any time point (Figure 7 and Table 3).   
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Table 2.   Estimation of Protein in Hemolymph Samples.  Absorbance measurements for 

the standard protein samples and the hemolymph unknown samples.  Standard sample 

measurements were adjusted for the blank. 

Standards 
Hemolymph 
samples 

sample  absorbance sample absorbance
blank 0.140 L8 0.400

1 0.048 L24 0.410
2 0.095 L96 0.632
3 0.141 K8 0.381
4 0.172 K24 0.448
5 0.222 K96 0.705
6 0.259 C8 0.472
7 0.321 C24 0.374
8 0.348 C96 0.480
9 0.440     

10 0.447     
   

Trendline for Standard Protein

y = 0.0046x - 0.0015
R2 = 0.9907
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Figure 5.  Trendline for the Standard Protein Bovine Albumin.  The standard protein 

graph was used to find the concentration of protein in the hemolymph samples.   
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Table 3.  Protein Concentration of Hemolymph Samples.  Protein concentrations for the 

hemolymph samples were found using the equation from the graph of the standard 

protein.  An increase in protein concentration occurred in the hemolymph samples as the 

time points increased for both experimental groups. 

hemolymph 
samples 

protein 
concentration (µL) 

L8 87.28 
L24 89.46 
L96 137.72 
K8 83.15 
K24 97.72 
K96 153.59 
C8 102.93 
C24 81.63 
C96 104.67 
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Figure 6.  Protein Concentration of the Hemolymph Samples from the �Live� 

Experimental Group at 8, 24, and 96 Hours Post Injection.  Significant difference (p<.05) 

shown by comparing each time point to control data using t-test. 
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Figure 7.  Protein Concentration of the Hemolymph Samples from the �Killed� 

Experimental Group at 8, 24, and 96 Hours Post Injection.  Significant difference (p<.05) 

shown by comparing each time point to control data using t-test. 
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Figure 8.  Protein Concentration of the Hemolymph Samples from the �Control� Group at 

8, 24, and 96 Hours Post Injection. 
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Effect of Injection of Bacteria on Hemocytes with Receptors for LPS or Mannose 

 Between 5 and 8 % of hemocytes that adhere to the glass coverslips express 

receptors for both mannose and LPS (11).  The receptor assay was performed to 

determine if exposure to live or killed bacteria would increase the number of hemocytes 

that express receptors for both LPS and mannose.  For this assay fluorescing LPS and 

fluorescing mannose were used.  When the LPS or mannose attaches to the hemocyte, the 

hemocyte will fluoresce and can be viewed with a microscope using the 400x objective 

lens.  The number of fluorescing hemocytes is counted for each of the experimental 

groups and the control group.   

 An increase in the population of cells that express the receptors for both LPS and 

mannose was seen in both the group injected with live bacteria and the group injected 

with killed bacteria at 8 and 24 hours post injection.  The group injected with live 

bacteria had 12.8% fluorescent cells at 8 hours and 24.0% at 24 hours post injection for 

the mannose assay.  For the LPS assay the live group had 14.3% fluorescent cells at 8 

hours and 26.8% at 24 hours post injection.  The group injected with the killed bacteria 

showed a slightly greater increase in the LPS receptor cell population (Fig. 9, 12) 

compared to the group injected with the live bacteria (Fig. 8, 11).  The group injected 

with the killed bacteria had 14.1% fluorescent cells at 8 hours and 28.4% at 24 hours post 

injection for the mannose assay.  For the LPS assay the killed group had 15.0% 

fluorescent cells at 8 hours and 29.0% at 24 hours post injection.  The greatest increase of 

the receptor bearing cell population occurred at 24 hours post-injection (Fig. 8, 9, 11, 12).  

At 96 hours post-injection the receptor bearing cell populations from both groups began 

to return to the baseline of 5-8% (Fig. 8, 9, 11, 12).  The control group injected with 

crayfish saline did not show a significant increase across the time points (Fig. 10, 13).  

The control group receptor cell population remained at 5-8% for each time point.    
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Figure 9.  Effect of Exposing Hemocytes from the �Live� Experimental Group to 

Fluorescing LPS at 8, 24, and 96 Hours Post Injection.  Combination of 3 experiments. 

Significant difference (p<.05) shown by comparing each time point to control data using 

t-test. 
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Figure 10.  Effect of Exposing Hemocytes from the �Killed� Experimental Group to 

Fluorescing LPS at 8, 24, and 96 Hours Post Injection.  Combination of 3 experiments. 

Significant difference (p<.05) shown by comparing each time point to control data using 

t-test. 
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Figure 11.  Effect of Exposing Hemocytes from the �Control� Group to Fluorescing LPS 

at 8, 24, and 96 Hours Post Injection.  Combination of 3 experiments.  
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Figure 12.  Effect of Exposing Hemocytes from the �Live� Experimental Group to 

Fluorescing Mannose at 8, 24, and 96 Hours Post Injection.  Combination of 3 

experiments.  Significant difference (p<.05) shown by comparing each time point to 

control data using t-test. 



 32

Mannose- Killed

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

hours post injection

%
 fl

uo
re

sc
en

t c
el

ls

8 hours
24 hours
96 hours

p<.05 p<.05

 
Figure 13.  Effect of Exposing Hemocytes from the �Killed� Experimental Group to 

Fluorescing Mannose at 8, 24, and 96 Hours Post Injection.  Combination of 3 

experiments.  Significant difference (p<.05) shown by comparing each time point to 

control data using t-test. 
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Figure 14.  Effect of Exposing Hemocytes from the �Control� Group to Fluorescing 

Mannose at 8, 24, and 96 Hours Post Injection.  Combination of 3 experiments. 
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Correlation of Receptor Assay with Protein Concentration Assay 

The receptor assay for both LPS and mannose was compared with the protein 

concentration assay (Figures 14 and 15).  As the cell population with the LPS and 

mannose receptors increased at 8 and 24 hours post injection the protein concentration of 

the hemolymph remained stable.  When the receptor cell population decreased in number 

at 96 hours post injection returning to the level of the control the protein concentration of  

the hemolymph increased.
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Figure 15.  Comparing the Mannose Receptor Assay with the Protein Concentration 

Assay.  As the population of cells expressing the receptor for mannose decrease, the 

protein concentration increases at 96 hours post injection.  
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Figure 16.  Comparing the LPS Receptor Assay with the Protein Concentration Assay.  

As the population of cells expressing the receptor for LPS decrease, the protein 

concentration increases at 96 hours post injection.  
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CHAPTER 4 

 DISCUSSION 

 

 Though crayfish and other invertebrates only display a primitive innate immune 

system, they are able to protect themselves from foreign invasion by bacteria, parasites, 

viruses, and other microbes.  They are able to protect themselves by making short-term 

rather than long-term changes to their host defense mechanisms (3).  Innate immune 

functions such as phagocytosis, antibacterial peptide production, the pro-phenyloxidase 

system, clotting mechanisms, and encapsulation responses are important short-term 

changes that the crayfish uses to defend itself from foreign attack (3, 4, 8).  It is the goal 

of this research to better understand how some parts of the innate immune system work 

together to guard against invasion by foreign bacteria.   

 The hypothesis for this research is that after being exposed to bacteria or bacterial 

products some hemocytes will degranulate releasing granules which contain chemicals 

into the environment.   First the bacteria or bacterial product will attach to the hemocyte 

via the LPS and/or mannose receptor causing degranulation of the hemocyte.  The 

chemicals within the granules will then stimulate phagocytic hemocytes to become active 

and phagocytise the invading bacteria.  This will cause an increase in phagocytic and 

attachment rates.  The granules will also be important in antibacterial peptide production.  

Either the chemicals within the granules will stimulate an unknown population of 

hemocytes to produce the antibacterial peptides or the granules themselves will contain 

the antibacterial peptides.  These peptides will attack invading bacteria by attaching to the 

cell membrane forming a pore and consequently lysing the bacteria.  The increases in 

attachment of sheep RBCs to hemocytes, antibacterial peptide production, and the 

population of cells that produce the receptors for LPS and mannose after the crayfish are 

exposed to live or killed bacteria will suggest that this pathway may exist.   

 For the attachment assay an increase in the number of hemocytes with sheep 

RBCs attached was observed at 8 and 24 hours post injection with either live or killed 

bacteria (Figures 1 and 2).  An increase was not seen in the control crayfish hemocytes 

injected with crayfish saline.  The peak of phagocytic activity occurred at about 24 hours 

post injection.  These results suggest that after exposure to bacteria or bacterial products 
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the phagocytic activity of hemocytes increases up to 24 hours after the exposure and then 

returns to the level of the control at 96 hours post injection.   

 The population of cells that express the receptors for both LPS and mannose also 

exhibited an increase in number after exposure to both live and killed bacteria at 8 hours 

and 24 hours post injection (Figures 6, 7, 9, and 10).  The group injected with the crayfish 

saline control did not show an increase in the population of cells with the LPS and 

mannose receptors (Figures 8 and 11).  The control group had between 4-8 % fluorescent 

cells which was consistent with results from previous experiments.  For the groups 

injected with live or killed bacteria the increase in the cell population with the receptors 

peaked at 24 hours post injection then began to return to the level of the control at 96 

hours post injection.   

 The increase in the population of cells bearing the receptors for LPS and mannose 

is consistent with the increase in phagocytic activity.  Both the receptor cell population 

and the phagocytic activity increased at 8 and 24 hours post injection and both peaked at 

24 hours post injection.  These results support the hypothesis that activation of the 

population of cells with the LPS and mannose receptors due to exposure to bacteria 

followed by degranulation is a key step in activating phagocytic hemocytes to attach to 

and engulf the invading bacteria.    

 The decrease in the population of cells that have the LPS and mannose receptors 

at 96 hours post injection correlated with an increase in protein concentration (Figures 12 

and 13).  As the receptor cell population increased the protein concentration of the 

hemolymph remained stable.  When the receptor cell population decreased in number at 

96 hours post injection the protein concentration of the hemolymph increased.  This 

increase in protein concentration may be a result of the degranulation of the receptor cell 

population.  As the hemocytes bearing the receptors for LPS and mannose degranulate 

releasing the granules into the hemolymph the protein concentration in the hemolymph 

has increased.      

 Antibacterial peptides of insects have been studied in the greatest detail.  The 

peptides are of low molecular weight, cationic, and have a broad spectrum of activity 

against Gram negative and/or Gram positive bacteria.  These antibacterial peptides are 

induced after the organism is exposed to bacteria or bacterial products (5, 6).  The 
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antibacterial peptides are stable to freezing but are unstable when exposed to heat.  They 

are found in the granular and semigranular immune cells (5).  The antibacterial peptide 

assay for insect antibacterial peptides was used to look for antibacterial peptides in 

crayfish.  However, the results of this assay were not reproducible in the crayfish.  Some 

reduced colony size was seen around the wells containing the hemolymph samples but 

clear zones of inhibition were not seen.   

 Future studies should be performed to investigate the accuracy of the working 

hypothesis.  To improve the antibacterial peptide assay the hemolymph samples can be 

concentrated so that the antibacterial peptides will be in greater quantity and therefore 

may have a stronger reaction with the bacteria.  Also, filter disks saturated with the 

hemolymph samples may be placed onto a lawn of bacteria on an agar plate, incubated 

and observed for zones of inhibition.  Assay plates may be incubated at a lower 

temperature such as room temperature to ascertain if the antibacterial peptides are 

functional at 25°C. 

 Future studies can be performed to examine the effect of injection of live or killed 

bacteria on the population of cells that bear receptors for mannose and LPS.  For our 

studies we looked at an increase in the population of receptor bearing cells.  An increase 

in the number of receptors on individual hemocytes after exposure to live or killed 

bacteria should also be investigated.  Hemocytes from crayfish exposed to live or killed 

bacteria could be compared to hemocytes from crayfish injected with a crayfish saline 

control to quantify the number of receptors for LPS and mannose on the individual 

hemocytes from each group. 

 An assay should be performed to look for direct evidence of degranulation of the 

hemocytes when the cells are stimulated with LPS and or mannose.  For this assay the 

hemocytes would be incubated with either LPS or mannose.  The cells would then be 

centrifuged at 10°C for 10 minutes as before.  The supernatant would be used to look for 

the released products of degranulation.  A substrate and optical density would be used to 

determine if a specific product of degranulation is present in the supernatant.  The results 

would be presented as percent degranulation (15). 

 Time points may be altered to obtain a better picture of the response of the 

hemocytes to live and killed bacteria.  An additional time point between 8 and 24 hours 
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post injection such as 12 or 16 hours post injection could be observed in both the 

attachment assay and the receptor assay.  An additional time point between 24 and 96 

hours post injection such as 48 hours post injection may also be observed for the assays.  

The additional time points may assist in a better understanding of when the reactions of 

hemocytes to bacteria are at their peak.  For example the extra time points may show that 

the peak of attachment of hemocytes to sheep RBCs occurs not at 24 hours post injection 

but at 12 or 48 hours post injection.   

 It is important to study the components of the innate immune system to better 

understand the way in which crayfish and other invertebrates are able to protect 

themselves from bacteria, viruses, fungi, and parasites.  It is also important to be able to 

study the innate immune system in the absence of the adaptive immune system to better 

understand how the innate immune system functions unaided.  Better understanding of 

the innate immune system will assist in understanding how the adaptive immune system 

evolved from the more primitive innate immune system.  
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