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Tennessee State University, Johnson City, TN 37614, USA

2Department of Hepatology, Guangzhou Number 8 People’s Hospital, Guangzhou, China

3International Center for Diagnosis and Treatment of Liver Diseases, 302 Hospital, Beijing, China
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Abstract

Host innate and adaptive immune responses must be tightly regulated by an intricate balance 

between positive and negative signals to ensure their appropriate onset and termination while 

fighting pathogens and avoiding autoimmunity; persistent pathogens may usurp these regulatory 

machineries to dampen host immune responses for their persistence in vivo. Here we demonstrate 

that miR146a is up-regulated in monocytes from hepatitis C virus (HCV)-infected individuals 

compared to control subjects. Interestingly, miR146a expression in monocytes without HCV 

infection increased, whereas its level in monocytes with HCV infection decreased, following Toll-

like receptor (TLR) stimulation. This miR146a induction by HCV infection and differential 

response to TLR stimulation were recapitulated in vitro in monocytes co-cultured with hepatocytes 

with or without HCV infection. Importantly, inhibition of miR146a in monocytes from HCV-

infected patients led to a decrease in IL-23, IL-10, and TGF-β expressions through induction of 

suppressor of cytokine signaling 1 (SOCS1) and inhibition of signal transducer and activator 

transcription 3 (STAT3), and this subsequently resulted in a decrease in regulatory T cells (Tregs) 

accumulated during HCV infection. These results suggest that miR146a may regulate SOCS1/

STAT3 and cytokine signaling in monocytes, directing T cell differentiation and balancing immune 

clearance and immune injury during chronic viral infection.
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Introduction

Host innate and adaptive immune responses must be tightly regulated by an intricate balance 

between positive and negative signals to ensure their appropriate onset and termination while 

fighting pathogens and avoiding autoimmunity; persistent pathogens may usurp these 

regulatory machineries to dampen host immune responses for their persistence in vivo. 

Hepatitis C virus (HCV), a blood-borne viral infection characterized by a high rate of 

chronic infection, has evolved multiple strategies to evade host immune responses, thus 

becoming an excellent model to study the mechanisms of persistent viral infections [1–2]. 

While the use of direct antiviral agents (DAA) has resulted in a significant improvement in 

the outcome of HCV treatment, this therapeutic cocktail is still under development and 

already facing new issues such as viral mutation, relapse, and re-infection following therapy 

[3–4]. Additionally, the lack of a vaccine for this virus is a major hurdle to control this 

global infection. The failure to successfully manage this chronic viral infection and to 

develop an effective vaccine stems from our incomplete understanding of HCV-host 

interactions that lead to viral persistence.

While a high rate of genetic variability in HCV structural and non-structural proteins 

(quasispecies) may facilitate viral persistence, HCV-elicited immune responses appear to be 

too weak to resolve infection in most humans or to protect against re-infection in 

chimpanzees [5–6]. It appears that virus-mediated impairment of innate and adaptive 

immune response is a major mechanism by which persistent infection is established [1–2]. 

We have previously shown that chronically HCV-infected individuals exhibit an aberrant 

secretion of IL-23 and IL-10 by monocytes, contributing to the differentiation of Th17 cells 

and accumulation of Foxp3+ regulatory T cells (T-regs) [7–10]. However, the precise 

mechanisms that control IL-23 and IL-10 expression in monocytes and T cell differentiation 

remain elusive. Notably, aberrant inflammatory activities may also contribute towards 

immune-mediated injury [11–12]. Therefore, additional studies are required to understand 

how these immune cells are fine-tuned in host defense and immune injury during chronic 

viral infections.

microRNAs (miRNAs or miRs) are a class of small, non-coding RNAs that can regulate 

gene expression through translational repression or target mRNA degradation and have been 

implicated as negative regulators of innate and adaptive immune responses [13–15]. 

Genome-wide expression profiling of miRNAs in human monocytes has revealed several 

endotoxin-responsive miRNAs (miR146a/b, miR155, miR132, and miR125b) that can 

regulate inflammatory processes at multiple levels [16]. miR146a has been identified as a 

key modulator of differentiation and function of cells in both innate and adaptive immunity 

[17–19]. Recent studies using miR146a-deficient mice have reported that miR146a acts as a 

brake, attenuating the innate immune response by inhibiting signaling pathways, including 

Toll-like receptor (TLR), and RIG-I-like receptor (RLR) pathways [20–22]. In human 

monocytes, miR146a is induced by LPS stimulation in a NF-κB-dependent manner and 

inhibits the innate immune responses by targeting TNF receptor-associated factor 6 

(TRAF6) and IL-1 receptor associated kinase 1 (IRAK1) genes [16]. In chronically HCV-

infected individuals, miR146a has been shown to be up-regulated as a feedback mechanism 

to prevent an over-stimulated inflammatory state [23–27]. However, the precise mechanism 
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for miR146a induction in monocytes and its role in regulation of T cell differentiation during 

HCV infection remain to be elucidated.

In this study, we demonstrated an increase of miR146a expression in monocytes from 

chronically HCV-infected individuals, and in monocytes incubated with HCV-infected 

hepatocytes, with or without TLR stimulation. We also investigated the role of HCV-induced 

miR146a expression in monocytes in regulating T cell differentiation and the potential 

mechanism involved in regulating inflammatory cytokines leading to viral persistence.

Materials and Methods

Subjects

The study protocol was approved by the institutional review board of East Tennessee State 

University and James H. Quillen VA Medical Center (ETSU/VA IRB, Johnson City, TN), 

which has contributed to a database for the storage of blood samples from HCV-infected 

individuals for the purpose of viral immunology studies. The study subjects comprised three 

populations: 1) 42 chronically HCV-infected patients, HCV genotype (70% type 1, 30% type 

2 or 3) and viral load (ranging from 12,300 ~ 50,000,000 IU/ml) were performed by 

Lexington VAMC, and all subjects were virologically and serologically positive for HCV 

prior to the antiviral treatment; 2) 5 HCV subjects who achieved SVR following antiviral 

therapy with pegylated interferon plus ribavirin and boceprevir; and 3) 22 healthy subjects 

(HS, blood buffy coat derived from Key Biologics LLC. Memphis, TN) who were negative 

for HBV, HCV, and HIV infection. Written informed consent was obtained from all 

participants. The majority of the study subjects were male. The mean age of the three 

populations was comparable (P>0.05).

Cell isolation and culture

Human peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Percoll 

gradients (GE Heathcare, Piscataway, NJ). CD14+ monocytes were further purified from 

PBMCs using anti-CD14 magnetic beads according to the manufacturer’s instructions 

(Miltenyi Biotec, Auburn, CA). The cells were cultured in RPMI 1640 medium containing 

10% FBS (Atlanta Biologicals, Flowery Branch, GA), 100 IU/ml penicillin and 100 μg/ml 

streptomycin and 2 mM L-glutamine (Thermo Scientific, Logan, Utah) at 37°C and 5% CO2 

atmosphere. In some experiments, cells were incubated with or without 1 μg/ml LPS and 2.5 

μg/ml R848 (Santa Cruz Biotechnology, Santa Cruz, CA) for 6h. RNA was then isolated and 

used for PCR analysis.

Co-culture of healthy CD14+ monocytes with HCV+/− Huh-7 hepatocyte

Transfection of Huh-7 hepatocytes (kindly provided by Dr. T.J.Liang, Liver Section, NIH/

NIDDK) with HCV JFH-1 strain (kindly provided by Dr. T. Wakita) was carried out as 

described previously [28–29]. For the co-culture experiments, HCV+/− Huh-7 hepatocytes 

were serum-starved for 18h and then activated with rhIFN-γ (0.1μg/ml, R&D Systems) for 

48 h to boost the HCV replication [28–29]. Activated hepatocytes were recovered by 0.05% 

trypsin-EDTA, and then plated at 5 × 105 cells/well in a 12-well plate. Purified healthy 

CD14+ monocytes were added to the adherent hepatocytes in RPMI media, incubated for 
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different times, then stimulated with LPS/R848 for 6h, and RNA was isolated and analyzed 

by RT-PCR.

Measurement of miRNA levels by Real-time RT-PCR

Total RNAs were isolated from monocytes using RNAzol (Molecular Research Center, Inc, 

Cincinnati, OH) according to the manufacturer’s protocol. miRNA levels were quantified by 

real-time RT-PCR using specific miRNA assay primer sets and TaqMan Universal Master 

Mix (both from Applied Biosystems). Specific primers for miR146a, miR155-5p, and U6 

small nucleolar RNA (snRU6) were obtained from Applied Biosystems. Real-time RT-PCR 

was performed using a 4800 PCR machine (Bio-Rad System) and miR146a/miR155 values, 

normalized to snRU6 levels, are expressed as either relative amounts or fold changes using 

the 2−Δct or 2−ΔΔct quantification method.

Monocyte transfections

The CD14+ monocytes from HCV patients and HS were transfected with 30 pmol of 

miR146a inhibitor or the anti-miR negative control (Life technologies, Grand Island, NY) 

using the Human Monocyte Nucleofector Kit and Nucleofector I Device (Lonza, Allendale, 

NJ). Transfection efficiency was approximately 60% for primary monocytes (50% in naïve 

CD4+ T cells and 20% in nature killer cells) as determined by the transfection of a 

fluorescently-labeled negative miRNA control. After transfection, monocytes were cultured 

in IMEM medium (Lonza, Allendale, NJ) supplemented with 10% FBS, 100 ng/ml IL-4 

(Peprotech, Rocky Hill, NJ) and 75 ng/ml GM-CSF (Peprotech) for 24–48 h. The monocytes 

were stimulated with LPS/R848 for 6 h prior to harvest. The supernatants and cell pellets 

were harvested for cytokine measurement and Western blot analysis, respectively.

Cytokine measurements

IL-23, IL-10, TGF-β1, IL-12, IFN-α and IFN-β productions were measured in the culture 

supernatants of HCV patient as well as HS monocytes that were treated with miR146a 

inhibitor or negative control, using commercially available ELISA kits (R&D, Minneapolis, 

MN) according to manufacturer’s instructions.

Western blot analysis

The transfected monocytes from HCV-infected individuals and HS were lysed on ice in 

RIPA lysis buffer (Boston BioProducts Inc, Ashland, MA) in the presence of protease 

inhibitors (Thermo Scientific, Rockford, IL). Cell lysates were centrifuged for 10 min at 

4°C, supernatants were recovered and the protein concentrations were measured by Pierce 

BCA protein assay kit (Thermo Scientific, Rockford, IL). Proteins were separated by SDS-

PAGE, and transferred to polyvinylidene difluoride membranes. Membranes were blocked 

with 5% milk, 0.5% Tween-20 in Tris buffered saline (TBS), and incubated with the 

appropriate primary antibodies according to the manufacturer’s instruction (anti-SOCS1: 

Millipore, Temecula, CA; anti-phosphorylated STAT3 and anti-phosporylated STAT1: Cell 

Signaling Technology, Inc, Danvers, MA). Appropriate horseradish peroxide-conjugated 

secondary antibody (Cell Signaling) was then used and proteins were detected using 

enhanced chemiluminescence assay kit (Amersham, Piscataway, NJ). Membranes were 
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stripped and re-probed with anti-β-actin antibody as an internal control (Sigma-Aldrich, St. 

Louis, MO). Protein bands were captured and quantitatively analyzed by Chemi DocTM MP 

Imaging System (Bio-Rad System).

Co-culture of CD14+ monocytes interfering miR146a with CD14- PBMCs from HCV-infected 
individuals

CD14+ monocytes isolated from HCV-infected individuals and HS were transfected with 

miR146a inhibitor or anti-miR negative control and then cultured in IMEM medium (Lonza, 

Allendale, NJ) supplemented with 10% FBS, 100 ng/ml IL-4 (Peprotech, Rocky Hill, NJ) 

and 75 ng/ml GM-CSF (Peprotech), as described above. After 24 h, the transfected 

monocytes were co-cultured with autologous CD14− PBMCs in the presence of 50 ng/ml 

IL-2 (eBioscience, San Diego, CA) for 5 days, followed by stimulation with 100 ng/ml of 

PMA (InvivoGen, San Diego, CA) and 1 μg/ml ionomycin (Invitrogen) for 6 h, with 

brefeldin A (Biolegend, San Diego, CA), which was added 5 h prior to cell harvest to inhibit 

cytokine secretion. Cells were analyzed by flow cytometry for Th17 and T-reg cells.

Flow cytometry

Specific antibody direct conjugates was carried out using CD4-PE, CD4-APC and CD25-

Alexa488 for cell surface staining, followed by IL-17A-PE for intracellular staining or 

Foxp3-Pecy5 for transcription factor staining. All antibodies were purchased from 

eBioscience. IL-17A and Foxp3 staining were carried out using Inside Stain kit and FoxP3 

Staining Buffer Set (Miltenyi Biotec), respectively, according to the manufacturer’s 

instructions. The fluorescence minus one (FMO) strategy and isotype controls were used to 

adjust multicolor compensation for cell gating and determine background levels. The cells 

were collected on an Accuri C6TM flow cytometer (BD, Franklin Lakes, NJ) and analyzed 

using FlowJo software (Tree Star, Inc., Ashland, OR).

Statistical analysis

The data were expressed as mean ± SE or median with interquartile, depending on the 

characteristics of the data distribution. Comparisons between groups were made using one-

way analysis of variance (ANOVA). Independent t test or paired t test was used to compare 

the difference of mean between each two groups. Mann-Whitney test was used to compare 

the difference of median between each two groups. *P < 0.05 or **P < 0.01 were considered 

statistically significant or very significant.

Results

miR146a is up-regulated in monocytes from chronically HCV-infected individuals

Previous studies reported the up-regulation of miR146a in different immune cells from 

HCV-infected individuals [23–27]. To analyze the induction of miRNA146a in monocytes 

during HCV infection, we measured miR146a levels in CD14+ monocytes isolated from 

PBMCs of 12 chronically HCV-infected patients, 5 SVR individuals, and 4 HS, using real-

time PCR. As shown in Fig. 1A (left panel), miR146a expression in monocytes from HCV-

infected patients was up-regulated more than 3- to 6-fold compared to SVR and HS, 

respectively. Notably, miR146a levels were decreased in SVR subjects following antiviral 
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therapy, but were not completely restored to the levels seen in HS. Since miR146a 

expression is induced via TLR stimulation [16], we also observed its induction in monocytes 

stimulated with LPS and R848. Following TLR stimulation, miR146a levels were 2-fold 

higher in HCV patients than in HS, whereas no significant differences in its levels were 

observed between SVR and HS (Fig. 1A, right panel).

In order to illustrate the effect of LPS/R848 stimulation on miR146a expression in 

monocytes, we dynamically measured miR146a levels at various time points following TLR 

stimulation. Notably, miR146a expression in monocytes from HCV patients was 

significantly higher than HS with TLR stimulation (Fig. 1B). We also observed the trend of 

miR146a expression in monocytes with and without LPS/R848 stimulation in HCV patients, 

SVR, and HS, respectively. Interestingly, while the miR146a expression in monocytes from 

individuals without HCV infection increased upon LPS/R848 stimulation (Fig. 1C and 1D), 

which is consistent with the notion of miR146a being a LPS-responsive gene [16], its 

expression was significantly decreased in monocytes from chronically HCV-infected 

individuals following 6 h TLR stimulation (Fig. 1E), although these changes were not 

statistically significant. These findings suggest that miR146a is up-regulated in monocytes 

from patients with HCV infection and that their response to TLR stimulation is different 

from monocytes from individuals without HCV infection.

miR146a is up-regulated in monocytes co-cultured with hepatocytes expressing HCV

The increases in miR146a expression in monocytes during HCV infection might be 

secondary to inflammation stimulation rather than directly due to HCV exposure. To further 

demonstrate whether HCV plays a primary role in inducing miR146a expression, we 

performed co-culture experiments by incubating monocytes from 3 HS with HCV+ Huh7 

cells or HCV− Huh7 cells for various time points (6 h, 12 h, 24 h and 48 h) with or without 

LPS/R848 stimulation, followed by measuring miR146a expression. As shown in Fig. 2A 

and 2B, we found that miR146a expression in CD14+ monocytes co-cultured with HCV+ 

Huh7 cells was higher at all time points than in monocytes co-cultured with HCV− Huh7 

cells, regardless of TLR stimulation. Of note, significant differences were observed only at 6 

h and 24 h.

In addition, by comparing miR146a expressions in monocytes with and without TLR 

stimulation, we found that miR146a expression was increased in monocytes co-cultured with 

HCV− Huh7 cells with LPS/R848 stimulation compared to non-stimulated monocytes (Fig. 

2C). However, miR146a expression was decreased in monocytes co-cultured with HCV+ 

Huh7 cells following 6h LPS/R848 stimulation (Fig. 2D), although these changes were not 

statistically significant. These data are consistent with the results observed in the ex vivo 
studies by isolated cells from HCV patients and HS (Fig. 1), suggesting that HCV infection 

alters miR146a expression in monocytes in response to TLR stimulation.

miR146a blockade in CD14+ monocytes from HCV-infected individuals inhibits IL-23, IL-10 
and TGF-β1 production

Human monocytes are able to produce inflammatory cytokines (IL-12, IL-23, IL-10 and 

TGF-β1) in response to pathogenic infection [30], and miRNAs can regulate these 
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cytokines, thus directing the differentiation of T lymphocytes [31–32]. In HS, it has been 

reported that early activation of developing monocyte-derived dendritic cells (MoDCs) 

allowed only a transient pro-inflammatory cytokine production that was followed by the 

down-regulation of IL-12 secretion through miR146a/SOCS1/STAT3 feedback regulations 

[33]. In HCV infection, we have shown an aberrant secretion of IL-23 and IL-10 by 

monocytes, which contribute to the differentiation of Th17 cells and accumulation of Foxp3+ 

regulatory T cells (T-regs) by SOCS1/STAT3 signaling pathways [7–10]. To better 

understand the role of miR146a in human monocyte functions during chronic viral infection, 

we blocked miR146a using an anti-miR146a specific inhibitor and then measured IL-23, 

IL-10, TGF-β1, IL-12, IFN-α and IFN-β protein levels in the culture supernatants of treated 

CD14+ monocytes from HCV-infected patients and HS using ELISA. As shown in Fig.3, 

miR146a inhibition followed by LPS/R848 stimulation in CD14+ monocytes from HCV 

patients resulted in significant decreases in IL-23, IL-10, and TGF-β1 levels compared with 

cells transfected with negative control. However, these changes were not observed in CD14+ 

monocytes from HS with the same treatment. In addition, the levels of type I IFN-α and 

IFN-β were unmeasurable under these conditions (data not shown). These results suggest 

that miR146a positively regulates IL-23, IL-10 and TGF-β expressions by monocytes during 

HCV infection.

miR146a regulates monocyte function during HCV infection through inhibition of SOCS1 
and induction of STAT3

We have previously demonstrated that HCV core-induced differential regulation of T and B 

lymphocyte responses and inhibition of IL-12 expression in monocytes is mediated by 

regulation of JAK/STAT signaling through induction of SOCS1, which is a negative 

modulator of the JAK/STAT pathway [28–29, 34–36]. It is also reported that IL-12 

production by MoDCs from HS is feedback regulated by miR146a/SOCS1/STAT3 pathways 

[33]. To further assess whether HCV-induced miR146a controls IL-23, IL-10 and TGF-β1 

production in monocytes through regulating SOCS1/STAT pathways, we analyzed SOCS1, 

STAT1 and STAT3 expressions by Western blot following blockade of miR146a expression 

in monocytes isolated from HCV-infected individuals and HS. As shown in Fig. 4A, the 

expression of SOCS1 in monocytes from HCV patients, but not HS, was significantly 

increased after inhibiting miR146a, at both 24 h and 48 h post-transfection, when compared 

to those treated with the negative control (Fig. 4A and 4B). Meanwhile, STAT3 

phosphorylation in monocytes from HCV patients, but not HS, was significantly decreased 

by miR146a inhibition at 48 h post transfection (Fig. 4A and 4C), whereas STAT1 

phosphorylation was not significantly changed in treated monocytes from both HCV and HS 

(Fig. 4A and 4D). These data suggest that miR146a may counter-regulate SOCS1 expression 

and subsequently cease its inhibitory effect on STAT3, thus increasing IL-23, IL-10 and 

TGF-β1 productions during HCV infection.

miR146a up-regulation in monocytes expands regulatory T cells during HCV infection

We have previously shown that HCV can differentially regulate IL-12/IL-23/IL-10 

expressions in innate immune cells, a milieu prone to the CD4 T differentiation of TH17 

cells and Foxp3+ T-regs in acquired immune responses [7–10]. To determine whether the 

increases in IL-23/IL-10/TGF-β production in monocytes by miR146a drives the 
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differentiation of TH17 cells and generation of T-reg cells during HCV infection, CD14+ 

monocytes isolated from 14 chronically HCV-infected individuals and 6 HS were transfected 

with miR146a inhibitor or negative control, and then co-cultured with autologous CD14− 

PBMCs ex vivo for 5 days, followed by measuring CD4+ IL-17+ TH17 cells and 

CD4+CD25+Foxp3+ T-regs by flow cytometry. We did not observe any significant changes 

in TH17 cell frequencies after miR146a inhibition in monocytes co-cultured with T cell 

enriched compartment (data not shown). However, we observed a significant decrease in T-

reg cell frequencies in T cells co-cultured with HCV patients’ monocytes that were 

transfected with miR146a inhibitor, but not HS monocytes with the same treatment (Fig. 

5A). Taken together, these results suggest that HCV-mediated miR146a induction in 

monocytes promotes regulatory cytokine expression and T-reg cell development, likely 

through SOCS1 and STAT3 signaling pathway, which have been shown to be dysregulated 

during chronic viral infection and contribute to immune suppression and viral persistence 

[28–29, 34–36].

Discussion

Innate immunity is the first line of host defense, evolved to recognize pathogen-associated 

molecular patterns (PAMPs) by microorganisms [37]. PAMPs are recognized via cellular 

receptors (such as TLR, RLR) expressed in immune cells and induce a wide spectrum of 

cytokine gene expressions, which in turn initiate and shape the inflammatory and adaptive 

immune responses. Following TLR activation, the adaptor protein MyD88 and IRAK1/

TRAF6 are recruited into a signaling molecule complex, which activates the downstream 

NF-κB transcription factor and results in up-regulation of immune response genes [38], 

including type I IFN (IFN-α, IFN-β) and pro- and anti-inflammatory cytokines (IL-12, 

IL-23, IL-10, TGF-β) that play pivotal roles in eliminating the invading pathogens. On the 

other hand, TLRs are double-edged swords as aberrant activation of their signaling can be 

harmful, causing pathological manifestations of inflammatory or autoimmune disorders. 

Thus, host innate and adaptive immune responses must be tightly regulated by elaborate 

mechanisms to control their onset and termination. Alternatively, pathogens that develop 

persistent infection, such as HCV and HIV, have developed multi-layer strategies to evade or 

subvert the immune responses for their survival or persistence within the host cells. The 

mechanisms for this immune evasion have yet to be fully understood.

miRNAs are an important class of small (18–25 nt), non-coding RNAs that can regulate 

gene expression through translational repression or target mRNA degradation [13–15]. More 

than 700 miRNAs have been identified in humans; some of them are widely expressed while 

others exhibit only limited developmental stage-, tissue- or cell type- specific expression 

patterns, and many of these miRNAs are involved in diverse biological processes, such as 

cytokine expression and cell differentiation [39–41]. As an ever-evolving strategy, viruses 

may be able not only to modulate cellular miRNA levels but also to interfere with the overall 

miRNA biogenesis. In particular, miR146a has been shown to be up-regulated in the serum, 

PBMCs, splenic marginal zone lymphoma (SMZL), and intra-graft of liver transplantation in 

HCV-infected individuals [23–27]. Despite these observations, little is known regarding how 

miR146a is induced in monocytes and what role it may play in regulation of T cell 

differentiation during HCV infection.
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Our study demonstrates that miR146a up-regulation by HCV infection plays a pivotal role in 

regulating inflammatory cytokine production in monocytes, likely via targeting SOCS1 and 

STAT3 signaling molecules and, subsequently, affecting T-reg differentiation during chronic 

viral infection. It has been reported that NF-κB-dependent miR146a induction inhibits 

innate immune responses by targeting the signaling proteins IRAK1, IRAK2, and TRAF6 

[16, 42]. This may be a feedback mechanism whereby microbial components induce NF-κB 

activation through a MyD88-dependent pathway, resulting in the up-regulation of miR146a 

expression, which in turn reduces NF-κB activity by down-regulating IRAK1/2 and TRAF6 

proteins. It is noteworthy that in this scenario, the TRIF-dependent, anti-viral IFN pathway 

induced by TLR4 remains intact [16]. In our experimental system, the expression levels of 

type I IFN-α and IFN-β in monocytes isolated from chronically HCV-infected individuals 

remained undetectable after stimulation with LPS/R848 ex vivo, likely reflecting the 

immunosuppressed state of chronic HCV infection. However, the expression of the 

inflammatory cytokines IL-23, IL-10, and TGF-β and the frequencies of T-regs that have 

been shown to be elevated during chronic HCV infection [7–10] were significantly reduced 

after miR146a inhibition.

By means of computational miRNA target prediction algorithms, potential targets of 

miR146a other than IRAK1/2, IRF5, and TRAF6 have been identified [16]. Thus, miR146a, 

like many other miRNAs, may target a wide spectrum of genes that could be involved in 

regulation of multiple independent cell signaling processes, such as STAT family. We have 

previously shown that HCV inhibits immune responses by regulating SOCS1 and STAT 

expression [28–29, 34–36]. Here, we further demonstrated that HCV appears to regulate 

SOCS1 and STAT3 expression through a miR146a-mediated signaling mechanism. Notably, 

miR155 has been shown to be upregulated in HCV-infected cells, and miR155 is also known 

to regulate SOCS1 expression [43–50]. One question is whether miR146a may affect 

SOCS1 expression through regulating miR155 expression. To answer this question, we 

examined the miR155 levels in monocytes transfected with miR146a antagomirs or negative 

controls, and the data showed that miR155 was not affected by miR146a transfection (data 

not shown), suggesting that miR146a may alter the SOCS1 expression through other 

mechanisms, rather than via miR155. While our study does not identify SOCS1 or STAT3 as 

the direct target of miR146a, the present data suggest a role for miR146a in controlling 

inflammatory cytokine production by regulating SOCS1 and STAT3 expression in 

monocytes, likely through an indirect mechanism, thus directing T cell differentiation and 

balancing the immune clearance and immune injury during chronic viral infection.

Foxp3+ T-reg cells maintain immune homeostasis by limiting different types of 

inflammatory responses. It has been reported that miR146a is prevalently expressed in T-reg 

cells and critical for their suppressor function [19]. Previous studies showed that the 

deficiency of miR146a in T-reg cells resulted in a breakdown of immunological tolerance 

manifest as a fatal IFN γ-dependent, immune-mediated pathologic lesion in a variety of 

organs, likely due to augmented phosphorylation of STAT1 [19]. Likewise, heightened 

STAT1 activation following selective ablation of SOCS1 was associated with similar T-reg-

mediated control of Th1 responses and autoimmune pathology [19]. Our results indicate that 

the differentiation of suppressor T-reg cells is controlled by the same single miRNA, 

miR146a, which is expressed in monocytes and induced by chronic viral infection through 
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the SOCS1/STAT3-mediated regulatory cytokines (IL-23/IL-10/TGF-β). Thus, our findings 

suggest that over-expression of miR146a in innate immunity cells can ensure T-reg cell 

development by maintaining an optimal threshold of cytokine receptor-dependent activation 

of transcription factors crucial for a particular type of immune response; in the case of 

chronic HCV infection, there is a Th2-type response, immune tolerance, and thus viral 

persistence. Based on our findings for miR146a in chronic HCV infection and other reports 

in HS, we propose a model (Fig. 5B) for HCV-induced, NF-κB-mediated miR146a 

induction in regulating cytokine production and T-regs development. HCV infection induces 

NF-κB activation and miR146a expression, which drives inflammatory cytokine (IL-23, 

IL-10, TGF-β) production by monocytes and subsequently prompts Foxp3+ T-reg 

differentiation. miR146a may also regulate TLR and cytokine signaling through a negative 

feedback loop involving SOCS1 and STAT3 pathway during chronic viral infection.

Notably, miR146a expression and regulation in monocytes from HCV-infected and 

uninfected individuals respond differently to TLR stimulation, in that miR146a levels were 

decreased and positively regulated cytokine productions by monocytes in HCV-infected 

patients; whereas miR146a levels increased and played a negative role in uninfected 

individuals [33] following TLR stimulation. This may have resulted from a paradoxical 

feedback regulatory effect of HCV and TLR on miR146a expression. While HCV or LPS 

alone can induce miR146a expression, they also trigger the expression of RNA 

exoribonuclease (such as ERI1) that binds to the 3’ end of histone mRNAs and degrades 

them. We have previously shown HCV delivers negative signaling to NF-κB as well as AP-1 

pathways, and we have recently found that ERI1 is significantly up-regulated in monocytes 

from HCV-infected individuals following TLR stimulation (data not shown). Therefore, 

over-activation of monocytes by both HCV and TLR stimulations may lead to triggering of 

ERI1 feedback mechanisms for immune homeostasis, perhaps explaining the differential 

expression and regulatory effect of miR146a in monocytes we observed in HCV-infected 

versus uninfected individuals in response to TLR stimulation. Another possibility is that the 

different levels of miR146a and its response to TLR stimulation might be related to the 

monocyte subset (classical, intermediate, non-classical monocytes, or M1 vs M2 monocyte) 

alterations in HCV-infected individual vs HS, which is an interesting question that need to 

be addressed in future studies.

In this study, we suggest that excessive activation of STAT3 is kept in check by SOCS1, 

which is double-checked by miR146a to ensure appropriate immune responses in vivo. It 

may be that HCV-mediated up-regulation of miR146a fine-tunes the TLR and cytokine 

signaling pathways rather than totally blocking these signals. Nevertheless, the counter-

regulatory effects of miR146a on TLR and cytokine signaling may balance immune 

signaling, fine-tuning immune-mediated viral clearance and host injury. Therefore, we 

conclude that miR146a may regulate SOCS1/STAT3 signaling and cytokine expression in 

monocytes, thus directing T cell differentiation and balancing immune clearance and 

immune injury during chronic viral infection.
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Fig. 1. miR146a is up-regulated in monocytes from chronically HCV-infected individuals
CD14+ Monocytes were purified from PBMCs from 12 HCV-infected subjects, 5 HCV SVR 

subjects following anti-viral treatment and 4 HS, stimulated with or without the TLR ligands 

LPS and R848 for 6 h, followed by real-time RT-PCR analysis of miR146a levels. (A) 
miR146a fold-changes (2−ΔΔCt) from HCV patients and SVR individuals relative to HS, 

without and with TLR stimulation, are shown. Each symbol represents one individual. 

Horizontal bar represents the median value. *P<0.05; **P<0.01, analyzed by Mann-Whitney 

test. (B) miR146a expression in monocytes from HCV patients versus HS following 

stimulation by LPS and R848 for indicated times. Error bars are shown from repeated 

experiments from multiple subjects. *P<0.05; **P<0.01, analyzed by independent t test. (C–
E) Relative miR146a expression level, normalized by U6 (2−ΔCt), in monocytes from SVR, 

HS, and HCV subjects before and after TLR stimulation. The horizontal bars represent 

median values. No significant difference between these changes, analyzed by Mann-Whitney 

test.
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Fig. 2. miR146a is up-regulated in monocytes co-cultured with HCV+/− hepatocytes
Monocytes were isolated from HS (n=3) and co-cultured with HCV+ or HCV- hepatocytes, 

followed by real-time RT-PCR analysis of miR146a expression. (A–B) Relative changes in 

miR146a levels, normalized to U6 (2−ΔCt), in monocytes co-cultured with HCV+ 

hepatocytes versus HCV- hepatocytes with or without LPS and R848 stimulations for the 

indicated times. *P<0.05, analyzed by independent t test. (C–D) Relative changes in 

miR146a level, normalized to U6 (2−ΔCt), in monocytes co-cultured with HCV+ Huh 7 or 

HCV− Huh 7 hepatocytes, respectively, after stimulation with LPS and R848. The horizontal 

bars represent median values. No significant difference between these changes, analyzed by 

Mann-Whitney test.
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Fig. 3. Effect of miR146a inhibition on inflammatory cytokine production by monocytes from 
chronically HCV-infected individuals and HS
CD14+ monocytes isolated from chronically HCV-infected individuals and HS were 

transfected with miR146a specific inhibitor or negative control for 24h, and then stimulated 

with LPS/R848 for 6h prior to harvest. Levels of IL-12 (A), IL-23 (B), IL -10 (C), and TGF-

β (D) cytokine production in the culture supernatants was measured by ELISA. Each 

symbol represents one subject. Data from the same subject, where cells were treated with 

negative control or miR146a inhibitor, are connected by a dished-line. Horizontal bars 

represent the mean value. *P<0.05; ***P<0.001, analyzed by paired t test.
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Fig. 4. Effect of miR146a inhibition on the expression of SOCS1, STAT3 and STAT1 in 
monocytes from chronically HCV-infected individuals and HS
(A) Representative Western blots showing the protein levels of SOCS1, STAT3, and STAT1 

in CD14+ monocytes from HCV-infected subjects as well as HS transfected with control (1) 

or miR146a specific inhibitor (2) for 24 h and 48 h and then stimulated with LPS/R848 for 6 

h prior to harvest. Membranes were stripped and re-probed for β-actin as a loading control. 

(B–D) Densitometric analysis of the band intensities shown in A after normalization to β-

actin levels. Images were captured and analyzed by Chemi DocTM MP Imaging System. 

Data are presented as mean ± SD. *P<0.05, analyzed by independent t test.
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Fig. 5. Effect of miR146a inhibition in monocytes from HCV-infected individuals on Foxp3+ T-
reg cell development
(A) CD14+ monocytes isolated from chronically HCV-infected individuals and HS were 

transfected with miR146a inhibitor or negative control then co-cultured with autologous 

CD14- PBMCs for 5 days, followed by flow cytometric analysis of CD4+CD25+ Foxp3+ T-

reg frequencies. Representative dot plots for the gating of CD4+ cells, and then 

CD25+Foxp3+ T cells, in the experimental and control group are shown above; and 

summary data from 14 HCV-infected patients and 6 HS are shown. Each symbol represents 

one particular subject. Data from the same subject, where cells were treated with negative 

control and miR146a inhibitor, are connected by a dished-line. Horizontal bar represents the 

mean value. **P<0.01, analyzed by paired t test. (B) Proposed model for HCV-induced, NF-

κB-mediated miR146a induction and its role in regulating cytokine production and T-regs 

development during viral infection. HCV infection induces NF-κB activation and miR146a 

expression in monocytes, which in turn induces inflammatory cytokine (e.g., IL-23, IL-10, 

TGF-β) and thus promotes Foxp3+ T-reg differentiation. miR146a may regulate TLR and 

cytokine signaling through a negative feedback loop involving SOCS1 and STAT3 signaling 

pathway during chronic viral infection.
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