Effects of Weightlifting Training on Isometric Mid-Thigh Pull Rate of Force Development

Dylan G. Suarez
East Tennessee State University

Kristina Ushakova
University of Vermont

Satoshi Mizuguchi
East Tennessee State University

Guy Hornsby
West Virginia University

Michael H. Stone
East Tennessee State University, stonem@etsu.edu

Follow this and additional works at: https://dc.etsu.edu/etsu-works

Citation Information
Suarez, Dylan G.; Ushakova, Kristina; Mizuguchi, Satoshi; Hornsby, Guy; and Stone, Michael H.. 2018. Effects of Weightlifting Training on Isometric Mid-Thigh Pull Rate of Force Development. *13th Annual Sport Science and Coaches College*, Johnson City, TN. https://doi.org/10.13140/RG.2.2.31248.87049

This Presentation is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
Effects of Weightlifting Training on Isometric Mid-Thigh Pull Rate of Force Development
CHANGES IN ISOMETRIC RATE OF FORCE DEVELOPMENT DURING SPECIFIC PHASES OF A BLOCK PERIODIZED TRAINING CYCLE IN WEIGHTLIFTERS
Dylan G. Suarez1, Kristina P. Ushakova1, Satoshi Mizuguchi1, W. Guy Hurnsby2, Michael H. Stone1
1Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN
2College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, WV

PURPOSE: To examine the influence of three distinct training phases on isometric mid-thigh pull (IMTP) measures in well-trained weightlifters.

METHODS: Pre- and post-block IMTP data from 11 collegiate weightlifters was used for analysis. The mean of the best two attempts from each athlete for measures of PF and RFD from 0.50ms, 0.100ms, 0.150ms, 0.200ms, and 0.250ms were used for comparison. In total, results from five timepoints for each of the 11 athletes were examined in order to compare the effects of the three training phases.

RESULTS: A repeated measures ANOVA revealed no statistically significant (p < 0.05) effects of testing on any of the variables measured. When comparing post block values from each phase to pre-training cycle values, the largest increase in RFD050 (0.22) and RFD250 (0.22) occurred post peak-power (PP) phase, while a trivial increase (p = 0.16) in RFD100, no effect (p = 0.00) on RFD250, and a trivial decrease (p = 0.11) in PF.

CONCLUSIONS: Based on the results of the study, it is possible that changes in IMTP RFD may reflect the expected adaptations of block periodization. Rather than examining RFD changes at only one time-band, it may be valuable to monitor RFD across multiple time bands as changes in early and late RFD may not occur proportionally during a peak/power phase.

Abstract

• Competitive success in strength-power sports like weightlifting is highly reliant on an athlete’s ability to generate high magnitudes of force during critical time-points.1,2
• Weightlifters benefit from only competing a few times per year allowing distinct training phases to be emphasized throughout the training process.
• Block periodization serves as a framework for sequentially eliciting these specific adaptations across training phases, culminating in a “peak,” where the athlete has the greatest potential of demonstrating a successful performance on the day of competition.3
• The IMTP is a relatively quick, safe, and less fatiguing alternative for monitoring changes in strength and explosiveness throughout the training process compared to one repetition maximum tests.4
• Isometric RFD has been shown to be more responsive to changes in training compared to PF.5
• Previous research suggests that various training strategies potentially affect various RFD time bands differently.6,8
• Changes in early RFD time bands (<100ms) have been more closely associated with improvements in neural function7 and shifts in fiber type8 making them especially important to monitor during peaking phases.
• Therefore, the aim of this study was to examine the influence of three distinct training phases on multiple IMTP measures.

Introduction

• Subjects consisted of eleven collegiate weightlifters, 6 males and 5 females (221±3 y, 75±16 kg, 165±8 cm).
• All subjects were familiar with the testing procedures and the data was collected as part of an ongoing athletic monitoring program.
• Pre- and post-block monitoring results from three distinct training phases were selected for comparison.
• The first training phase examined was a strength-endurance phase (SE) and consisted of high volumes of low to moderate relative intensities. The second training phase was a strength-power phase (SP) and consisted of moderate volumes at higher intensities. The final training phase was a peak/power phase (PP) and consisted of one of week of increased volume (planned overload) followed by a three-week taper.
• Isometric mid-thigh pull testing (Figure 1) was conducted as described previously.9,10
• The mean of the best two attempts for measures of PF and RFD from 0.50ms (RFD050), 0.100ms (RFD100), 0.150ms (RFD150), 0.200ms (RFD200), and 0.250ms (RFD250) were taken from each testing.
• Isometric mid-thigh pull testing for the first and last time point (T1 and T5) took place 3–5 days after a major competition.
• The remaining testing timepoints (T2-T4) were conducted on the first day of each block ±24 hours after the last training session and often after a planned reduced training week.
• A 5x5 (testing x RFD time band) repeated measures analysis of variance (ANOVA) was performed (p < 0.05).
• Effect estimates such as percent changes, effect sizes (Cohen’s d), and visual representations are reported to relay trends and small changes that are important to advanced athletes.
• Effect sizes were interpreted using the following scale: 0.00–0.2 (trivial), 0.2–0.6 (small), 0.6–1.2 (moderate), and 1.2–2.0 (large).11

Methods

Figure 1. Isometric mid-thigh pull (IMTP)

STRENGTH-ENDURANCE

Figure 2. Phase specific changes in rate of force development

All data are represented as mean ± SD

Figure 2. Phase specific changes in rate of force development

All data are represented as mean ± SD

Results

• A repeated measures ANOVA revealed no statistically significant (p < 0.05) effects of testing on any of the variables measured.
• Although effect sizes were trivial (p = 0.06–0.31), all IMTP variables decreased from T1–T2. From T2–T3 there was a trivial increase in PF (p = 0.13) as well as small increases in all RFD time bands (p = 0.28–0.37). Between T3–T4 there was a trivial decrease in PF (p = 0.05) and small decreases in RFD (p = 0.22–0.36). From T4–T5 there was a small (p = 0.28–0.39) increase in the earlier (c. 0.150ms) RFD time bands, a trivial decrease (p = 0.16) in RFD200, no effect (p = 0.00) on RFD250, and a trivial decrease (p = 0.11) in PF.
• When comparing the post block values from each phase to pre-training cycle values (Table 1.), the largest increase in RFD200 (0.22) and RFD250 (0.22) occurred post SP phase, while the peak in RFD50 (p = 0.03), RFD100 (p = 0.31), and RFD150 (p = 0.22) occurred after the peak/power (PP) phase.

Table 1. Comparison of each timepoint to pre-training cycle values

<table>
<thead>
<tr>
<th>Phase</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>-0.21</td>
<td>-0.12</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>RFD100</td>
<td>-0.07</td>
<td>-0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>RFD150</td>
<td>-0.10</td>
<td>-0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>RFD200</td>
<td>-0.12</td>
<td>-0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>RFD250</td>
<td>-0.08</td>
<td>-0.06</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

PF = peak force, RFD = rate of force development, %Δ = percentage change, d = effect size, T1 = pre, T2 = post strength-endurance, T3 = post strength-power, T4 = pre peak/power, T5 = post peak/power

Conclusions

• As previously reported RFD displayed a much greater sensitivity to changes in training compared to PF.
• Monitoring changes in IMTP RFD may give insight into whether the desired kinetic adaptations to specific training phases are actually occurring in well-trained weightlifters.
• Although none of the group changes reached statistical significance, the overall trends in the SE (Figure 2a) and SP (Figure 2b) phases responded as would be expected, but the PP phase (Figure 2c) resulted in increases only in the early RFD time bands, leading to the possibility that a taper may have unique effects on earlier RFD time bands.

Based on the results of the study, it may be important to measure RFD across multiple time bands, especially during a taper when changes in early and late RFD may not occur proportionally.

References