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THE ZEEMAN EFFECT IN THE SOBOLEV APPROXIMATION: SPLIT MONOPOLE FIELDS AND THE
“HEARTBEAT” STOKES V PROFILE
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ABSTRACT

We calculate the circularly polarized Stokes V (λ) profile for emission lines, formed in hot-star winds threaded with
a weak radial magnetic field. For simplicity, the field is treated as a split monopole under the assumptions that it has
been radially combed by the wind, and rotation is not playing a central role. Invoking the weak-field approximation,
we find that the V (λ) profile has a characteristic “heartbeat” shape exhibiting multiple sign inversions, which
might be mistaken for noise in the absence of theoretical guidance. We also conclude that there is a tendency
for the V (λ) profile to integrate to zero on each side of the line separately. The overall scale of V (λ)/I (λ) is
set by the ratio of the field strength to the flow speed, B/v, characteristic of the line-forming region, and is of
the order of 0.1% for a wind magnetic field B ∼= 100G at depths where the wind speed is v ∼= 100 km s−1.

Key words: line: profiles – polarization – radiative transfer – stars: magnetic fields – stars: winds, outflows

1. INTRODUCTION

Recent advances in spectropolarimetry have ushered in a new
era of detecting and characterizing the surface magnetic fields
of hot stars (e.g., Donati et al. 1997, 2006; Bouret et al. 2008;
Hubrig et al. 2008; Wade et al. 2009). What still lies ahead is
extending these results into the winds, where the magnetic fields
can have an important dynamical influence. Indeed, magnetic
fields of optically thick winds, like those of Wolf–Rayet stars,
cannot be seen in the static layers owing to shrouding by the
supersonic wind.

In some instances, new detections come when pre-existing
observations are subject to closer theoretical scrutiny. In others,
theory can lead and motivate observations, guiding the detec-
tions of signals that might otherwise be too weak to distinguish
confidently from noise. It is this latter goal of theoretical sup-
port that motivates the approach of this paper, and as a result we
adopt a rough and exploratory treatment of the line formation
and magnetic environment.

As the detection of weak (�100 G) fields is the goal
here, it seems likely that such fields will be combed out into
a nearly radial configuration for strong-wind stars, perhaps
transitioning into a spiral pattern at larger radii where the
flow time approaches the rotation period (Friend & MacGregor
1984; Ignace et al. 1998). Although pockets of locally elevated
magnetic fields may lead to a different class of field detections
in the wind, here we explore the more generic case of a smooth,
global, and largely radial field, using a split monopole field to
grossly represent this general configuration. Hence our goal is
to determine the characteristic circular polarization signature
of a recombination line formed in a strong wind with a split
monopole magnetic field, and to use that prediction to assist
observers in making detections if such generic fields exist, given
that the first detections will likely be a challenge to distinguish
from noise. We leave the issue of highly asymmetric structures
to future work.

The reason that direct diagnostics of radial fields would be
of value is that they have dynamical importance whenever the
local Alfven speed approaches the local wind speed. Thus they

are important when

1 � B√
4πρ v

∼= B

111 G

r

10 R�

(
v

100 km s−1

)−1/2

×
(

Ṁ

10−5 M� yr−1

)−1/2

, (1)

where B is the magnetic field and Ṁ is the mass-loss rate.
Apparently, for the wind speeds of interest in supersonic winds,
�100 km s−1, there is dynamical significance when B � 100 G.
Open fields with B substantially in excess of 100 G would
likely leave a conspicuous imprint on the stellar spindown time
(MacGregor et al. 1992; ud-Doula et al. 2009), but the impact
of somewhat weaker fields would be more difficult to interpret,
and a more direct diagnostic of their presence is sought.

1.1. The Weak-Field Approximation

Throughout we adopt the weak-field approximation (Landi
Degl’Innocenti & Landi Degl’Innocenti 1972; Jefferies et al.
1989), whereby the longitudinal Zeeman shift and the circular
polarization act as though they were responding to a magnetic
field that was purely the line-of-sight component of the actual
field. Taking our wavelength scale x (measured from line center)
to be in units of the Doppler shift of a fiducial velocity v1,
designed to be flexible to the context of interest, then the
contribution to the Stokes V parameter for some infinitesimal
region with a given magnetic field �B and without regard
for any velocity gradient (that is, not invoking the Sobolev
approximation) is

dV (x) = dI (x + Δx) − dI (x − Δx)

2
, (2)

where dI (x)/2 is the contribution to the specific intensity in
either polarization in the absence of any B field. Here

Δx = ΔλB

λo

c

v1
=

�B · n̂

v1
ξo (3)
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determines the wavelength shift for a line-of-sight magnetic
field �B · n̂, so it determines the modification to the dI (x) in each
polarization. Also, λo is the wavelength of the line, and

ΔλB = 1.4 × 10−3 Å geff

�B · n̂

100 G

(
λo

5500 Å

)2

(4)

is the longitudinal Zeeman shift. The constant ξo depends only
on line parameters, specifically the effective Lande factor geff
and the line wavelength λo, and is given by

ξo = 7.7 × 10−4 geff

(
λo

5500 Å

)
km s−1

G
. (5)

At this stage v1 is arbitrarily chosen, but our convention for
Δx and x will be to use for v1 a fiducial wind speed at the
zone of peak line formation, a point which we term r = 1
because we also scale the radius to this point. This flexible
approach allows the actual value of x and Δx to be interpreted
from the shape of the line profile itself, rather than requiring
independently specified physical scales. Note that the above
expressions merely serve to describe the action of the weak-
field approximation and the role of the Zeeman shift; below
we will add the assumption of a steep velocity gradient and
apply the Sobolev approximation, modifying Equation (2) to
account for the interplay between the velocity v gradient and
the B gradient.

The weak-field approximation applies for fields whose Zee-
man shift, expressed in units of velocity, is much smaller than
the characteristic broadening velocity of the profile. For unre-
solved surface fields, that is the rotational velocity of the star,
but for winds, it is the wind speed v1 characteristic of the line
formation. The latter can be much faster, and indeed our neglect
of rotation requires that it is. Such wind speeds are extremely
large on the scale of the Zeeman effect, since a 100 G magnetic
field produces Zeeman shifts of only about 1 km s−1 in optical
lines, and this justifies the use of the weak-field approximation.
As such, our focus is not on strong-field stars like Ap/Bp stars
(e.g., Babel & Montmerle 1997; Townsend & Owocki 2005),
wherein the presence of multi-kG magnetic fields leaves a rigid
imprint on the circumstellar dynamics. Instead, we are inter-
ested in magnetic fields that are closer to equipartition with the
wind kinetic energy, where the field dynamical importance is
more subtle, but for detectable fields, would still be important
to understand.

This approximation allows for an especially powerful con-
ceptual convenience in the context of radial fields, because then
the line-of-sight component of the B field depends on angle in
the same way as does the line-of-sight component of the wind
speed v (also assumed radial). As such, the Zeeman shift has an
effect that closely mimics the Doppler shift, but with different
sign in the two polarizations. Then the presence of a radial B
field serves as a kind of polarization-dependent modification to
the effective wind velocity law, for purposes of line diagnostics.
Subtracting the intensity profiles from these effectively different
wind velocity laws then gives the Stokes flux profile V (x).

1.2. Previous Results

This project was begun in Ignace & Gayley (2003), where
some conclusions were reached about the expected overall scale
of the polarization, and the prospects for detection in the winds
of ∼100 G fields seemed challenging, but potentially possible
with current technology. However, that analysis included only

what we term here the “gradient effect,” whereby the Zeeman
shifts imply that the contributing volume at a given wavelength
penetrates to slightly lower r in one circular polarization than
in the other, an effect related to why the I (x) profile slopes
downward as |x| increases. However, the current paper will
elucidate an additional equally important effect, the “binning
effect,” which accounts for the fact that a given wavelength bin,
integrated over emission in all directions, will receive contribu-
tion over a smaller solid angle for whichever polarization has a
Zeeman shift that augments the Dopper shift. Or looked at in an
equivalent way, the Zeeman shifts for that polarization would
cause emission into the same solid angle to be stretched over a
wider wavelength bin, by augmenting the Doppler effect.

When the binning effect is appropriately included, we show
here that optically thin recombination lines should be expected
to have their Stokes V (x) signal cancel out when integrated
over wavelength on either side of the line, red or blue. This does
not imply that the entire V (x) profile cancels, however, because
the positive and negative components are somewhat separated
in frequency, and the good spectral resolution that is standard
in modern spectropolarimetry can resolve the positive from the
negative contributions if sufficient care is taken. Nevertheless,
the presence of multiple inversions in the sign of the polarization
suggests that knowing what spectral shape in V (x) to expect may
be helpful in distinguishing a real signal from noise.

Also, for optically thick lines, we will explore here two new
effects that also modify the Stokes V (x) profile, which both
have to do with the fact that magnetized optically thick lines in
the Sobolev approximation have different escape probabilities,
from the local Sobolev zone, in different directions for the dif-
ferent polarizations. The new effect we term the “angle effect”
stems from the fact that for a given observed wavelength, the
two different circular polarizations must escape their Sobolev
zones along different angles to appear at the same observed
wavelength, and that can favor the escape of one polarization
over the other. The other new effect we term the “shape effect,”
whereby the gradient in the Zeeman shift alters the Doppler
gradient that sets the shape of the Sobolev zone, augmenting
escape in some directions and reducing it in others. This lat-
ter effect assists the escape of photons when the field gradi-
ent augments the velocity gradient, and hinders escape when
they offset, and that can also favor one polarization over the
other.

As we shall see, accounting for these three new effects, one
in thin lines and two more in thick, does not generally alter
the overall scale of the circular polarization, but does alter its
detailed spectral signature. It is hoped that knowing in advance
what signature to look for will help observers disentangle what
is noise from what is signal, at least in the generic context of a
split-monopole field treatment.

2. STOKES V WITH RADIAL B FIELDS FOR OPTICALLY
THIN LINES

Let us first consider the case of optically thin lines (so photons
created in the line escape the Sobolev zone without scattering).
Here only one additional effect needs to be added to Ignace &
Gayley (2003), the “binning effect.” Below we show that the
binning effect produces an opposite net circular polarization to
the gradient effect, and this signal appears closer to line center,
so the two together yield a characteristic “heartbeat” signature
in V (x)/I (x) that exhibits one sign inversion in each profile
wing and one more at the line center.
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2.1. Basic Definitions

As we are ultimately interested only in the ratio V/I and
its profile shape, we can scale both the wavelength x (from
line center) and the radius r by their characteristic values at
the region of peak line formation. Thus r = 1 is typically the
photospheric radius (either at the stellar surface or at the wind
photosphere for thick winds, and we include no emission from
r < 1), and x = 1 is typically the wavelength that resonates at
r = 1, which might appear as an edge of a “flat top” for profiles
with a broad peak, or more generally as a kind of half-width at
half-maximum for more rounded profiles. It is not necessary to
be more specific, because the scaling of both x and r are arbitrary
to within a constant factor—it is only the shape and magnitude
of V (x)/I (x) that we need to understand, and the shape of the
I (x) profile itself defines the operational meaning of x.

What is actually measured for an unresolved point source is
the flux density (per wavelength bin and per detector area) F (x),
but this includes an inverse-square dependence on the distance
D to the source, which is not a variable of interest here. We
remove that dependence, and also simplify the appearance of
factors of π later on, by defining

I (x) = D2

π
F (x). (6)

Then V (x) is defined by decomposing I (x) into its contributions
from opposite circular polarizations, and subtracting the left-
hand (−) from the right-hand (+) components.

We also need to specify the tight connection between wave-
length x and radius r, enforced by the Sobolev approximation in
the presence of steep v gradients that allow us to neglect ther-
mal motions in comparison to the bulk motion, and allow us to
neglect interactions in any other regions outside the wind photo-
sphere. That connection is controlled by the combined Doppler
and Zeeman shifts along the direction cosine μ between the
observer and the gas parcel in question. The result for each of
the + and – circular polarizations, using Equation (3) for weak
fields, is

x± = −v(r)(1 ∓ b)μ, (7)

where v(r) is the velocity scaled to the wind speed at r = 1
(and corresponding to μ = 1 and x = 1 if magnetic fields are
neglected), and

b(r) = 7.7 × 10−4geff

(
λo

5500 Å

) (
B(r)

100 G

) (
v(r)

100 km s−1

)−1

(8)
comes from Equation (3). Note that when B measured in G
equals v measured in km s−1, the numerical value of ξo gives b.
Since ξo depends only on the line in question, lines with larger
ξo generate larger b(r) and are more favorable for detecting
circular polarization. The overall magnitude of b is set by B/v,
and this determines the detectability of the signal.

The sign conventions used are that v is regarded as positive for
radially outward flow, and B is regarded as positive for radially
outward field, so b is positive for radially outward �B also. This
means that a split monopole field, for a given polarization, has b
augmenting the effective v in the hemisphere where �B is radially
outward, and reducing it in the hemisphere where �B is radially
inward. The “+” polarization for V (x) is right circular, and this
is always listed as the upper sign when two signs are present. We
will always assume |b|�1 and work only to lowest nonvanishing
order, consistent with the weak-field approximation.

Another important function is the derivative dμ/dx±, which
controls the width of the solid-angular slice at each emitting
point that will contribute in the dx wavelength bin in each
polarization. Thus dμ/dx± controls the binning of the emission
(and results in the binning effect), and is given by∣∣∣∣ dμ

dx±

∣∣∣∣ = 1 ± b(r)

v(r)
. (9)

It is apparent that when b > 0, so for radially outward �B,
right-hand circular polarization experiences Zeeman shifts that
enhance the Doppler effect and spread the emission from a given
solid angle over a wider wavelength bin. This in turn tends to
yield a negative V (x), and oppositely for radially inward �B.

Finally, we will assume throughout the paper that there exists
a known line emissivity function j (r), the rate of creation of
radiant energy in the line per volume per solid angle (assuming
isotropic creation) at radius r, in either of the two independent
circular polarizations (recall that the weak-field approximation
to the longitudinal Zeeman effect treats all emission as circularly
polarized, and the local creation rate in the two polarizations is
indistinguishable). Further, we assume that known emissivity is
of power-law form,

j (r) = jor
−p. (10)

Here p may be treated as a variable to treat various types of
emission mechanisms, escape probabilities, ionization degrees,
and velocity laws.

Since j (r) is per volume, the radial integrand for the emission
scales as r2−p, and we assume p > 3 and carry the integration
to r = ∞. The neglect of any dependence of photon creation
rate on polarization is a reflection of the fact that the Zeeman
shift relative to the line wavelength, ΔλB/λo, is smaller than the
scale of b by the factor v/c ∼ 10−3. Hence the effects of b,
which redistribute polarized emission over the line, appear long
before the effects of any real difference in the creation rate of
photons in the two polarizations.

2.2. The Unipolar Field Result V ∗

Since the interest here is in radial B fields and radial v flows, a
great simplification is offered by adopting spherical symmetry.
The main stumbling block in using spherical symmetry with
magnetic fields is, of course, that a strictly spherically symmetric
field must be monopolar, so we may conclude that any physically
attainable field must break spherical symmetry. However, by
choosing a split monopole field for our study, we preserve the
maximal symmetry consistent with zero magnetic divergence,
since a split monopole field is constructed from a spherically
symmetric monopole field by reversing the field throughout one
hemisphere.

Because of the close connection between split monopole
fields and fields that are truly spherically symmetric (and hence
unphysical), it is actually convenient to first calculate the Stokes
V (x), which we denote V ∗(x), that corresponds to a hypothetical
spherically symmetric field. Despite being strictly unphysical,
this approach will be seen to have pedagogical value, and in
the case when V ∗(x) corresponds to a monopole field (i.e.,
B ∝ 1/r2), it can be mapped to the split monopole result
after the fact, just by accounting manually for the hemispheric
field reversal. Furthermore, in this paper we consider only the
most favorable case where the observer sees the star along one
magnetic pole, and then mapping V ∗(x) into V (x) is as trivial
as reversing its sign on one whole side of line center.
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These considerations allow us to compute V (x) from the
V ∗(x) in complete spherical symmetry, which is a helpful
simplification. Specifically, it allows the line profile to be
calculated using a single integral over radius, because the
emission in each radial bin dr maps into each dx bin according
only to the solid-angle fraction established by dμ/dx, where μ
is the direction cosine to any hypothetical observer that would
be in position to detect that emission. Normally we would only
be interested in a particular observer, but due to the complete
spherical symmetry, we can count all emission as being detected
by an array of equivalent observers in all directions, and merely
divide by the solid angle of any particular detector to find the
actual observed profile flux. Indeed, since we are ultimately
interested only in the comparison V ∗(x)/I (x), there is no need
for the final step, as we may just as well count all emission as
observed emission.

Carrying out the radial integral for the wind emission, and for
simplicity ignoring occultation and any photospheric continuum
effects (hence we are picturing fairly strong emission lines), the
results may be written as

I (x) =
∫ ∞

r+(x)
dr r2j (r)

∣∣∣∣dμ

dx

∣∣∣∣
+

+
∫ ∞

r−(x)
dr r2j (r)

∣∣∣∣dμ

dx

∣∣∣∣
−

(11)

and

V ∗(x) =
∫ ∞

r+(x)
dr r2j (r)

∣∣∣∣dμ

dx

∣∣∣∣
+

−
∫ ∞

r−(x)
dr r2j (r)

∣∣∣∣dμ

dx

∣∣∣∣
−

,

(12)
where r±(x) is the formation depth in each polarization for
emission in the outward radial direction at x. That is, r±(x)
solves x = v(r±)[1∓b(r±)], and since we envision all emission
as coming from r > 1, whenever we would otherwise have
r±(x) < 1 we replace r± with unity. Also, since we are working
only to lowest nonvanishing order in b, there is no need to
include any magnetic effects in the calculation of I (x), so for
that calculation r± = r±(B = 0) = r̄(x) comes from v(r̄) = x,
and we take b± = 0.

Finally, for pole-on observing of a purely radial field that
switches from outward in one hemisphere to inward in the
other, we have V (x) = V ∗(x)x/|x|. For other observing
angles, there will be some intra-hemispheric cancellation that is
straightforward to compute by also carrying out the azimuthal
integrations that our current symmetry assumptions allow us to
suppress. For this analysis, we are interested in establishing the
maximum detectability threshold for a radial field, so we adopt
the most optimistic assumption of pole-on observing, and this
also simplifies the mapping from V ∗(x) to V (x).

2.3. Heuristic “Heartbeat” Signal for B ∝ v

To advance our understanding of the desired diagnostic
signature, we again imagine complete spherical symmetry and
move in a pedagogically useful but even more physically
impossible direction, by considering B ∝ v. Such a situation
not only violates the global divergence-free constraint, it even
shows local divergence whenever v induces density changes, as
for spherically diverging supersonic winds. But for schematic
purposes, this assumption has the useful characteristic that here
the Zeeman shift will be in constant proportion to the Doppler
shift, except with opposite sign in the two polarizations (see
Equation (8)).

Hence for optically thin lines, the two polarizations will act
exactly like two winds with v(r) rescaled by 1 ∓ bo, where bo

is a global constant. Such a rescaling has the effect of rescaling
the x axis of the profile by this same global factor, and rescaling
the intensity axis by the inverse amount (as the total emission
in the two polarizations is conserved when the lines are thin
enough to avoid polarization redistribution during escape). It
is this extremely simple behavior that motivates our schematic
assumption.

Hence in this case, direct examination of the I (x) profile for
that line would immediately allow us to compute V ∗(x):

V ∗(x) = 1

2
{(1 + bo)I [(1 + bo)x] − (1 − bo)I [(1 − bo)x]} .

(13)
To lowest order in bo, this gives

V ∗(x)

I (x)
= bo

[
1 +

d ln I

d ln x

]
(14)

and for pole-on observers, changing sign in the rear hemisphere
(x < 0) gives

V (x)

I (x)
= bo

x

|x|
[

1 +
d ln I

d ln x

]
. (15)

For a generally bell-shaped I (x) profile, this would produce
the results as illustrated in Figure 1, for bo = 10−3 (other
bo values would generate a proportional scaling). Although a
physically unimportant case, the pedagogical value of B ∝ v is
that it provides an immediate way to see the qualitative attributes
of the V (x) profile for radial B fields, given only knowledge of
I (x) and bo, and it suggests a useful form for expressing the more
quantitative results that follow for a more physically plausible
field treatment. Specifically, we are introduced to the overall
“heartbeat” shape, while the general form of Equation (15)
explicitly demonstrates the “binning” (first term) and “gradient”
(second term) effects.

2.4. The Split Monopole Results

The simplest physically possible radial B field configuration
is the split monopole, for which B = ±B1r

−2 (where the “1”
subscript refers to the value at r = 1), with a positive sign
(outward) in one hemisphere and a negative sign (inward) in
the other. To determine b(r), we need to specify v(r), and here
we take the homologous approximation v = r , simulating lines
that form in the heart of the acceleration region, neither close to
nor far from the static star. Again the physical scale of v and r
are arbitrary because we are interested only in the shape of the
V (x) profile relative to the shape of the I (x) profile.

When we assume homologous expansion, v = r , we have
b(r) = b1r

−3, and Equations (11) and (12) produce

V ∗(x)

I (x)
=

∫ ∞
r+

dr r1−n(1 + b1r
−3) − ∫ ∞

r−
dr r1−n(1 − b1r

−3)

2
∫ ∞
r̄

dr r1−n
.

(16)
Then for |x| > 1 we have for the minimum radius of formation
of the two polarizations for wavelength x

r±(x) = x ∓ b1

x2
(17)

and r̄(x) = x, and for |x| < 1 we have r±(x) = r̄(x) = 1, as
we neglect line emission inside r < 1 to simulate a photosphere
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Figure 1. Percent polarization (dashed curve) of V (x)/I (x) for a heuristic Gaussian profile with a constant b = 10−3, so B is everywhere proportional to the radial
velocity v, and reverses polarity in one hemisphere, for a pole-on observer. Although this would only be physically possible for an incompressible velocity field, it
shows the qualitative attributes of the circular polarization for an optically thin line. I (x) in arbitrary units is also shown (solid curve) to clarify the meaning of the x
scale.

or an ionization change. Carrying out the elementary integrals
yields for |x| < 1

V ∗(x)

I (x)
= (p − 2)

(p + 1)
b1 (18)

for

I (x) = 1

(p − 2)
(19)

and for |x| > 1

V ∗(x)

I (x)
= −p(p − 2)

(p + 1)
b1x

−3 (20)

for

I (x) = x−(p−2)

(p − 2)
. (21)

Here the scale of I (x) is arbitrary but its shape defines the
meaning of the x scale. It has a flat top in this case, because we
assume a sharp cutoff in the line formation at r = 1, but only
its general shape is relevant to the discussion. Here a simple
recombination line of a majority species with v = r would
correspond to p = 6. The results for I (x) and V (x)/I (x) for
pole-on inclination with n = 4, 5, and 6 are shown in Figure 2.

2.5. A General Expression for V ∗(x)/I (x) for Thin Lines

A useful way to express Equation (16) is to place it in a form
similar to Equation (14). Working to lowest order in b gives for
|x| > 1

V ∗(x)

I (x)
= 〈b〉x + b(x)

d ln I

d ln x
, (22)

where b(x) is b(r) evaluated at r = r̄(x), and 〈b〉x is an average
value given by

〈b〉x =
∫ ∞
r̄

dr r2 j (r)
v(r)b(r)∫ ∞

r̄
dr r2 j (r)

v(r)

. (23)

Note that in the heuristic case b = bo from Equation (14), we
have 〈b〉x = b(x) = bo. When v = r and b(r) = b1r

−3, we
have 〈b〉x = b1(n − 2)/(n + 1) and d ln I/d ln x = 0 for |x| < 1
where the radial integrals are from r = 1 to r = ∞, and when
|x| > 1, the radial integrals are from r = x to r = ∞, and
〈b〉x = b1(p − 2)/(p + 1)x3 and d ln I/d ln x = 2 − p. For
split monopole fields, b(x) = b1/x

3, and the generalized form
recovers the same results as above.

Specifically, the new form shows that V (x) receives contri-
bution from a term that depends on I (x) itself, and a term that
depends on the slope of I (x). The term that is proportional to
I (x) stems from the “binning” effect, whereby for a given x,
a polarization whose Zeeman shifts augment the Doppler shift
has its intensity weakened by being spread over more frequency
bins, and the term that depends on the slope of I (x) stems from
the “gradient” effect, whereby a polarization whose Zeeman
shift augments the Doppler shift originates from deeper depths
so receives contribution from a larger volume. The opposing
signs of these two contributions suggest they tend to cancel
when integrated over either side of the emission profile, and we
next explore the simple reason why this integrated cancellation
is indeed complete for thin lines.

2.6. A Line-Integrated Constraint on V(x) for Optically Thin
Lines

Since we consider radial fields and radial flows, and since
v = 1 is considered to be already highly supersonic, the Zeeman
shift in the weak-field approximation does not pass any emission
across line center, so the forward hemisphere maps into the
blue side of the line and the reverse hemisphere into the red.
Then the fact that for optically thin lines, the total emission
in each polarization is the same in any volume implies that∫ ∞

0 dx V (x) = 0 when integrated over either side of the line.
Seeing this feature in V (x) profiles (as it continues to hold
approximately for optically thick lines as well) would be a good
indication of the presence of approximately radial fields, and
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Figure 2. Percent polarization of V (x)/I (x) for a thin line with power-law emissivity where b1 = 10−3 at the deepest formation depth of the line, for a split monopole
field and a pole-on observer. The different curves are for emissivity power laws p = 4, 5, and 6, where the larger p yield the larger percent polarization, as the steeper
emissivity powers imply that more of the emission comes from closer to the deepest formation depth r = 1, where B/v is larger. Flat-topped I (x) in arbitrary units is
also shown (solid curve), to show the meaning of the x scale.

it underscores the need for good spectral resolution to see not
only the usual Zeeman-type overall line asymmetry, but also
a polarization reversal on each side of the line independently,
which is the general characteristic of the “heartbeat” feature.

Note that it is not V (x)/I (x) that integrates to zero—the core
portion of the percent polarization tends to be diluted by the
bright core of I (x), so V (x)/I (x) would tend to show more
clearly the polarization in the wings of I (x). Hence the sign of
the wing polarization would dominate if it were V (x)/I (x) that
was being integrated over x, as suggested in Figure 2.

3. STOKES V WITH RADIAL B FIELDS FOR OPTICALLY
THICK LINES

When the Sobolev optical depth in the line obeys τS�1,
photons created in the line must locally scatter until they are
able to escape from resonance, in the familiar ways inherent in
the Sobolev approximation. This introduces two new avenues for
imprinting a net polarization into the profile that we will analyze
next, in the context of a complete redistribution approximation.

3.1. Complete Redistribution in Angle, Wavelength, and
Polarization

Optically thick line scattering is vastly simplified by assum-
ing that enough scatterings occur such that all “memory” of the
initial wavelength (within the line), angle, and polarization of
the newly created photon is rapidly lost prior to escape from the
Sobolev zone. One may then assume that each scattering is like
a new creation event for that photon, independent of its history.
This approximation has a generally good reputation in optically
thick environments, though its spectacularly streamlining prop-
erties are the main reason it is used. We will make the same
approximation here to take advantage of that simplification, and
an investigation of the errors introduced is beyond the scope of
this initial investigation into the general detectability of weak
radial B fields.

3.2. The Angular Escape Probability

The fundamental new complication that appears for thick
lines is that the shape of the emergent intensity profile depends
not only on the radius-dependent photon creation rate, but also
on the angle-dependent escape probability from the Sobolev
zones. In complete frequency redistribution, the Sobolev escape
probability when τS�1 is inversely proportional to the Sobolev
optical depth τS , along the direction μ from Equation (7). All
we require is the relative escape probability β(r, μ) because we
are treating only the effectively thin situation where all photons
created in the line escape in the line, so the relative escape
probability can be normalized to unity when integrated over
escaping μ. The Zeeman shift changes this normalized relative
escape probability to lowest order in b(r) into

β±(r, μ) = 1 + σvμ
2 ∓ b(r)

(
1 + σbμ

2
)

1 + σv/3 ∓ b(r)(1 + σb/3)
, (24)

where σv = (d lnv/d lnr) − 1 and σb = (d lnB/d lnr) − 1
control the line-of-sight Doppler and Zeeman shifts along μ.
For v = r , σv = 0, and for split monopole fields, σb = −3.

As noted above, β± is normalized so that
∫ 1
−1 dμ β± = 1,

as it is a relative photon escape probability normalized over
the (assumed isotropic) creation and scattering of photons in
the line. It already assumes an angular escape profile inversely
proportional to the optical depth profile, so applies only to
lines that are optically thick to scattering, and its normalization
further requires that the line be effectively thin in the sense
that all photons created in the line eventually escape in the
line. Effectively thick lines would not be ideal candidates for
observing V (x)/I (x), because they would likely form too far
out in the wind where B/v is low, so would dilute the V (x)
signal against a bright and largely unpolarized I (x) profile.
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Figure 3. Percent polarization of V (x)/I (x) for a thick line with power-law emissivity where b1 = 10−3 at the deepest formation depth of the line, for a split monopole
field and a pole-on observer. The different curves are for emissivity power laws p = 4, 5, and 6, where the larger p yield the larger percent polarization just as in
Figure 2. Also shown (solid curve) is the flat-topped I (x) in arbitrary units, which again defines the meaning of the x scale.

3.3. The Split Monopole Results

Integrating the wind emission, and ignoring occultation and
any photospheric continuum effects for simplicity, optically
thick but effectively thin lines yield the same eventual escape as
optically thin lines (i.e., unity), so without Zeeman influences
they yield the same I (x) as in Equation (11). However, to lowest
order in b we do have changes to V (x) given by

V ∗(x) =
∫ ∞

r+(x)
dr r2j (r)

∣∣∣∣dμ

dx

∣∣∣∣
+

β+(r, x)

−
∫ ∞

r−(x)
dr r2j (r)

∣∣∣∣dμ

dx

∣∣∣∣
−

β−(r, x) (25)

where the product∣∣∣∣dμ

dx

∣∣∣∣
±

β± =
(
1 + σv

x2

v2

)
(
1 + σv

3

)
v

[
1 ± 3b(1 + σv) x2

v2(
1 + σv

x2

v2

)
]

(26)

is expanded to first order in b, using σb = −3. Again v and
b in these expressions are evaluated at the r±(x) that solves
Equation (7) for μ = 1, and since we treat all emission as coming
from r > 1, whenever we would otherwise have r±(x) < 1 we
replace r± with unity.

If we again take v = r to treat lines that form in the heart
of the acceleration region where the expansion is approxi-
mately homologous, we have σv = 0 and b(r) = b1r

−3, then
Equation (26) gives∣∣∣∣dμ

dx

∣∣∣∣
±

β± = 1

r

(
1 ± 3b1

x2

r5

)
(27)

and Equations (11) and (12) now become
V ∗(x)

I (x)
=∫ ∞

r+(x) dr r1−p(1 + 3b1x
2r−5) − ∫ ∞

r−(x) dr r1−p(1 − 3b1x
2r−5)

2
∫ ∞
r̄(x) dr r1−p

.

(28)

Then for |x| > 1 we again have

r±(x) = x ∓ b1

x2
(29)

and r̄(x) = 1, and for |x| < 1 we have r±(x) = r̄(x) = 1. The
integrals yield for |x| < 1

V ∗(x)

I (x)
= 3(p − 2)

(p + 3)
b1x

2 (30)

with

I (x) = 1

(p − 2)
. (31)

For |x| > 1, we obtain

V ∗(x)

I (x)
= −p(p − 2)

(p + 3)
b1x

−3 (32)

with

I (x) = x−(p−2)

(p − 2)
. (33)

Note that the results for I (x) are identical in the thick and thin
cases, because when v = r the escape from the Sobolev zone
is isotropic either way, and we are treating only the effectively
thin situation where all line photons, once created, will escape
before being rethermalized. The results for I (x) and V (x)/I (x)
for pole-on inclination and p = 4, 5, and 6 are shown in Figure 3.

3.4. The General Form for V ∗(x)/I (x) for Thick Lines with
v = r

The purpose of this investigation is to seek general aspects of
the circular polarization profile due to weak radial fields, and as
such the specific shape of the I (x) and the V (x) profiles are not
the primary concern, but rather the connection between them.
What are the attributes of the I (x), given b(x), that contribute
to generating a detectable V (x)/I (x) polarized fraction? To
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address this for thick lines, we may again place Equation (28)
in a form similar to Equation (14), except that now

V ∗(x)

I (x)
= 3x2

〈
b

v2

〉
x

+ b(x )
d ln I

d ln x
, (34)

where again b(x) is b(r) evaluated at r = r̄(x), and 〈f 〉x is
the same emission average as in the thin case. If we then
take v = r and b(x) = b1x

−3, we have for |x| < 1 that
3x2〈b/v2〉x = 3(p − 2)b1x

2/(p + 3) and d ln I/d ln x = 0,
recovering V ∗(x)/I (x) = −3(p − 2)b1x

2/(p + 3). For |x| > 1,
we have 3x2〈b/v2〉x = 3(p−2)b1x

2/(p+3) and d ln I/d ln x =
2 − p, so V ∗(x)/I (x) = −p(p − 2)b1x

−3/(p + 3) as above.

4. DISCUSSION

The above results show that for thin lines, the V ∗(x) profile
integrates to zero over either side of line center, but this
constraint is no longer satisfied by thick lines, because Zeeman
shifts may actually favor the net escape of the polarization
that effectively augments the velocity gradient and enhances
escape in that polarization. However, the overall “heartbeat”
shape appears for both thick and thin lines, so there is still
polarization reversal on each side of the line, and the potential
exists for cancellation if the wavelength scale of the inversion
is not resolved. The inversion should appear somewhere near
where the slope in I (x) is maximal, so observational techniques
that co-add bins to increase signal must exert caution in that
vicinity, lest the bins so generated be too wide and enhance
cancellation. Careful inspection of the signal near sign reversals
is thus advisable, if global radial fields are present.

One caveat in regard to the problem of unintentional polar-
ization cancellation should be noted. Our schematic approach
of choosing a sharp cutoff in the line formation at r = 1 is
related to the profile kink that separates the core and wings of
I (x), and this kink is also associated with the discontinuous
spike in the wing polarization seen in Figures 2 and 3. This
spiky behavior in the wings of V (x) is not seen in Figure 1,
because there is no sharp cutoff involved in the line formation
that is implicit in that figure. Hence, we may conclude that the
sharp and discontinuous wing spike is an artifact of our treat-
ment, and a smoother transition is to be expected, unless the
I (x) profile itself transitions abruptly from flat-topped to slop-
ing downward. A smoother transition would also involve some
cancellation near the discontinuity in our spiky results, so one
should not interpret the peak polarization at the spikes as being
real or observationally attainable. Nevertheless, the sign transi-
tion is the feature of interest, and the capacity to resolve that
feature should inform the choices made when co-adding bins.

Our results show that discontinuities in V (x) can also appear
at line center, as in the unphysical situation seen in Figure 1
where the magnitude of B(r) is proportional to v(r) (but has a
polarity inversion like the split monopole), and also for optically
thin lines with a split monopole field as in Figure 2. In realistic
models, the line of magnetic polarity inversion would not appear
strictly in the hemisphere perpendicular to the line of sight to
the star, so the polarization inversion would be more gradual
than we depict, but nevertheless could be very noticeable. A
gradual transition with little polarization near line center, on the
other hand, happens for optically thick lines with homologous
expansion as in Figure 3, because then Zeeman influences near
line center (x = 0) experience a compensation between the
“binning effect” (regulated by dμ/dx) and the “shape effect”

(regulated by β), as seen in Equation (26), which causes V ∗(x)
to tend to zero as x does (like x2, we find). This in turn causes
V (x) to pass not only continuously through zero at line center,
but also with zero slope, in contrast to the sharp transition in thin
lines. Note the “gradient effect” and the “angle effect” are not
active near line center, so thin lines experience only the binning
effect there, whereas thick lines experience both the binning
effect and the shape effect, affecting the rate of escape along
μ = 0 into the dx bin.

The more generic situation is that of Figures 1 and 2, where a
sharp transition is seen—the delicate cancellation that produces
Figure 3 is a more specialized behavior, although of course
some smoothing of the transition will occur due to any non-ideal
aspects of the magnetic geometry and inclination. Because of
this, we suggest that whenever observations show a polarization
signal that tends sharply through zero as it crosses line center,
observers should not discount the possibility of a detection of a
real signal near line center.

The behavior of the polarization near line center, its mag-
nitude and the sharpness of the sign inversion, may thus be
useful in distinguishing thick from thin lines, and homologous
expansion from other forms. For example, the shape of I (x)
itself would not suffice to distinguish thick and thin lines under
homologous expansion, because then I (x) has identical shape
whenever the lines are effectively thin, regardless of whether or
not they are optically thin, because the escape from the Sobolev
zone is isotropic in either case.

Our most robust results, which depend the least on our model
assumptions, is the general form of Equations (22) and (34).
These show how the shape of I (x) is dependent on the shape
of V (x), in the most flexible terms possible, for thin and thick
lines respectively, for split monopole fields seen pole-on. In that
situation, these expressions can actually be used to invert the
V (x) and I (x) profiles into an effective b(x) distribution, and
thereby probe the v(r) profile assuming a monopolar B(r).

Even more generally, these points suggest that for any type of
polarization detection, considerations involving the underlying
field topology and global wind model may dictate the effec-
tiveness of various data analysis strategies, and mapping that
connection motivates theoretical studies of other types of field
geometries in future. This may be particularly relevant in light
of the reported detection by Donati et al. (2005) of circularly
polarized lines in the disk of FU Ori, demonstrating the capa-
bility to detect the longitudinal Zeeman effect in circumstellar
environments at a sub-percent degree of polarization.

All our results, even those for optically thick lines, assume
that the lines are effectively thin, so all photons created in the
line escape in the line. It should be noted that when this is not
the case, the I (x) will drop relative to what our expressions
give, but the V (x) will drop even more, since V (x) forms at the
greater depths where B/v is largest, but that is also where the
lines would be the most effectively thick and rethermalization
would be most severe. This would have to be seen against an
unfortunately bright background of I (x) that forms farther out,
where the wind is less dense and rethermalization is less of a
problem, and would be largely unpolarized due to the rapidly
dropping B/v. Hence it is suggested that effectively thick lines
are to be avoided, despite yielding very bright emission lines,
because the presence of many photons is not always a benefit
when they serve only to dilute the polarized component.

Similarly, emission lines that are too weak would be diluted
by unpolarized continuum emission, which we did not include in
this study to maintain our focus on strong lines with maximum
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simplicity. Hence it is suggested that lines of intermediate
strength, with peak intensities about as bright as the continuum,
and significant emission from regions in the wind moving
considerably slower than 1000 km s−1, would be best suited
for detecting global radial fields. Lines with larger values of the
ξo parameter are also favored.

5. SUMMARY AND CONCLUSIONS

Figures 2 and 3, and Equations (22) and (34), present the
fundamental results of this paper, that the circular polarization
profile V (x)/I (x) for a split monopole field should exhibit
a characteristic “heartbeat” shape, explained heuristically in
Figure 1. The scale of the circular polarization is determined by
the b parameter, so by the ratio B/v characteristic of the peak
line formation region, and we find the peak signal in V (x)/I (x)
reaches as high as p(p − 2)/(p + 1) times b1 for thin lines,
and around p(p − 2)/(p + 3) times b1 for thick lines. Here p is
the power-law index in the volume emissivity, and p ∼= 6 for
the recombination of the dominant species in a region of nearly
homologous expansion. Thus V (x)/I (x) might be expected to
peak at a level of nearly 3b1, although this may be somewhat
optimistic because of smoothing mechanisms that would create
some cancellation in the sharpest spikes in V (x). It was stated
earlier that b1 ∼ 8 × 10−4geff at 5500 Å, when B = 100 G and
v = 100 km s−1 are characteristic of the peak line-forming
region designated r = 1, manifested in the profile near x ∼= 1
where the wings of I (x) begin to fall steeply. Hence it would not
be surprising if a local B field of 100 G at a wind photosphere at
100 km s−1 can yield a peak V (x)/I (x) polarization at the 0.1%
level under ideal conditions. Inversely, the greatest challenge
to the detection of fields at the 100 G level is if the dominant
contribution to the line emission comes at radii where the wind
is substantially faster than 100 km s−1.

All these appear to show promise that fields strong enough
to have any dynamical significance in hot-star winds may lie
within the reach of modern instrumental detectability, and it is
our hope that these results will help assist observers in making
detections of such fields if they do in fact exist. We find it
especially significant that the Stokes V signature, owing to
the Doppler shifts of rapidly approaching and receding wind
hemispheres, reverses sign once on each side of the profile,
rather than doing so only at line center where Stokes V profiles
normally reverse in static photospheric applications. This gives
observers a morphological constraint to look for which might
otherwise be mistaken for noise were it not expected from the
theory. Sharp inversions across line center are also possible and
would be as diagnostically useful as inversions in the wings.
The potential presence of multiple sign changes in the polarized
spectrum is a potentially important issue to bear in mind when
binning data to increase signal.

Rotational modulation of the V (x)/I (x) signal would also
help separate signal from noise, if the magnetic axis misaligns
with the rotation axis, because such a misalignment would
create a periodic variation in the inclination of the magnetic
pole. If the fields are not seen pole-on, the conversion from
V ∗(x) to V (x) must include partial cancellation between the
side lobes toward and away from the direction of tilt of the
magnetic pole, owing to the reversal in the magnetic polarity
across the neutral line of radial fields. Hence the results given
here are more fundamentally interpreted as a calculation of the
spherically symmetric template V ∗(x), with the determination
of the observed V (x) following from geometric considerations
of the (possibly varying) inclination of the magnetic neutral

line. Here we consider only the ideal configuration to constrain
detectability under the most optimistic conditions—clearly, the
most pessimistic conditions would include a viewing angle
along the magnetic equator, resulting in complete cancellation
of the circular polarization at all wavelengths, unless the field is
highly asymmetric.

We stress that the split monopolar configuration is chosen here
simply to exemplify a field with a high degree of symmetry,
and because of its “generic” character in a dense radial wind
environment. These seem like more natural assumptions for
guiding observations, than would making detailed fits to specific
conditions intended to match observations that do not currently
exist. Although theoretical considerations suggest that when
rotation is unimportant, approximately radial fields might thread
dense winds, there remain ample opportunities for real winds
to deviate from quasi-spherical symmetry, especially when
rotation is dynamically important. For example, evidence for
such symmetry breaking is present in the rapidly rotating WR
star EZ CMa (St-Louis et al. 1995; Morel et al. 1998), so it
is certainly possible that magnetic detections in hot-star winds
may result from aspherical pockets of intense emission from
structures in the wind, rather than from the smooth radial fields
considered here. Only future observations can resolve this point.

Our current analysis has not considered stellar occultation or
emission from the stellar photosphere, as we have envisioned
fairly strong recombination lines for whom photospheric oc-
cultation and emission would not dominate the wind emission.
Neither would it be negligible, however, unless the lines are very
strong, but as we have seen, such lines would likely form too far
out to be ideal for V (x)/I (x) detections in a weak global B field.
Thus, for important lines of interest, circular polarization from
the red wing may well be reduced by occultation, and from the
blue wing may be diluted somewhat by the photospheric con-
tinuum. Our results are therefore not yet at the level of direct
modeling of observed profiles, such detailed modeling is bet-
ter attempted once promising observational detections already
exist.

Also, our simple model does not account for clumping, de-
spite significant evidence that clumping is prevalent in hot-star
winds (Hillier et al. 2003; Zsargo et al. 2008). But since our ap-
proach is sensitive to the radial distribution of j but not its overall
magnitude, only radially varying emission enhancements due to
clumping would have an impact. Any such radial dependence
could be treated as a straightforward modification to the power
law in j , which is one of the reasons we parameterized the
emissivity in a fairly general way. Since clumping that did not
affect the B field would tend to affect I (x) and V (x) similarly, it
would likely not have a significant impact on the degree of polar-
ization. However, depending on the dynamics of the clumping
process, it might engender a local increase in B, increasing the
field detectability in pockets where the emission is especially
strong. These are viewed as quantitative details that must be con-
sidered at the level of profile fitting once the basic effects are
detected.

Besides these issues, it will also be important to expand our
approaches to other geometries. Already, we have made an initial
attempt at predicting the V profile from a Keplerian disk (Ignace
& Gayley 2008). Further explorations of disks and extensions to
rigidly corotating structures (e.g., relevant to Ap/Bp stars like
σ Ori E, Townsend et al. 2005) will be pursued in the future.
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