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ABSTRACT

Faraday rotation is a valuable tool for detecting magnetic fields. Here, the technique is considered in relation to
wind-blown bubbles. In the context of spherical winds with azimuthal or split monopole stellar magnetic field
geometries, we derive maps of the distribution of position angle (P.A.) rotation of linearly polarized radiation across
projected bubbles. We show that the morphology of maps for split monopole fields are distinct from those produced
by the toroidal field topology; however, the toroidal case is the one most likely to be detectable because of its
slower decline in field strength with distance from the star. We also consider the important case of a bubble with a
spherical sub-volume that is field-free to approximate crudely a “swept-up” wind interaction between a fast wind
(or possibly a supernova ejecta shell) overtaking a slower magnetized wind from a prior state of stellar evolution.
With an azimuthal field, the resultant P.A. map displays two arc-like features of opposite rotation measure, similar
to observations of the supernova remnant G296.5+10.0. We illustrate how P.A. maps can be used to disentangle
Faraday rotation contributions made by the interstellar medium versus the bubble. Although our models involve
simplifying assumptions, their consideration leads to a number of general robust conclusions for use in the analysis
of radio mapping data sets.

Key words: circumstellar matter – ISM: supernova remnants – polarization – radio continuum: stars – stars:
magnetic field – stars: winds, outflows

Online-only material: color figures

1. INTRODUCTION

Magnetism plays an important role in the lives of stars,
frequently in the form of its influence on angular momentum
transport for star formation and evolution (e.g., Ghosh & Lamb
1979; Blandford & Payne 1982; Bodenheimer 1995; McKee &
Ostriker 2007; Meynet et al. 2011; Matt et al. 2012), and also
in terms of hot plasma generation (e.g., Davidson & Ostriker
1973; Babel & Montmerle 1997a, 1997b; Townsend et al. 2007;
Li et al. 2008; Güdel & Nazé 2009). Of interest to this paper is
the growing body of evidence for magnetism among massive
stars. Direct detections of magnetism in normal stars (i.e.,
not compact objects) are in large part relegated to measuring
circular polarizations in spectral lines arising from the Zeeman
effect (see Donati & Landstreet 2009). The first detection of
magnetism in a star besides the Sun dates back to Babcock
(1947). Since then, the field has exploded. A recent review of
the current state of the subject for non-degenerate stars can be
found in Donati & Landstreet (2009). The key result now is that
whereas magnetic detections were mainly limited to stars with
surface fields in the kilogauss range, modern instrumentation
and diagnostic strategies regularly achieve highly significant
detections in the regime of hundreds of gauss (e.g., Donati &
Collier Cameron 1997), and in some special cases much less
(e.g., Sennhauser & Berdyugina 2011).

Numerous direct detections of surface magnetism in massive
stars have been reported, with some recent examples being
Alecian et al. (2011), Petit et al. (2011), Schöller et al. (2011),
Hubrig et al. (2011, 2012) Grunhut et al. (2012a, 2012b,
2013), and Wade et al. (2011, 2012). These successes have
correspondingly motivated theoretical studies to understand
the origin of these fields for massive stars (e.g., MacGregor
& Cassinelli 2003; Braithwaite 2006; Cantiello et al. 2009),
their influence on massive star evolution (Maeder & Meynet

2003; Yoon et al. 2012), and connection to other observational
phenomena such as X-ray emissions (Babel & Montmerle
1997b; Gagne et al. 1997, 2005; Favata et al. 2009; Ignace
et al. 2010, 2013; Oskinova et al. 2011; Gagne et al. 2011;
Wade et al. 2012; Grunhut et al. 2013) and aspherical wind flow
(Poe et al. 1989; Shore & Brown 1990; Chevalier & Luo 1994;
ud-Doula & Owocki 2002; Townsend & Owocki 2005; Brown
et al. 2008; ud-Doula et al. 2008, 2013).

There are other diagnostics of stellar magnetism that have or
could complement the Zeeman-based approach. Non-thermal
radio emissions from massive star colliding wind binaries have
been used to infer stellar magnetism (e.g., Williams et al. 1997;
Dougherty & Williams 2000; De Becker et al. 2006; van Loon
et al. 2006). The Hanle effect is a weak Zeeman effect pertaining
to the influence of magnetic fields on the linear polarization in
spectral lines. The effect is sensitive to magnetic fields in the
1–100 G range (depending on the Einstein A-value of the lines
being measured) and has been successfully used in studies of
solar magnetism for decades (e.g., Sahal-Brechot et al. 1977;
Stenflo 1982; Berdyugina & Fluri 2004; Trujillo Bueno et al.
2005). There is a small but growing literature on its potential
application to other stars (Ignace et al. 1997, 2011; Lopez Ariste
et al. 2011; Bommier 2012; Manso Sainz & Martinez Gonzalez
2012).

Another important method for measuring astrophysical mag-
netic fields is Faraday rotation. The effect refers to how the
line-of-sight (LOS) magnetic field component rotates the posi-
tion angle (P.A.) of linear polarization for a beam of radiation.
The amount of rotation is also proportional both to the electron
density (hence operates only in a plasma) and to the path length
through such regions. Importantly, the amount of P.A. rotation
scales with the square of the wavelength of observation, λ2. In
this way most applications measure the polarization P.A. for a
range of wavelengths to derive a quantity called the “rotation
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measure” (or RM; see the following section) that encodes infor-
mation about the integrated product of the LOS field component
and electron number density.

Most applications of Faraday rotation are for interstellar or
extragalactic studies. Space precludes a comprehensive review
of this literature; discussion of the state of the field, with
references therein, can be found, for example, in Carilli & Taylor
(2002), Han et al. (2006), and Beck (2012). Here attention
is focused on the potential of Faraday rotation as a probe
of stellar magnetism in wind-blown bubbles. There has been
several recent observational developments that speak to the
interaction of stellar winds or supernova explosions with the
surrounding interstellar environment and the capacity of probing
these interactions with Faraday rotation.

Ransom et al. (2008, 2010) have conducted studies of Faraday
rotation effects arising from planetary nebulae (PNe). The
relative motion between a PN and the surrounding interstellar
medium (ISM) alters the strength and direction of the interstellar
magnetic field, leading to variations of the polarization P.A.
across the PNe and the trailing tail it creates in relation to
the P.A.s surrounding the structure. Although implicitly placing
constraints on the stellar magnetic field interior to the nebula, the
PNe act essentially as perturbers, on the scale of a few parsecs,
of the local medium, with Faraday rotation serving as a probe
of the resultant disturbances.

Regarding massive star influences, Savage et al. (2012) report
on an extensive study of Faraday rotation for the Hii region,
the Rosette Nebula. In this application, a cluster of massive
stars lead to a wind-blown bubble and surrounding photoionized
region by the central OB stars. In contrast to the PN studies of
Ransom et al. (2008, 2010), whose analysis was based on P.A.
maps with the diffuse Galactic synchrotron used as a source
of linearly polarized radiation, the Rosette study of Savage
et al. analyzed data from an array of sight lines to background
extragalactic sources of polarized emission that intercept the
nebula and surrounding region. Their data are consistent with
P.A. changes across the nebula, on a scale of ∼10 pc, arising
from the presence of the bubble and its impact on the interstellar
magnetic field.

For the case of Faraday rotation as a probe of stellar mag-
netism, Harvey-Smith et al. (2010) discuss an antisymmet-
ric RM morphology across the supernova remnant (SNR)
G296.5+10.0. The SNR nebula has two prominent emission
arcs on opposite sides of a symmetry axis, yet the P.A. rotations
of either arc are oppositely oriented. This kind of pattern would
be expected from a magnetic field that reverses its LOS polarity
from one arc to the other. The authors associated the pattern with
the magnetic field of a slow magnetized red supergiant wind.
The ejecta shell from the SN has “swept up” the supergiant wind
into the observed shell. To reproduce the RM pattern, the stellar
magnetic field would have to be toroidal to produce the observed
polarity change between the emission arcs. The authors derive
an expression to relate the observed scale of P.A. rotations to
properties of the shell and the stellar wind. The observed change
in amplitude of the RM by approximately 40 rad m−2 indicates
that a surface stellar magnetic field on the order of 500 G could
account for the observations.

In this paper, we explore further the idea of Faraday rotation
as a means of deriving information about stellar magnetism
in the large-scale wind that might sometimes be observed in
wind-blown bubbles and SNRs. In Section 2, a brief review
of the expressions describing Faraday rotation are given. A
derivation of P.A. rotation maps for an ionized and spherical

stellar wind with azimuthal (or toroidal) magnetic fields is
presented in Section 2.1. P.A. rotation maps for a split monopole
are presented in Section 2.2 as a contrast case. Returning to the
azimuthal field in Section 2.3, simple insertion of a spherical
sub-volume taken to have no magnetic field is used to simulate
a two-wind interaction like that of a SNR or any scenario in
which a fast flow overtakes a slower one from an earlier stage
of stellar evolution. In Section 3 applications of our results are
discussed, with concluding remarks given in Section 4.

2. THEORETICAL MODELS

The standard expression to represent the polarization P.A.
rotation, ψ , arising from Faraday rotation along a sight line is

ψ = ψ0 + RM ×
(

λ

1 m

)2

, (1)

where ψ0 is the orientation of a background polarization upon
which Faraday rotation operates, and RM is the “rotation
measure” given by the path length integral of

RM = 0.81 rad m−2
∫ (

B‖
μG

) ( ne

cm−3

) (
dz

pc

)
, (2)

where B‖ is the LOS component of the magnetic field, ne is the
electron density, and path length.

The rationale for this particular formulation is that observers
are frequently interested in deriving RM from the radio data
as a constraint on the magnetic field strength (modulo the
electron density, whose value may be constrained from other
considerations). One measures values of ψ for a range of
wavelengths; plotting ψ against λ2 in a log–log plot should
then yield a straight line whose slope is the rotation measure,
RM. If RM > 0, then the net Faraday rotation from all
of the parallel field components along the LOS, some being
positive and some being negative, in regions where there are
electrons has resulted in a counterclockwise rotation of the
background linearly polarized radiation. If RM < 0, the net
effect is a clockwise rotation. The sign of ψ , or alternatively
RM, is sensitive to the electron-density averaged net LOS field
component along a given sight line.

The distinction being drawn here is that our models emphasize
differential Faraday rotation (e.g., Minter & Spangler 1996).
This amounts to a map of how RM varies between neighboring
sight lines, which is equivalent to analyzing maps of ψ at a fixed
wavelength. Consequently, it is convenient for our purposes to
reformulate the effect of Faraday rotation as

ψ = π

z0(λ)

∫ (
B‖
B0

) (
ne

n0

)
dz, (3)

where n0 and B0 are chosen normalizations, z0(λ) is a relevant
length scale for the problem, dz is in the same units of z0, and
the factor of π is made explicit here both to indicate that ψ is
measured in radians and to highlight the fact that polarization
P.A. is degenerate in multiples of π (or 180◦).

It is straightforward to convert such a map in P.A. to one in
RM. If one evaluates ψ(λ0) at a reference wavelength λ0, then

ψ(λ) = ψ(λ0) × λ2

λ2
0

, (4)

and so

RM = ψ(λ0)

λ2
0

. (5)

2



The Astrophysical Journal, 765:19 (10pp), 2013 March 1 Ignace & Pingel

The following discussion of Faraday rotation in stellar bubbles
adopts the use of Equation (3).

We focus on three illustrative cases to highlight expected P.A.
map morphologies as motivated by current observations. First
the case of an azimuthal field distribution is considered. Since
the field strength diminishes only as r−1, it is this component
that is most likely to have observational relevance at the 1–10 pc
scales of stellar bubbles. Second, as a contrast case, P.A. maps
are derived for a split monopole field. This case leads to
results that are morphologically distinct from the azimuthal
field case. The field drops much faster with distance from the
star, as r−2, making this case essentially unobservable; still,
the split monopole has value in providing insight into the range
of morphological possibilities. Finally, we consider again the
azimuthal field scenario but now imposing a central “cavity”
that does not contribute to Faraday rotation (e.g., a central region
devoid of a magnetic field). This approximates a “swept-up”
field from a wind–wind interaction, such as may occur for an
SNR or a PN, where only the wind from an earlier phase of
stellar evolution has a relevant magnetic field.

We stress that spherical symmetry is adopted for the bubble
shape and density distribution. It is not the goal of this pa-
per to reproduce the observations for any particular object. A
spherically symmetric density profile provides a “controlled”
environment for which to evaluate and gain insight into Faraday
rotation through stellar bubbles. Real situations may involve a
broad range of additional (and potentially important) considera-
tions, such as aspherical density distributions (e.g., bipolar flows
or clumping); radius-dependent and/or aspherical ionization ef-
fects; correlated behavior between density, ionization, and/or a
dynamically relevant magnetic field (e.g., how a toroidal field
can lead to axisymmetric bubbles as described in Chevalier &
Luo 1994). Our spherical results provide a suite of baseline
cases that are analytic or semianalytic in which one can eval-
uate modifications to predicted P.A. maps arising from these
more complex factors.

Before proceeding it is useful first to review the different
contributing components to Faraday rotation that affect the
final observed P.A. at Earth. The underlying assumption is that
Faraday rotation acts to rotate the P.A. of linearly polarized
radiation as it passes through magnetized and ionized regions.
The background source (whether a point source or diffuse
synchrotron background) has some initial position angle ψorig.
This value receives an additional contribution ψISM owing to the
ISM. The total P.A. measured at Earth is then

ψmeas = ψorig + ψISM, (6)

where both ψorig and ψISM are independent quantities that can
vary from one sight line to the next.

Now for sight lines that intersect a stellar bubble, one must
subtract the ISM contribution for that segment of the sight line
passing through the bubble, which we signify as δψISM. Then
the contribution made by the bubble, ψbub, must then be added.
The total P.A. at Earth now becomes

ψmeas = ψorig + ψISM − δψISM + ψbub. (7)

The calculations in the following sections present maps specif-
ically of ψbub. Section 3 deals with the fact that the bubble
contribution alone is not what is actually measured.

2.1. Azimuthal Fields

Modeling the P.A. morphologies of stellar bubbles re-
quires the introduction of two coordinate systems: the observer

system and the stellar one. For the observer Cartesian, cylindri-
cal, and spherical coordinates are adopted as (x, y, z), (�,α, z),
and (r, θ, α), where the origin is the bubble center. Here z is the
observer axis, with Earth at +∞. The angle α is measured coun-
terclockwise about this z-axis. Then θ is the polar angle from
the observer axis. As we will be discussing sight lines inter-
secting the stellar bubble, the cylindrical radius � will be the
impact parameter for such rays. For the star, the corresponding
Cartesian and spherical coordinates are (x∗, y∗, z∗) and (r, ϑ, ϕ).

For the transformation between these coordinates, we choose
y = y∗. Using unit vectors, the viewing inclination angle i
between the z and z∗ axes is given by

cos i = ẑ · ẑ∗. (8)

Transformations between the angular quantities can be obtained
with spherical trigonometric relations, that will be used as
needed.

In this first example, an azimuthal stellar magnetic field
is considered. The vector field is B = Bϕ ϕ̂. Calculation of
Faraday rotation along a sight line requires determination of the
LOS field component, which is given by

B‖ = B · ẑ = Bϕ (ϕ̂ · ẑ). (9)

The transformation between the observer and stellar coordinates
is needed to evaluate the preceding dot product; the rotation
matrix between coordinate systems is given by(

x̂∗
ŷ∗
ẑ∗

)
=

(
cos i 0 sin i

0 1 0
− sin i 0 cos i

) (
x̂
ŷ
ẑ

)
. (10)

Consequently, one obtains

B‖ = −Bϕ sin ϕ sin i. (11)

In addition to the LOS field component, the distribution of
the field strength with location about the star is also needed. We
adopt the kinematic prescription put forth in Ignace et al. (1998)
based on wind compression theory (Bjorkman & Cassinelli
1993). The Ignace et al. model assumes a magnetic field that is
dynamically negligible as compared to the wind flow. Assuming
flux freezing, the axisymmetric field topology can be derived,
a result they refer to as “WCFields.” Their model includes a
parameter for the axisymmetric density distribution. For our
purposes this parameter, dμ/dμ0, is set to unity for a spherical
wind; then using their asymptotic formula (Equation (21) of
Ignace et al. 1998), the azimuthal field becomes simply

Bϕ(r, ϑ) = Beff
R∗
r

sin ϑ, (12)

where ϑ is the co-latitude on the star, signifying that the
maximum toroidal field strength occurs at the rotational equator
of the star; and for the model of Ignace et al., the conveniently
defined effective surface field strength, Beff , depends on the
actual surface field strength B∗, the stellar rotation speed vrot,
and the wind terminal speed v∞, with

Beff = B∗

(
vrot

v∞

)
. (13)

Calculation of the Faraday rotation proceeds from a sight
line-dependent integration through the bubble, as given by

ψbub(�,α) = π

zb

∫ [
Bϕ(r, ϑ)

Beff

] [
ne(r)

nw

]
(ẑ · ϕ̂) dz, (14)
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Figure 1. Illustration of the geometry for evaluating P.A. changes across
spherical bubbles because of Faraday rotation. The observer is located off to the
right. Linearly polarized radiation moving left to right passes through the bubble.
Along an arbitrary sight line of impact parameter � , the path length through
the bubble will be given by z0 − (−z0) = 2z0 = 2

√
R2 − � 2, where R is the

radius of the bubble. Upon emerging, the orientation of the linear polarization
against the sky will have rotated in a manner that depends on the magnetic field
and electron density along the path.

with ne = nw (R∗/r)2, where nw is a density scale associated
with the wind. This integral reduces to

ψbub(�,α) = − π

zb

∫ (
R∗
r

)3

sin ϑ sin ϕ sin i dz. (15)

Note that sin ϑ sin ϕ ≡ y∗/r = y/r for our coordinate system
definitions. Given that y ⊥ z, the coordinate y can be factored
out of the integral, which now becomes

ψbub(�,α) = −π sin i
y

zb

∫ (
R∗
r

)4
dz

R∗
. (16)

To solve this equation, we note that r2 = � 2 + z2, where � is
the impact parameter of the sight line under consideration, and
therefore a constant of the integration. The sight line enters the
bubble at +z0 and exits at −z0, where z0(� ) = √

R2 − � 2 (see
Figure 1). Back-front symmetry of the integration gives

ψbub(�,α) = −2π sin i
y

zb

∫ z0(� )

0

(
R2

∗
� 2 + z2

)2
dz

R∗
, (17)

which, after some rearrangement, has the solution

ψbub(x, y) = −2π

(
R∗
zb

) ( y

�

) (
R∗
�

)2

sin i

×
[

(π/4 − θ0/2) +
1

4
sin 2θ0

]
, (18)

where tan θ0 = �/z0(� ) and � =
√

x2 + y2.
There are several key comments to be made about this

solution.

1. First, the appearance of the factor of y means that the P.A.
map is left–right antisymmetric about the line of x = 0 in
the plane of the sky.

2. Second, the overall morphology of the P.A. map is indepen-
dent of viewing inclination. The inclination angle appears
in the solution only in the multiplicative factor sin i, acting
as an amplitude scale. Consequently, the P.A. map for the
edge-on view is the same map that results for any other
inclination, just the amount of P.A. rotation is reduced for
every sight line by sin i.

Figure 2. False color image with contours overlaid indicating the amplitude
of the P.A. changes that would be observed across a wind-blown bubble with
an azimuthal magnetic field. The plot is for the bubble contribution only. The
green and blue colors are negative P.A. rotations; yellow and red are for positive
values. The plot space is for the plane of the sky as y vs. x, with the coordinates
normalized to the radius of the bubble R. Note the antisymmetric morphology,
and that P.A. = 0◦ along the y = 0 axis. Further, this morphology is valid for
all viewing inclinations, with the amplitude of the P.A. rotation scaling linearly
with sin i.

(A color version of this figure is available in the online journal.)

Figure 2 shows a false-color plot of the P.A. map (or af-
ter proper normalization, the RM map) for the solution of
Equation (18). Based on our conventions, the positive x-axis
points down in this figure, and the positive y-axis points right;
together these give positive z toward the observer. The map
is indeed left–right antisymmetric and top–down symmetric.
Additionally, because the azimuthal field is everywhere perpen-
dicular to the LOS for x = 0, ψbub = 0 along the vertical that
passes through the map center.

No absolute scale is given in this figure as it depends on a
number of wind and star parameters, such as the surface field
strength, the mass-loss rate, wind speed, and stellar radius as
well as the bubble radius (hence, its age). We return to the
expected level of P.A. and applications in Section 3.

2.2. Split Monopole Fields

It is useful to consider a different field topology to explore
the range of P.A. map morphologies that can result in stellar
bubbles. An azimuthal field exhibits the most shallow radial
decline expected for a field that is carried out by a stellar wind.
The next most shallow decline would be a split monopole. This
is a radial magnetic field with a field strength Br = B∗ (R∗/r)2,
but the polarity changes sign from one hemisphere to the other.
So the field is outward directed in one hemisphere, but inward
in the other. Such a magnetic configuration is what would be
expected of a strong stellar wind that distorts a dipole field at
the star into a radial geometry (e.g., ud-Doula & Owocki 2002).

Calculation of P.A. maps proceeds as before, except that now
there are different factors appearing in the integrand because of
the new field topology. Instead of ẑ · ϕ̂ for the azimuthal field
case, we now have ẑ · r̂ = z/r for a radial field. The integral

4
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takes on the form:

ψbub = − π

zbub

∫ [
ne(r)

nw

] [
Br(r)

B∗

] (z

r

)
dz. (19)

Before proceeding, the split monopole case offers a new
wrinkle for the calculation of the Faraday rotation. The radial
field switches polarity between hemispheres. Consequently,
at a general viewing inclination, the net Faraday rotation
cancels identically for sight lines that do not intercept the
magnetic equator. Such sight lines enter and exit the bubble
in a hemispherical cap of just one field polarity. As a result,
there is as much clockwise P.A. rotation through, say, the first
half of the path length as there is counterclockwise contribution
through the second half. The radial field ensures that for every
value of B‖ along the path, there is a corresponding value of
−B‖ at a reflected position in a back-front sense along the path.
These two positions of opposed LOS field components occur at
the same radius from the star, and therefore occur at the same
density. A polarity switch, and therefore a net Faraday rotation,
only occurs for sight lines that intercept the magnetic equator.

The result of all this is that a pair of truncated hemispherical
caps appear at top and bottom in the P.A. maps for the split
monopole case. The extent of these truncations depends on
the viewing inclination. For the pole-on case, every sight line
passes through the magnetic equator, and there are no truncation
zones. The extreme opposite case is the edge-on view; here,
no sight lines pass through the magnetic equator, and so ψbub
is identically zero everywhere. In observer coordinates, the
truncation occurs for x � ±R cos i.

For sight lines that do intercept the magnetic equator, the
location along the path where this occurs, zeq, must be known so
that the sign change is properly taken account in the integration.
For sight lines with |x| < R cos i, the integral becomes

ψbub = − π

zb
R4

∗

{∫ +z0(� )

zeq

z

r5
dz −

∫ zeq

−z0(� )

z

r5
dz

}
, (20)

where a sight line with impact parameter � at observer azimuth
α for a split monopole viewed at inclination i will intercept the
equatorial plane at location

zeq = −� tan i cos α. (21)

Evaluating the integral of Equation (20), along with some
algebraic manipulation, leads to

ψbub = −2π

3

(
R∗
zb

) (
R∗
R

)2 [(
R2 cos2 i

x2 + y2 cos2 i

)
− 1

]
. (22)

This solution is displayed in Figure 3 at a viewing inclination
angle of i = 60◦.

Unlike the case of an azimuthal field, the scaling of the results
for the P.A. is more complicated with viewing inclination. The
truncated caps are inclination dependent. The P.A. maps for a
split monopole are markedly different from that of an azimuthal
field as seen in Figure 2. Whereas the azimuthal field produces an
antisymmetric morphology, all the Faraday rotations for a split
monopole are of the same sense: either everywhere clockwise
or everywhere counterclockwise.

As noted previously, the effects of Faraday rotation are much
smaller across the bubble for a split monopole than for an
azimuthal field. However, assuming that ψbub ≈ 0 for the vast

Figure 3. Similar to Figure 2, this P.A. map is for a split monopole field. In
contrast to the azimuthal field case, the P.A. rotations are all of the same sense,
either clockwise or counterclockwise (depending on the polarity of the field
axis directed toward the observer). Sight lines that fail to intercept the magnetic
equator when |x| > R cos i (see the text) make no contribution to a net Faraday
rotation, leading to the appearance of “truncated” hemispheres; the example
shown is for i = 60◦.

(A color version of this figure is available in the online journal.)

majority of sight lines in the split monopole case, the bubble
still influences the P.A. map of the region because of differential
RM effects for sight lines intercepting the bubble versus those
that do not. In other words even if ψbub � 1, the mere presence
of the bubble means that δψISM may still be significant. More
will be said about this in Section 3.

2.3. “Swept-up” Fields

For the last application, consider again the azimuthal field
case. To simulate a two-wind interaction, where an inner wind
(or a supernova ejecta shell) is blown into, and sweeps up, an
outer wind from an earlier stage of stellar evolution, we impose
a central spherical region that does not contribute to Faraday
rotation. This could be either because the central region has
no magnetic field or because it consists of neutral gas (the
latter being unlikely for applications to massive stars). The
overall scenario is intended to approximate situations like the
production of a PN, or a fast wind from a blue supergiant
overtaking a slower denser red giant wind (e.g., Chita et al.
2008), or an SN explosion that expands into the wind of a
progenitor phase.

To be specific, we define an interior boundary of radius
R1 < R2, now with R2 the outer bubble radius. For r < R1,
the region is effectively a “cavity” in terms of its contribution
to the Faraday rotation along a sight line. The polarization P.A.,
ψbub, now becomes

ψbub ∝ y sin i ×
∫ z2

z1

dz/r3, (23)

where z1 = 0 for � � R1, but for � < R1, z1 takes on the
value

z1 =
√

R2
1 − � 2. (24)
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Detailed steps for the derivation of ψbub as a function of
sight line, along with a generalization to a power-law density,
are given in the Appendix. Figure 4 shows examples of the
resulting P.A. maps for cavities of different relative extents
with R1/R2 = 0.25, 0.5, and 0.75. The maps remain left–right
antisymmetric as in Section 2.1, but now two maxima appear in
the form of arcs.

Not surprisingly, these maps are quite reminiscent of the
morphologies seen in SNR G296.5+10.0 (Harvey-Smith et al.
2010). In that report, a discussion and derivation similar to
this paper are presented. Harvey-Smith et al. introduced a
toroidal field to explain the antisymmetric dependence of RM
observed in the SNR. Those authors additionally included
density and magnetic field enhancements arising from a shock.
These are additional relevant ingredients that we have not
incorporated here, but such effects could be included either in a
phenomenological way or using detailed dynamical simulations.
Our approach highlights the robust nature of the antisymmetric
P.A. map morphology provided by an azimuthal field along with
the appearance of arc-like features arising from the presence of a
“cavity,” a region devoid of any contribution to Faraday rotation.

3. DISCUSSION

The objective of this paper has been to elucidate the effects
of Faraday rotation through a stellar bubble by evaluating of
P.A. maps (or equivalently RM maps) under certain simplifying
assumptions to focus on broad morphological trends. As such,
spherical symmetry has been assumed for the geometry of
the bubble and the run of density, specifically a wind-type
density that drops as r−2 with radius. At this point it is worth
commenting on the limitations of this approach, the kinds of
effects that need to be included for application to particular types
of bubbles, and strategies for best extracting information about
the properties of the bubble and its immediate environment.

The case of an azimuthal stellar magnetic field is likely the
only one of observational relevance because of its more gradual
decline in field strength as r−1 to allow for detection at the
1–10 pc scale of stellar bubbles. A robust prediction of even
the simplified models presented here is that a sign reversal in
polarization P.A. (or RM) is expected when an azimuthal field
plays a role in the Faraday rotation. However, that sign reversal
will only be achieved if the ψbub term can be isolated.

Imagine a situation in which the ISM along a sight line passing
near to a bubble, but without intercepting the bubble, produces
a P.A. value of the form

ψISM = π × L0/zISM, (25)

where L0 is the relevant length scale over which one can define
an average product of the interstellar magnetic field and electron
number density. In other words,

〈B‖ ne〉 = 1

L0

∫ L0

0
B‖ ne dz. (26)

Assuming that this average value is what would have been
sampled for a sight line through the bubble, and further assuming
spherical symmetry, the decrement to the interstellar P.A.
rotation caused by the presence of the bubble as a function
of impact parameter is

δψISM(� ) = ψISM
2R

L0

√
1 − � 2

R2
. (27)

Figure 4. These three panels are for the case of an azimuthal field, now with
an interior spherical region free of any magnetic field included. The intent is
to approximate a two-wind interaction, with an inner, unmagnetized fast wind
catching up to an outer slower and magnetized wind. The panels, from top to
bottom, are for interior field-free regions with radii of 25%, 50%, and 75% of
the bubble radius.

(A color version of this figure is available in the online journal.)
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Figure 5. Panel (a) shows a P.A. map for a bubble with an azimuthal field, like Figure 3, but now with interstellar polarization effect included (see the text). Panel
(b) shows how the polarization P.A. changes as a function of y along a horizontal line with x = 0.1R. Black is the full profile. Green signifies the term δψISM. The
horizontal blue line is the half-point between the two local maxima. Then the vertical blue arrows represent the full change in P.A. from one side of the bubble to the
other because of ψbub(x, y).

(A color version of this figure is available in the online journal.)

The ISM is highly inhomogeneous in terms of its magnetic
field distribution, density, and ionization. Consequently, one
hardly expects that neB‖ at the location of the wind bubble would
equal the path-length-averaged value 〈B‖ ne〉. Still, it is useful
to consider the resultant P.A. map from the combination of the
different contributions by adopting such a scenario. Choosing
ψISM

3 = 1000◦ and 2R/L0 = 0.01, Figure 5(a) shows a P.A.
map and contours for an azimuthal field case, similar to the
style of previous figures, but now with the Faraday rotation
contribution from the ISM included. Additionally, Figure 5(b)
displays what the measured P.A. would be along an axis at
x = 0.1R.

Figure 5 is important for illustrating how to infer the various
components to the measured value of ψmeas. If one could
measure the P.A. map across a wind-blown bubble with an
azimuthal field, the following outlines how to decompose the
trace of the signal in Figure 5(b) to determine ψISM, δψISM,
and ψbub. Note that it is assumed that the interstellar field and
electron density in the vicinity of the bubble is approximately
constant (or at least smoothly varying).

1. For |y| > R, the P.A. is set by sight lines that do not
intercept the bubble and therefore sample the interstellar
field and electron density.

2. For |y| < R, the sight lines intercept the bubble. The az-
imuthal field leads to ψbub that is predicted to be antisym-
metric, but the decrement term δψISM is symmetric. The
result is a left–right asymmetric profile.

3. The two peaks in Figure 5(b) can be used to deduce the
amplitude of ψbub. The vertical blue double-arrowed line

3 Recall that polarization P.A. is degenerate in multiples of 180◦; here
ψISM = 1000◦ amounts to a P.A. of 100◦, as seen in Figure 5(b).

represents the total change in the P.A. rotation owing to the
bubble contribution. Introducing ψmax(x) = |ψbub(x, ymax)|
as being the maximum P.A. rotation through the bubble
at location (x,±ymax), the blue arrow has an amplitude of
2ψmax. The value of ψmax is related to the scale length zb that
depends on the wavelength of observation, the density scale
of the bubble, and importantly the surface field strength of
the star. Bisection of the vertical arrow, as illustrated with
the horizontal dotted line, yields the value of ψmax.

4. The bisection mentioned in the previous point gives the
maximum decrement due to δψISM. With spherical sym-
metry, one should expect a distribution of this decrement
as indicated by the green dashed line. Bear in mind that
the particular example of Figure 5 implicitly assumes a lo-
cal interstellar field of positive polarity, which leads to the
bowl-shaped decrement as shown. If the local field were of
the opposite polarity, the “decrement” would in fact pro-
duce an inverted bowl shape, meaning that the green line for
δψISM would lie above ψISM. Consequently, the decompo-
sition process gives both the strength of the local magnetic
field and its polarity. As one last comment, it is possible
that no decrement is found. Such a result would arise if the
interstellar field in the locale of the bubble were very low,
or if the local ISM were of low ionization.

To be yet more quantitative, it is possible to relate a measured
value of ψmax from the bubble contribution to the length scale
zb. Equation (18) gives the solution for ψbub in the azimuthal
field case. Figure 6 plots the value of |ymax| as a function of x.
In other words, holding x fixed and measuring the polarization
P.A. in a direction perpendicular to the axis of antisymmetry,
Figure 6 provides the location (x, ymax).

7
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Figure 6. Solution for the location of ymax(x), where ψmax is achieved in the
case of a wind-blown bubble with an azimuthal magnetic field (but no cavity).
The black line is the numerical solution. For x/R � 1, ymax/R is also small,
indicating that ψmax occurs near the projected center of the bubble. In this limit
ymax ≈ x/

√
2, as shown by the blue line, which has the correct slope but is

shifted upward slightly for ease of viewing.

(A color version of this figure is available in the online journal.)

The scaling for the P.A. rotation increases rapidly with
decreasing value of the impact parameter, � . Consequently, the
strongest measurable effect of the bubble for Faraday rotation
will be around the center of the projected bubble. At these
locations, one has θ0 ≈ 0, for which ymax is easily derived to be

ymax ≈ x/
√

2, (28)

which is indicated by the blue line in Figure 6. The value of
ψmax is also straightforwardly derivable as

ψmax ≈
√

1

27
π2 sin i

(
R3

∗
zb x2

)
, (29)

where ψmax
4 is measured from the data corresponding to a

selection of x on the P.A. map. From these measures one can
determine zb/ sin i from the data. In the absence of any other
information, there is an inclination ambiguity. Still, an upper
limit to zb is obtained from assuming an edge-on view of the
system, in which case a lower limit to the stellar surface magnetic
field strength is also obtained.

The overall scale of the P.A. rotation through a stellar bubble
is set by a combination of stellar and wind parameters, and
the size of the bubble itself (which, of course, is related to
its age). For the azimuthal field case, which is the one most
likely to be of observational significance, we have already that
Bϕ = Beff (R∗/r). For the number density of electrons in a

4 The reader might be concerned that the value of ψmax appears to diverge as
x → 0, for which ymax → 0 as well. First, the apparent divergence does not
take place owing to the finite size of the star. Second, although large values of
ψmax can be achieved, the polarization P.A. suffers a 180◦ degeneracy. Many
rotations in ψ over a small observed angular scale rapidly leads to polarimetric
cancellation. For expected star, wind, and bubble parameters, the vast majority
of the bubble will like have at best a modest value of ψ , except perhaps at quite
long wavelengths.

spherical stellar wind, we have been using ne = nw (R∗/r)2.
The density scale constant is given by

nw = Ṁ

4π μemH v∞ R2∗
, (30)

where Ṁ is the mass-loss rate, μe is the mean molecular weight
per free electron, and v∞ is the wind terminal speed. Then, the
scale constant for Faraday rotation becomes

ψ0 = 6.◦0 ×
(

Beff
10 G

) (
R∗

100 R�

) (
Ṁ/μe

10−6 M� yr−1

)
(

v∞
100 km s−1

) (
R

1 pc

)2

×
(

λ

30 cm

)2

. (31)

This scale parameter is found to be larger for stars with stronger
surface fields, larger size, and higher mass-loss winds; it is
smaller for faster winds and larger (older) bubbles. It also has
the standard quadratic dependence on wavelength.

Using the preceding expressions, one can derive a ratio of the
stellar radius to the Faraday rotation length scale for the bubble,
zb, to be

R∗
zb

= 4 × 1011 ×
(

Beff
10 G

) (
Ṁ/μe

10−6 M� yr−1

)
(

v∞
100 km s−1

) (
R∗

100R�

)

×
(

λ

30 cm

)2

. (32)

The scale of this ratio is huge and thus warrants a comment
of interpretation. Implicit is that the length scale for Faraday
rotation zb has been evaluated for the magnetic field and wind
density near the stellar surface, which are enormous compared
with interstellar conditions. As a result, zb is driven to incredibly
small values on the order of 1 cm and less. However, expected
values of Faraday rotation across the bubble are much smaller
than at the scale of the star. Defining an associated scale
z′

b related to the dimensions of the bubble instead of the
star gives (R/z′

b) = (R∗/zb) × (R∗/R)2, which when using
the parameterization of Equation (32) is of order 10−2. In
other words, the length scale associated with rotation of the
polarization P.A. through 180◦ is roughly 100 times larger than
the radius of the bubble.

4. CONCLUSIONS

The goal of this study has been to develop insight into the pos-
sibilities of using Faraday rotation to probe stellar magnetism
in wind-blown bubbles. Adopting spherical symmetry and con-
sidering two field topologies of azimuthal and split monopole
fields, analytic and semianalytic results were presented in the
form of P.A. maps arising from Faraday rotation across a stellar
wind bubble. The field strength for a split monopole declines
too fast to have detectable effects for Faraday rotation. Instead,
only the azimuthal field scenario is likely to lead to detectable
signals, for which the key result derived here is the antisym-
metric morphology for the P.A. rotations (or equivalently, the
RMs) across the bubble in addition to a simple sin i scaling of
the amplitude of P.A. rotation. Inclusion of a central spherical
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region of zero magnetic field leads to prominent and antisym-
metric P.A. rotations in arc-like structures like those observed
in SNR G296.5+10.0 (Harvey-Smith et al. 2010).

To date, studies of Faraday rotation effects across Hii regions
appear consistent with variations in the interstellar magnetic
field (e.g., Harvey-Smith et al. 2011). Clearly there may be
only a restricted subset of bubbles for which our models will
have applications. Moreover, dispersion in the interstellar RM
may present challenges in detection and interpretation of the
effects we have described even when present, as, for example,
variations in the interstellar RM can have typical amplitudes
of order 10 rad m−2 (Mao et al. 2010). We are considering
strategies for interpreting the interaction of interstellar magnetic
fields with stellar bubbles using Faraday rotation effects. Given
recent results in relation to SNR G296.5+10.0, the PN cases
(Ransom et al. 2008, 2010), and the Rosette Nebula (Savage
et al. 2012), Faraday rotation offers great promise as a means of
using stellar bubbles to discern the properties of stellar and/or
interstellar magnetic fields.

The authors are grateful to Steve Gibson for many helpful
discussions on astrophysical problems involving Faraday ro-
tation and also to the anonymous referee for comments that
have improved this paper. R.I. acknowledges support for this
research through a grant from the National Science Founda-
tion (AST-0807664). N.M.P. acknowledges support from the
National Science Foundation Research Experiences for Under-
graduates (REU) program through grant AST-1004872.

APPENDIX

GENERALIZED SOLUTION FOR A STELLAR WIND
WITH AN AZIMUTHAL MAGNETIC FIELD

For an azimuthal magnetic field of the form Bϕ ∝ 1/r , there
is a general solution to the P.A. distribution arising from Faraday
rotation for a spherically symmetric envelope with an electron
density that is a power law in radius, ne ∝ r−m, with m being
the power-law exponent. Consider a bubble of outer radius R2
and inner radius R1. For r < R1, the interior region makes no
contribution to the Faraday rotation. Using θ as the variable
of integration, with tan θ = �/z, a sight line enters the outer
bubble edge at θ2 and enters the inner region at θ1. Then the
solution for the P.A. rotation arising from the bubble contribution
is

ψbub = π

(
2R2

zb

) (
R2

�

)m ( y

�

)
sin i

∫ θ1

θ2

sinm θ dθ. (A1)

Although the preceding integral is mathematically valid, it
may not be physically plausible for arbitrary values of m. The
selection of Bϕ ∝ r−1 essentially assumes a frozen-in field that
is dragged out with the wind plasma in a constant expansion
flow (e.g., Weber & Davis 1967), implying an inverse square-
law density. However, m �= 2 could represent changes in the
ionization state of the gas with distance from the star.

The integration of Equation (A1) takes into account the front-
back symmetry of the situation by integrating only over the front
hemisphere facing the observer. This gives rise to the factor of
two appearing in the first fraction. The integration limits also
allow for an interior central cavity of zero field (or, alternatively,
zero ionization) to the wind-blown bubble, as was discussed in
the swept-up wind case of Section 2.3.

With or without a central cavity, the upper limit to the integral
is always given by

sin θ2 = �/R2, (A2)

for a bubble of outer radius R2. The presence of a cavity only
affects the lower limit to the integral. If there is no cavity, then
θ1 = π/2 for all sight lines. However, within an interior cavity
of radius R1, the lower limit of θ1 = π/2 holds only for sight
lines that fail to intercept the cavity region, with � � R1. Sight
lines with � < R1 pass through the cavity; the upper limit to
the integration now becomes

sin θ1 = �/R1. (A3)
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