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Maxent estimation of aquatic Escherichia
coli stream impairment
Dennis Gilfillan1, Timothy A. Joyner2 and Phillip Scheuerman1

1Department of Environmental Health Sciences, East Tennessee State University, Johnson City, TN,
United States of America

2Department of Geosciences, East Tennessee State University, Johnson City, TN, United States of America

ABSTRACT
Background. The leading cause of surface water impairment in United States’ rivers
and streams is pathogen contamination. Although use of fecal indicators has reduced
human health risk, current approaches to identify and reduce exposure can be
improved. One important knowledge gap within exposure assessment is character-
ization of complex fate and transport processes of fecal pollution. Novel modeling
processes can inform watershed decision-making to improve exposure assessment.
Methods. We used the ecological model, Maxent, and the fecal indicator bacterium
Escherichia coli to identify environmental factors associated with surface water impair-
ment. Samples were collected August, November, February, and May for 8 years on
Sinking Creek in Northeast Tennessee and analyzed for 10 water quality parameters
and E. coli concentrations. Univariate and multivariate models estimated probability
of impairment given the water quality parameters. Model performance was assessed
using area under the receiving operating characteristic (AUC) and prediction accuracy,
defined as the model’s ability to predict both true positives (impairment) and true
negatives (compliance). Univariate models generated action values, or environmental
thresholds, to indicate potential E. coli impairment based on a single parameter.
Multivariatemodels predicted probability of impairment given a suite of environmental
variables, and jack-knife sensitivity analysis removed unresponsive variables to elicit a
set of the most responsive parameters.
Results.Water temperature univariatemodels performed best as indicated by AUC, but
alkalinity models were the most accurate at correctly classifying impairment. Sensitivity
analysis revealed that models were most sensitive to removal of specific conductance.
Other sensitive variables included water temperature, dissolved oxygen, discharge, and
NO3. The removal of dissolved oxygen improved model performance based on testing
AUC, justifying development of two optimizedmultivariate models; a 5-variable model
including all sensitive parameters, and a 4-variable model that excluded dissolved
oxygen.
Discussion. Results suggest that E. coli impairment in Sinking Creek is influenced
by seasonality and agricultural run-off, stressing the need for multi-month sampling
along a stream continuum. Although discharge was not predictive of E. coli impairment
alone, its interactive effect stresses the importance of both flow dependent and
independent processes associated with E. coli impairment. This research also highlights
the interactions betweennutrient and fecal pollution, a key consideration forwatersheds
with multiple synergistic impairments. Although one indicator cannot mimic the
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plethora of existing pathogens in water, incorporating modeling can fine tune an
indicator’s utility, providing information concerning fate, transport, and source of fecal
pollution while prioritizing resources and increasing confidence in decision making.

Subjects Microbiology, Public Health, Computational Science, Data Mining and Machine
Learning, Spatial and Geographic Information Science
Keywords Fecal indicators, Environmental microbiology, Surface Water quality, Statistical
modeling

INTRODUCTION
Rapid urbanization of rural areas causes deterioration in water quality, rendering many
water bodies unfit for their domestic and recreational use. An assortment of contaminants
is introduced into aquatic systems, but pathogens represent the major cause of stream
impairment in the United States (United States Environmental Protection Agency, 2017).
Pathogens are difficult to measure directly because of their sporadic distribution, costly
identification, and potential health risks to laboratory workers (Field & Samadpour, 2007).
Most pathogens in aquatic systems stem from human and animal fecal wastes, including
direct deposition of feces in water (Vidon, Campbell & Gray, 2008), run-off from land
with fecal deposits (Tyrrel & Quinton, 2003; Jamieson et al., 2004), and sanitary sewer
malfunctions (Ferguson et al., 2003; McLellan & Eren, 2014). To address the difficulties in
monitoring specific pathogens, fecal indicator organisms (FIOs) are commonly used to
assess the presence of fecal pathogens.

An effective fecal indicator is associated with the presence of specific pathogens, with a
straightforward method for enumeration that correlates with magnitude and age of fecal
pollution (Savichtcheva & Okabe, 2006; Maier, Pepper & Gerba, 2009). The use of FIOs
such as fecal coliform bacteria and Escherichia coli are traditionally used for determining
surface water pathogen impairment (Yates, 2007; US Environmental Protection Agency,
2012). Although these indicators assist in alerting populations when exposure to pathogens
is likely, the current approach is limited by using a single indicator such as E. coli for a
designated use (Wade et al., 2003; Savichtcheva & Okabe, 2006; Field & Samadpour, 2007).
The cosmopolitan nature of E. coli in warm-blooded animals makes them impractical
for source identification (Field & Samadpour, 2007; Yates, 2007; McLellan & Eren, 2014;
Blount, 2015). The ability of E. coli to survive in soils (Lasalde et al., 2005; Ishii et al.,
2006), algae (Byappanahalli et al., 2003), and sediments (LaLiberte & Grimes, 1982; Alm
& Burke, 2003; Drummond et al., 2015) provide a reservoir for continued persistence and
potential to naturalize (Winfield & Groisman, 2003; Lasalde et al., 2005; Luo et al., 2011).
These characteristics and deficiencies emphasize the difficulty of single standard FIO
monitoring for impairment, stressing the need for additional methods to evaluate source
and mechanisms of FIO impairment.

In addition to the above issues, appropriately characterizing FIO impairment for
regulation and decision-making is difficult due to complex fate and transport processes
(Benham et al., 2006; De Brauwere, Ouattara & Servais, 2014; Drummond et al., 2015).
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These complex fate and transport processes include transport through run-off and
storm water (Kistemann et al., 2002; Lipp et al., 2001; McKergow & Davies-Colley, 2010),
remobilization from sediments and hyporheic exchange (Drummond, 2015; Dwivedi,
Mohanty & Lesikar, 2016), particle attachment (Characklis et al., 2005), and UV light
exposure (Sinton et al., 2002). Additionally, ecological processes control FIO fate and
transport through variable survival patterns of indicators and pathogens (Anderson et
al., 2005; Stott et al., 2011), availability of nutrients and organic matter (Surbeck, Jiang
& Grant, 2010; Perkins et al., 2016), and predation (McCambridge & McMeekin, 1980).
Appropriately characterizing the physics and ecology driving fate and transport can better
inform management decisions for total maximum daily load (TMDL) development,
reduction of pollution, and allocation of resources.

Modeling provides flexible approaches to infer sources and processes associated with
FIOs and other pathogens, overcoming some of the issues of the single indicator paradigm.
Various statistical and machine learning models have been used to approach such
problems of incorporating age of fecal pollution for source tracking or detection of viruses
(Brion, Neelakantan & Lingireddy, 2002; Black, Brion & Freitas, 2007); identifying land use,
environmental, and water quality parameters associated with FIOs and pathogens (Brion
& Lingireddy, 1999; Viau et al., 2011; Wilkes et al., 2011; Gonzalez et al., 2012; Gonzalez &
Noble, 2014; Hall et al., 2014; Herrig et al., 2015; Lušić et al., 2017); determining factors
influencing particle attachment and virulence (Piorkowski et al., 2013); and optimizing
microbial source tracking (Belanche-Muñoz & Blanch, 2008; Ballestè et al., 2010; Smith,
Sterba-Boatwright & Mott, 2010;Molina et al., 2014). Some other applications of modeling
include using turbidity or rainfall to predict E. coli concentrations at unmonitored sites
(Money, Carter & Serre, 2009; Coulliete et al., 2009), estimating E. coli loads using physical,
chemical, and biological factors within a neural network (Dwivedi, Mohanty & Lesikar,
2013), and hyporheic-groundwater interactions associated with transport of E. coli within
sediments porewater (Dwivedi, Mohanty & Lesikar, 2016). Modeling can inform decision-
makers concerning what drives impairment, addressing some of the shortcomings of a
single indicator approach.

Maxent, a commonly used ecological niche model (Phillips, Dudík & Schapire, 2004;
Phillips & Dudík, 2008), identified environmental variables associated with probability of
E. coli stream impairment, making inferences concerning source and mechanisms driving
fecal pollution. Although modeling E. coli using a machine learning model such as Maxent
is not a novel approach, e.g., Dwivedi, Mohanty & Lesikar, 2013, this study is unique in the
following ways: it focuses on how the water quality is associated with E. coli impairment
in lower order streams, uses nonparametric bootstrapping as a probabilistic assessment of
model performance based on the area under the curve (AUC) of the receiving operator
characteristic (ROC), and uses loss of information as an indicator of sensitive variables.
Ecological niche models have been utilized for species distribution (Lozier, Aniello &
Hickerson, 2009), conservation of rare species (Guisan et al., 2006), invasive species (Thuiller
et al., 2005), and disease vector epidemiology studies (Boeckmann & Joyner, 2014), but this
is a new application of Maxent to microbial water quality. Additionally, developing models
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in lower order streams has not been previously reported; this is important because water
from low order streams is used for domestic water supply and recreation in many areas of
the United States.

The motivation for using Maxent to predict E. coli impairment is to investigate
how environment, i.e water quality parameters, shapes the niche of E. coli impairment
based on a decision boundary; in this case, a water quality standard. A probabilistic
procedure for univariate and multivariate model development is presented using
nonparametric bootstrapping cross-validation. Univariate models generated action values,
or environmental thresholds of impairment, to indicate potential E. coli impairment
based on a single parameter. Multivariate models predicted probability of impairment
given a suite of environmental variables, and jack-knife sensitivity analysis removed
unresponsive variables in multivariate models to elicit a set of the most responsive
water quality parameters. Using Maxent to model how water quality influences E. coli
impairment aids in inferring source and mechanisms of fecal pollution. This approach
allows for estimation of both linear and non-linear effects of water quality, demonstrates
a probabilistic method for variable selection, and reframes the question from ‘‘How much
E. coli in our watershed?’’ to ‘‘what factors separate E. coli impairment from compliance?,’’
which is useful when evaluating watershed decisions.

METHODS
Sampling sites and data collection
Sinking Creek is a 1st to 3rd Strahler order mixed-use stream that is noncompliant
for state of Tennessee standards for fecal coliform and E. coli (Tennessee Department of
Environmental and Conservation, 2006). Starting in August 2004, samples were collected
by hand in August, November, February, and May of each year until August 2011 as a
long-term monitoring plan at 14 sites in Sinking Creek, and samples were analyzed for 10
water quality parameters and populations of E. coli (Fig. 1).

Specific conductance (conductivity) and water temperature were measured using an
Orion 115A+ conductivity meter (Thermo Fisher Scientific, Waltham, MA). The pH was
measured using an EL2 portable pH meter (Mettler Toledo, Columbus, OH). Dissolved
oxygen was collected using a YSI Model 55 dissolved oxygen meter (YSI Inc., Yellow
Springs, OH). Samples for nitrates (NO3), phosphates (PO4), biochemical oxygen demand
(BOD), alkalinity, and hardness were collected in clean 2 L polyethylene bottles and stored
at 4 ◦C until laboratory analysis. A flow meter (Global Water, FP101) was placed in the
center of the channel to measure stream velocity. Stream width was calculated where the
stream velocity was measured, and depth was averaged over three points across the stream
width. Velocity was multiplied by stream width and average depth to estimate discharge.

NO3 and PO4 analyses were performed in triplicate using colorimetric HACHTM meth-
ods (Hach, Loveland, CO) and reagents. NO3 and PO4 analyses were conducted by adding
10 mL of water to a vial containing NitraVer5 or PhosVer3 for the respective analyses.
Vials were shaken to dissolve the reagent and samples were analyzed with a DR890
colorimeter (Hach, Loveland, CO) (Hach Company, 2013). Triplicate sample for alkalinity
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Figure 1 Map of sampling sites and watershed of the study area, Sinking Creek. The inset map shows
the United States and the state of Tennessee, and the location of Sinking Creek. Samples were taken from
August 2004 to August 2011 during the months of August, November, February, and May. The outline
represents the watershed boundary of Sinking Creek, and 2006 NLCD has been clipped to the watershed
(Fry et al., 2011). Stream flows from its headwaters at SC14 downstream to SC1.

Full-size DOI: 10.7717/peerj.5610/fig-1

and hardness were determined using 100 mL sample volumes and a digital titrator (Hach,
Loveland, CO) (Hach Company, 2013). Phenolphthalein and bromcresol green-methyl red
indicators were used, and the sample was titrated with 1.6 N sulfuric acid to a grey-green
endpoint (Hach Company, 2006). BODwasmeasured in triplicate using the 5-day BOD test
(American Public Health Association, 2005). Populations of E. coli were determined using
the Colilert defined substrate test. Briefly, 97 wells were filled with 100 mL of water sample
with the Colilert substrate added. Samples were incubated for 24 hours, and wells that
fluoresce under a UV light were considered positive for E. coli, and amost probable number
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Table 1 Sampling sites, land use, and E. coli concentrations in Sinking Creek. Percentage of each land cover types (Agricultural, Developed, and
Forested) as well as E. coli Geometric means (GM), geometric standard deviations (GSD), and maximum and minimum values for each site used in
the study.

Sampling
site

Agricultural
land use (%)

Developed
land use (%)

Forested
land use (%)

E. coli GM
(GSD)

Min, Max

SC1 15.6 36.4 47.3 254.5 (3.4) 43.7,2398.8
SC2 14 37.2 48.1 182.3 (6.1) 17.4,39810.7
SC3 9.7 38 51.5 137.1 (4.0) 14.5,1737.8
SC4 9.7 37.9 51.6 169.8 (5.7) 8.5,23988.3
SC5 8.7 38.1 52.4 140.0 (7.2) 4.1,30903.0
SC6 7.1 30.2 61.6 50.2 (8.3) 0.5,8709.6
SC7 7.1 30 61.8 36.7 (9.4) 0.5,10232.9
SC8 7.7 24.3 66.8 73.9 (5.3) 10.7,8709.6
SC9 7.4 19.9 71.4 110.3 (5.8) 14.5,3981.1
SC10 5.2 6.6 86.5 70.6 (5.2) 6.2, 1995.3
SC11 5.6 3.8 89 17.2 (9.9) 0.5,1202.3
SC12 5.8 2.1 90.3 91.3 (3.8) 5.2,812.8
SC13 0 1.1 96.5 7.8 (5.5) 0.5,102.3
SC14 0 0 100 5.0 (6.1) 0.5, 245.5

estimate was made based on the number of positive wells in both the large and small wells
(American Public Health Association, 2005). If a sample was in excess of the geometric mean
United States recreational water quality criteria, the sample site was considered impaired.
Impairment was based on recommendation 1, which is a threshold of 126 CFU

100mL that
corresponds to an illness rate of 36

10,000 people (US Environmental Protection Agency, 2012).
To get an estimation of land use throughout the Sinking Creek watershed, land cover

data were downloaded from the National Land Cover Dataset (NLCD) for 2006 (Fry et al.,
2011). Each sampling site’s drainage area was delineated using StreamStats version 3 from
the United States Geologic Survey (Ries III et al., 2017). Land was grouped into 3 categories;
forested, developed, and agricultural. Forested land includes the categories deciduous forest,
evergreen forest, and mixed forest. Developed land use includes all developed categories;
open space (less than 20% impervious surface), low intensity (20–49% impervious surface),
medium intensity (50–79% impervious surface), and high intensity (80–100% impervious
surface). Agricultural land included grassland/herbaceous and pasture/hay. The area of
each land use was divided by the total area of the drainage area to get the percentage land
use shown in Table 1, and sampling sites as well as land cover categories are shown in Fig. 1.

Modeling background
Maxent is an iterative machine learning model commonly used for mapping species
distributions (Phillips, Dudík & Schapire, 2010). Within the sample space, x , and given a
set of environmental features (parameters), f1(x),f2(x),...,fn(x), the Maxent distribution
estimates a vector of feature weights, β = (β1β2,...,βn), that maximizes the entropy of the
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raw distribution of impairments, qβ(x), using a Gibbs distribution,

qβ (x)=
exp(

∑n
j=1βj fj (x))

Zβ
(1)

where Zβ is the normalization constant that ensures that qβ(x) integrates to one over
the study area (Phillips, Dudík & Schapire, 2010). This modeling approach is justified
because it provides the maximum information concerning impairment. From a water
quality management standpoint, this approach is beneficial because decision-makers and
stake-holders are more concerned with factors associated with impairment rather than
compliance when approaching fecal pollution monitoring and management.

Original features (parameters) can be transformed into quadratic, product, hinge,
and threshold feature classes so that complex multivariate responses can be modelled
(Phillips & Dudík, 2008), but Maxent incorporates L1 regularization to balance satisfying
the constraints on the features while minimizing overfitting. L1 regularization is not unique
to Maxent, and is used in many general linear models (Elith et al., 2011). A regularization
parameter λj smooths probability distributions, generating sparse solutions and removing
unnecessary features; this shrinks weights to balance fit and complexity (Elith et al., 2011).
Because of regularization, Maxent fits a penalized maximum likelihood model equivalent
to minimizing the relative entropy dependent on the error-bound constraints

maxβ
1
m

m∑
i=1

ln(qβ (xi))−
n∑

j=1

λj
∣∣βj∣∣ (2)

subject to
∫

qβ (x)dx = 1.

Wherem is the number of positive samples, n is the number of features, and x is the feature
vector for occurrence point i. Eq. (2) provides insight into how Maxent uses background
data: the first term is larger for models that distinguish between impairment states the best.
The second term represents the regularization, which gets larger as the weights βj increase,
indicating a complex model more likely to over fit. The output of qβ (x) istermed the raw
distribution, but it is difficult to interpret due to its scale dependence. More background
points result in smaller raw values because their sum cannot exceed 1 over a large amount of
points (Phillips & Dudok, 2008; Elith et al., 2011). For this reason, the logistical output of
the Maxent model, P (x), will be used because it represents the probability of impairment
given the sample space, x . This is a logistic model using the same set of weights β with
the intercept of the model determined by the entropy of qβ (x), H . The model is shown in
Eq. (3) below.

P (x)=
eHqβ(x)

1+eHqβ(x)
. (3)

Univariate models
Data were processed using a list-wise deletion process, where individual samples from a
site were removed if they were missing a parameter measurement due to laboratory errors,
equipment malfunctions, calibration issues, or sites being dry at the time of sampling. A
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sample of 100 bootstrapped models were developed, and 20% was subsampled for testing
validation. Bootstrapping is a nonparametric resampling technique to make inferences
about a population based on resampling from a set population, generating population level
statistics, while providing an estimate of uncertainty of those statistics (Campolongo, 1997).
For this modeling approach, all background points are used in the development of the null
model, and the impaired samples are bootstrapped. Although Maxent can incorporate a
wide variety of feature classes, only linear and quadratic feature classes were used to develop
action values, or thresholds of impairment. The rationale for using these types of feature
classes is for ease of generating action values as well as to assess both linear and non-linear
effects of single parameters.

The AUC was calculated for the training and testing datasets. The AUC is a metric of
performance for binary classification. the true positive prediction rate (sensitivity) and false
positive prediction rates (1–specificity) of each sample are plotted as a ROC for different
decision boundaries, and the area under that ROC is integrated. An AUC of 0.5 indicates
that the model is no better than random chance, and a value of 1.0 indicates perfect model
performance (Zweig & Campbell, 1993; Zou, O’Malley & Mauri, 2007).

The decision boundary (logistic threshold) between impaired and unimpaired samples
should maximize accurately predicting impairment (exceedance of the E. coli criteria)
while balancing correct negative predictions (Bean, Stafford & Brashares, 2012). Therefore,
maximum test sensitivity and specificity was defined as the appropriate decision boundary.
A low sensitivity would indicate poor performance in identifying impairment, while a
low specificity would indicate an overcautious model in which resources might be wasted
in remediation of false positives. Accuracy for Maxent models was calculated as follows:

TP+TN
TP+TN+FP+FN , where TP are true positives, TN are true negatives, FP are false positives and
FN are false negatives. Significance of the univariate model was determined by calculating
the χ2 statistic for each confusion matrix, with the null hypothesis being that the classifier
was no better than random chance.

Action values (environmental thresholds) are conditions in which a parameter (variable)
is at the threshold of impairment, indicating potential exceedance of the E. coli standard.
Action values were calculated for significant (p < 0.01) univariate models by averaging
bootstrapped weights and estimating the parameter value at which the probability of
impairment equals the logistic threshold. Figure 2 demonstrates the concepts of the AUC
performance metric, selected decision boundary, and the concept of the action value in
relation to the selected decision boundary and Maxent model function (Eq. (3)).

Multivariate models and sensitivity analysis
Although some authors state that collinearity is not as problematic in Maxent compared
to traditional regression approaches, collinearity was explored and subsequently removed
using Pearson correlation coefficients (Elith et al., 2011). Variables that were highly
correlated (r > 0.8) were evaluated to determine which variable to include based on
expertise, connections to previous models, and accuracy metrics within the analysis. The
initial multivariate model included all noncollinear variables and were developed using
100 bootstrapped samples like the univariate models, with the addition of product feature
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Figure 2 Theoretical plots to illustrate the concept of the ROC, decision boundaries, and action val-
ues. (A) Plot of an ROC curve, where the x-axis represents the false positive rate, or the compliment of the
specificity, and the y-axis represents the true positive rate, the sensitivity. The curve is integrated to ob-
tain the AUC, the performance metric for each of the models. The box represents the point at the decision
boundary (B) Theoretical plot of a univariate Maxent model function (Eq. (3)) with values for alkalinity
rescaled from 0 to 1. The solid red line represents Eq. (3), the dotted lines represent the upper and lower
95% confidence intervals, and the horizontal black line represents the decision boundary. The action val-
ues, or environmental thresholds, and associated confidence intervals are the intersections between the re-
sults of Eq. (3) and the decision boundary.

Full-size DOI: 10.7717/peerj.5610/fig-2
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classes to incorporate variable interaction. Average variable contribution was determined
by calculating the increase in information gain associated with a change in each feature
for each iteration of the model algorithm, normalized to percentages. The permutation
importance of a feature is an indicator of variable sensitivity. In each model run, the feature
training presence and background data are randomly permutated, and the resulting drop
in training AUC is normalized to percentages for each variable and averaged over the 100
bootstrapped runs.

A jack-knife sensitivity analysis was used to determine the best subset of covariates
to include in a trimmed model. Each variable was removed from the analysis, and a
comparison was made to determine if the removal of a variable caused a significant (p
< .05) change in training or testing information gain. Student’s t -tests were performed
on each jack-knifed model to evaluate significance, and variables were included if the
information gain from either the testing or training sets decreased; decrease in information
would correspond to a significant loss of information, providing criterium for inclusion of
the variable in final models.

RESULTS
Univariate model performance
The sampling program resulted in 29 sampling trips over 14 sites, allowing for a potential
of 406 samples for analysis. 127 samples were removed due to missing information in the
dataset, leaving 279 total samples for model development. This included 95 impairments,
identified by exceedance of the E. coli recreational water quality standard. Table 1 presents
the summary statistics for E. coli and the associated land use in each sampling site’s drainage
area. Each training set included 279 background points, 76 points for training, and 19 points
to evaluate performance on testing data.

Table 2 summarizes the training and testing performance of the univariate Maxent
models used to identify E. coli impairment based on environmental variables. Water
temperature performed best based on AUCs, but had lower accuracy than conductivity,
dissolved oxygen, and alkalinity. The plausible explanation of these differences is the latter
variables had higher specificity rather than sensitivity at the chosen decision boundary
(Table S2). Accuracy was found to be highest for alkalinity and lowest for pH.

Action values were developed for 8 significant univariate models by solving for the value
of the variable when probability of impairment equals the logistic threshold. For example,
the action value for alkalinity is 128 mg/L. This means that E. coli impairment is likely to
occur when alkalinity is observed to be higher than this threshold. Action values and 95%
confidence intervals are included in Table 2. Action function graphs for each significant
univariate model are presented in Fig. S1 to aid in interpretation of Table 2, and summary
statistics for each variable are given in Table S1.

Multivariate model performance
Pearson correlations ranged from −0.269 to 0.834, with three variables identified as
collinear; alkalinity, conductivity, and hardness. Conductivity was selected because of
its use in previously developed fecal indicator models (Wilkes et al., 2011; Gonzalez et
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Table 2 Summary of training and testing performance of Maxent models based AUCmetrics, accu-
racy based onmaximum test sensitivity and specificity decision boundary (logistic threshold), and ac-
tion values with 95% confidence intervals. If an upper bound of a confidence interval exceeds the maxi-
mum sampling value for a set of data, the maximum value is given.

Variables Training AUC
(± SE)

Testing AUC
(±SE)

Accuracy Action values (x)U
(95% CI)

Alkalinity (mg
L ) 0.616 (0.003) 0.620 (0.006) 68.5 x > 129mg

L
(125, 134)

BOD (mg
L ) 0.572 (0.004) 0.554 (0.008) 60.6 x < 0.976mg

L
(0.825,1.09)
x > 6.19mg

L
(4.51, 6.43)

Conductivity (µS) 0.628 (0.003) 0.638 (0.006) 65.6 x > 306 µS
(287,315)

Dissolved Oxygen (mg
L ) 0.635 (0.003) 0.640 (0.007) 67.7 x < 9.39mg

L
(8.68, 10.6)

Discharge ( m3

s ) 0.556 (0.004) 0.553 (0.006) 63.8 *

Hardness (mg
L ) 0.632 (0.003) 0.627 (0.006) 59.9 x > 132mg

L
(122, 152)

NO3 (mg
L ) 0.581 (0.004) 0.579 (0.007) 63.4 x > 1.78mg

L
(1.63, 1.84)

pH 0.571 (0.003) 0.562 (0.006) 55.6 *

PO4 (
mg
L ) 0.581 (0.004) 0.580 (0.008) 63.8 0.0642 mg

L < x < 7.80mg
L

(0.0873,0.766) ˘
(6.27,9.01) A

Water Temperature (◦C) 0.666 (0.003) 0.670 (0.005) 65.2 x > 12.4 ◦C
(11.3, 15.5<x<20.0)

8-variable model 0.770 (0.002) 0.709 (0.005) 78.5
5-variable model 0.753 (0.002) 0.723 (0.006) 77.8
4 variable model 0.750 (0.002) 0.726 (0.005) 77.8

Notes.
*Model was not significant.
aValues of the variables that corresponded to impairment.
b95% CI for the lower bound of the action value.
c95% CI for the upper bound of the action value.

al., 2012; Gonzalez & Noble, 2014; Piorkowski et al., 2013). The 8-variable model displayed
improved accuracy on all univariate models. Variable contribution was dominated by water
temperature, conductivity, and discharge in the 8-variable model, with water temperature
contributing 36.4% of the information, and conductivity and discharge accounting for
22.6% and 12.1% of the information, respectively. The permutation importance for the
8-variable model demonstrated a similar pattern. A summary of accuracy metrics is shown
in Tables 2 and 3 illustrates the contribution of each variable in the multivariate models.

Conductivity was the most sensitive parameter based on sensitivity analysis, with other
sensitive parameters including water temperature, dissolved oxygen, discharge, and NO3.
The removal of dissolved oxygen improved model performance based on testing AUC,
justifying development of two optimizedmultivariate models; a 5-variable model including
all sensitive parameters, and a 4-variable model that excluded dissolved oxygen.
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Figure 3 Bar graph displaying results of jack-knife sensitivity analysis. Each color represents the infor-
mation gain contributed for each parameter in the model, and features are removed one at a time to assess
their importance in the trimmed model.

Full-size DOI: 10.7717/peerj.5610/fig-3

Table 3 Variable contribution and permutation importance for the multivariate models, normalized to percentages.

Variable 4-variable model 5-variable model 8-variable model

Percent
contribution

Permutation
importance

Percent
contribution

Permutation
importance

Percent
contribution

Permutation
importance

BOD 3.6 5.9
Conductivity 26.2 23.0 22.6 22.3 25.6 27.5
Discharge 14.5 22.0 12.1 20.1 13.4 21.6
Dissolved Oxygen 9.9 5.2 12.3 6.6
NO3 9.5 8.5 8.9 8.6 8.9 10.3
pH 3.9 1.7
PO4 2.7 2.5
Water temperature 49.9 46.5 36.4 33.7 39.7 34.0

Accuracy of the 5- and 4- variable optimized model was 77.8%. The patterns of variable
contribution were consistent in each model, with water temperature accounting for most
of the information gain in each model. Figure 3 shows the variable contribution for the
initial multivariate models, each model run during the sensitivity analysis, and the final
4-variable and 5-variable models produced. The information gain for each model is also
shown within this figure.
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Response surfaces were developed for each of the model runs to assess spatiotemporal
trends. Each grid within the surface represents a single sample, with each sampling site
representing a single column. The columns are oriented in a downstream fashion, with
headwaters sites starting on the left (SC14) and sites further downstream existing on the
right (SC1). The temporal scale is represented by the rows, with each row indicating a
specific sampling trip. Although the data resolution is coarse, the goal is to demonstrate
the potential of visualizing trends in the probability of impairment over space and time.
Figure 4 displays the response surface for the estimated probability of impairment for the
4-variable model and the 5- and 8-variable models are shown in Fig. S2. Classification
performance for the univariate models and multivariate models is shown in Table S2.
Mean probabilities for the 8-, 5-, and 4-variable model were 0.338 (95% CI: 0.319, 0.358),
0.353 (0.334, 0.373), and 0.359 (0.340, 0.378). Generally, the sites influenced by the greatest
amount of developed or agricultural land use (SC5–SC1) had the highest probability
of impairment. August had the highest probability of impairment, followed by May,
November, and February. Mean probability of impairment and associated 95% confidence
intervals are shown in Table S3.

DISCUSSION
Over 170,000 miles of US rivers and streams are listed as pathogen impaired based on FIOs.
To address these impairments, characterization of sources and transport mechanisms is
necessary (United States Environmental Protection Agency, 2017), and statistical models can
be used as an inferential tool to overcome these issues. We applied Maxent to identify
individual and interacting factors influencing E. coli fate and transport that resulted in
impairments using univariate and multivariate approaches. In this particular stream, water
temperature, conductivity, discharge, and NO3 were found to be the most influential group
of factors driving fecal pollution. The results indicate that seasonality and agricultural run-
off are the suggested causes of impairment in this watershed. Seasonality is demonstrated
by influence of temperature in the models, whereas the influence of agricultural run-off
is suggested by the other variables and the association between land use and E. coli in the
watershed. Even small increases in agricultural land cause substantial increases in E. coli
concentrations (Table 1), whereas similar increases in developed land do not have the
same pronounced effect. This study highlights the need for multi-month sampling across a
stream continuum to truly estimate spatiotemporal variability associated with impairment.

The fact that water temperature dominated the information in this model suggests
that seasonality plays an important role in E. coli survival. Although fecal indicators and
pathogens have been found to possess diverse temperature-survival relationships (Hofstra,
2011; Sterk et al., 2013), the high August probability for E. coli impairment indicates
favorable conditions for long-term survival in the summer. Warming due to climate
change could exacerbate this condition by increasing those favorable conditions (Weniger
et al., 1983;Atherholt et al., 1998; Patz et al., 2000;Guzman Herrador et al., 2015). However,
August was not the only month with numerous E. coli impairments. Therefore, monitoring
for FIOs only in the summer months could distort estimates of impairment in watersheds
with year-round users.
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Figure 4 Response surface for the 4-variable Maxent model. Surface shows the probability of impair-
ment for each sample for the monitoring program. This represents the mean probability of 100 boot-
strapped runs. Rows are oriented by each sampling period, while columns represent each sampling site
over the length of the stream; left to right indicates flow direction. Black cells denote samples in which a
parameter was missing and were excluded from analysis, while circles with black centers represent samples
in which a stream would be identified as impaired in the study.

Full-size DOI: 10.7717/peerj.5610/fig-4

Gilfillan et al. (2018), PeerJ, DOI 10.7717/peerj.5610 14/24

https://peerj.com
https://doi.org/10.7717/peerj.5610/fig-4
http://dx.doi.org/10.7717/peerj.5610


Although discharge was not predictive of E. coli impairment alone, its interactive effect
stresses the importance of both flow dependent and independent processes associated
with E. coli impairment. Dissolved solutes such as NO3 and ions measured through
conductivity are largely discharge-dependent; however, FIOs are not as strongly dependent
on discharge. This flow independence is due to additional ecological mechanisms such
as nutrient limitation and competition (Surbeck et al., 2006; Drummond et al., 2015).
Various forms of nitrogen are associated with increased concentration of FIOs in certain
environments (Carrillo, Estrada & Hazen, 1985; Herrig et al., 2015), and results of the
Maxent models suggest that nutrient loading in the form of NO3 contributes to E. coli
impairment in Sinking Creek. Other studies have found that dissolved organic carbon can
affect magnitude and extent of fecal indicators (Surbeck, Jiang & Grant, 2010; Blazewicz et
al., 2013; Cloutier, Alm &McLellan, 2015), but this was not collected during this sampling
program and was found to be insignificant using BOD as a surrogate for organic pollution.
This interaction between nutrient levels and fecal pollution highlights the potential for
synergistic effects of different sources of pollution, suggesting a limitation of TMDL
development when only considering one pollutant at a time.

Although machine learning application to microbial water quality problems is not
unique, this study presents some beneficial techniques in this area of research. First, it
demonstrates the ability to open the black box of Maxent, using action values to predict
threshold of impairment based on a single variable. Multivariate action functions can be
developed as well, but is not presented in this manuscript. The probabilistic approach to
model validation and variable selection allows for inclusion of uncertainty, improving
on deterministic methods traditionally used for validation and criteria for variable
inclusion. Probabilistic methods have been used in TMDLs (Borsuk, Stow & Reckhow,
2002), frequency of water quality posting errors (Kim & Grant, 2004), and uncertainty
of different fecal indicator methodologies (Gronewold et al., 2008); this paper adds to
this framework through identifying the probability of stream impairment given a set of
environmental variables. This improves confidence in decision-making for implementation
of monitoring, management, and remediation strategies. Modeling microbial water quality
is a challenge nomatter themethod used, but this study demonstrates thatMaxent provides
a valid approach to understand the factors driving impairment.

Streams are dynamic systems with multiple flow regimes, confounding an already
difficult modeling process. Understanding how models behave in extreme situations
is useful for regulation, monitoring, and management of these ecosystems. Over the
long-term study periods, samples from both drought and high water conditions were
captured. Maxent has been suggested as a strong prediction of extreme values (Petrov,
Guedes Soares & Gotovac, 2013), and this study found that Maxent sufficiently predicted
impairment during the high flow sampling date of November 11, 2009. Depending on
whichmultivariatemodel was used, accuracy ranged from 72.8% to 90.9% for this sampling
date. Five sampling dates resulted in at least one site being dry, indicating drought-like
conditions. Maxent correctly predicted impairment in these situations 62.2% to 73.0%
of the time. This suggests that Maxent can be useful for certain extreme situations, but is
highly dependent on the environmental variables used for prediction.
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While this study presents proof of concept of using Maxent to infer source and
mechanisms of impairment, there are some limitations to this study. Although the dataset
has a large time scale (8 years), only collecting from 4 months makes the resolution coarse,
reducing the scale at which inferences can be made. The list-wise deletion of samples before
univariate modeling removed some data that could inform each of those models; however,
using the same series of data in themultivariatemodels and list-wise deletion are commonly
used procedures in statistical models. Future applications of Maxent will improve on the
coarse resolution of the data by usingmonthly and potentially weekly sampling approaches,
and research will be developed as to the best approach for handling missing data inMaxent.
While AUC scores above 0.70 indicate good model fit, only considering physiochemical
water quality parameters limits the potential to accurately predict impairment; however,
this study demonstrates that these parameters are informative as a proof of concept for
using Maxent as a modeling approach. Future areas of research include using Maxent
to optimize water quality monitoring to identify causes of impairment with FIOs and
specific pathogens in the most cost-effective way using a variety of microbial, chemical,
and physical parameters.

It is a difficult task to develop and implement remediation strategies in watersheds with
many diffuse causes of fecal impairment, but modeling can increase confidence in decision
making through inferring mechanisms and sources of fecal pollution. Incorporating
environmental variables into models allows for insights into the ecology of fecal indicators,
identifying causes of chronic FIO impairment. Although one indicator cannot mimic the
plethora of existing pathogens in water, incorporatingmodeling can fine tune an indicator’s
utility, ultimately informing the public concerning health risks, and aiding in overcoming
the shortcomings of a single indicator monitoring strategy.

CONCLUSIONS
Characterizing E. coli impairment is essential because of the plethora of streams polluted
with fecal wastes. This study used Maxent to identify water quality parameters associated
with E. coli impairment in a low-order, mixed-use watershed. Univariate models generated
action values, or thresholds of impairment, based on single parameters, while multivariate
models extracted information concerning multivariate interaction. We presented a
probabilistic approach to sensitivity analysis, improving confidence in variable selection.
Maxent presents a flexible machine learning approach to aid in understanding mechanisms
and sources of fecal pollution as well as a host of other complex decision boundary
problems. We demonstrated that:

• Models using alkalinity and water temperature were found to be either the most
accurate or best performing univariate models; this stresses the importance of discharge
composition and seasonality in E. coli impairment. Discharge, however, was not an
influential univariate parameters by itself, stressing the importance of flow-independent
processes that correlate with impairment.
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• Sensitivity analysis indicated that the most information was lost when conductivity was
removed from the multivariate models, and water temperature, discharge, dissolved
oxygen, and NO3 represent other sensitive parameters sensitive to E. coli impairment in
this watershed.
• Results suggest that E. coli impairment in this stream is driven by seasonality and
agricultural run-off. This suggests that multi-month sampling along a stream continuum
is essential to characterize spatiotemporal variability, importance of flow in relation to
other water quality parameters, and the potential synergistic effect of nutrient and fecal
pollution.
• Incorporating modeling can fine tune an indicator’s utility, informing the public
concerning human health risks, enhancing our understanding of FIOs, assisting in water
quality decision-making, and providing input variables for quantitative microbial risk
assessment.

Abbreviations

AUC Area under the curve
BOD Biochemical Oxygen Demand
FIO Fecal Indicator Organism
NLCD National Land Cover Dataset
ROC Receiver Operating Characteristic
TMDL Total maximum daily load
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