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ASYMMETRIC SHAPES OF RADIO

RECOMBINATION LINES FROM IONIZED

STELLAR WINDS

R. Ignace 1
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RESUMEN

ABSTRACT

Recombination line profile shapes are derived for ionized spherical stellar

winds at radio wavelengths. It is assumed that the wind is optically thick

owing to free-free opacity. Emission lines of arbitrary optical depth are ob-

tained assuming that the free-free photosphere forms in the outer, constant

expansion portion of the wind. Previous works have derived analytic results

for isothermal winds when the line and continuum source functions are equal.

Here, semi-analytic results are derived for when the source functions are not

equal to reveal that line shapes can be asymmetric about line center. A pa-

rameter study is presented and applications discussed.

Key Words: line: profiles — radiative transfer — stars: early-type — stars:

winds, outflows — radio lines: stars

1. INTRODUCTION

Radio astronomy has long proven to be an important window into the

study of stellar astrophysics, and stellar outflows have been no exception (e.g.,

Dulk 1995; Güdel 2002; Kurt et al. 2002). For stellar winds a key driver has

been the prospect of measuring wind mass-loss rates, Ṁ , from the excess

infrared (IR) and radio continuum emission relative to the stellar atmosphere

(e.g., Panagia & Felli 1975; Wright & Barlow 1975). Numerous studies have

focused on determining Ṁ values based on this approach (e.g., Abbott et

al. 1980; Abbot, Bieging, & Churchwell 1981; Abbott et al. 1986; Bieging,

Abbott, & Churchwell 1989; Leitherer, Chapman, & Koribalski 1995).

One of the main results from a consideration of free-free excesses formed in

the wind is that the spectral energy distribution (SED) at long wavelengths

will have a power-law slope with flux fν ∝ λ−0.6. However, this outcome

depends on several assumptions: isothermal, spherical symmetry, large opti-

cal depth, negligible contribution from the stellar atmosphere, and constant

outflow speed. Cassinelli & Hartmann (1977) explored the effects of different

power laws for the wind density and temperature distributions to relate the

SED power-law slope to these influences. Schmid-Burgk (1982) showed that

such SED slopes persist even for axisymmetric stellar envelopes, as long as

1Department of Physics & Astronomy, East Tennessee State University.
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2 IGNACE

the same power-law relations are adopted. The main difference is that flux

levels are modified, which would have implications for inferring Ṁ values.

Of greater relevance in recent decades has been the abundance of evidence

for clumping in massive star winds. In this regard the literature is volumi-

nous, and there has even been a conference to focus on the topic (Hamann,

Feldmeier, & Oskinova 2008). The line-driven winds of massive stars (Castor,

Abbot, & Klein 1975; Friend & Abbott 1986; Pauldrach, Puls, & Kudritzski

1986) are known to be subject to an instability (e.g., Lucy & White 1980;

Owocki, Castor, & Rybicki 1988). This instability produces shocks in the flow

and is a natural culprit for stochastic wind clumping. The clumping is well-

known to affect the long wavelength emission because of the density-square

dependence of the free-free emissivity. In the presence of clumping, the radio

emission is overly bright for a given value of Ṁ as compared to a smooth (i.e.,

unclumped) wind with the same mass loss. Neglecting the clumping leads

to overestimates of Ṁ , scaling as the square root of the clumping factor, or

inverse to the square root of the volume filling factor of clumps. These factors

will be defined precisely in the following section.

Clumping affects any density-square emissivity, including recombination

lines. Clumping has been incorporated into several detailed complex numeri-

cal codes for modeling massive star atmospheres and their winds, such as CM-

FGEN (Hillier & Miller 1999) and PoWR (Hamann, Gräfener, & Liermann

2006). An important distinction for clumping is between “macroclumping”

and “microclumping”. The former leads to modifications of observables that

can depend on the shape of the clump and is sometimes synonymous with

a “porosity” treatment. The latter is when clumps are all optically thin, so

that the radiative transfer does not depend on details of clump morphology.

Consequently, microclumping can be handled in terms of a scale parameter,

and in fact does not alter the SED slope relative to a unclumped wind (Nugis,

Crowther, & Willis 1998). Ignace (2016a) considered the impact of macro-

clumping vs microclumping for ionized winds at long wavelength.

This contribution is concerned with modeling a radio recombination line

(RRL) profile shape that also includes continuum free-free opacity. The prob-

lem has been addressed many times before. Rodŕıguez (1982) derived the

line profile shape for this case, with the interest of supplementing the use of

the continuum to obtain Ṁ with line broadening formed in the same spatial

locale to obtain the wind terminal speed v∞. Hillier, Jones, & Hyland (1983)

did so as well. Ignace (2009) repeated the derivation, and expanded the con-

sideration for inclusion of line blends. All of these treatments assume that

the source function for the line and continuum is the same, as given by the

Planck function for an isothermal wind. Using a numerical radiative transfer

calculation, Viner, Vallee, & Hughes (1979) showed that an asymmetric line

shape can result when the line and continuum source functions are unequal.

Here, this result is explored further through analytic derivations. Section 2

introduces the model assumptions and presents a derivation for the line shape.

Unlike most previous treatments, the derivation also allows for a power-law
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distribution of microclumping in the wind. Section 3 provides for a parame-

ter study for line profile shapes. Section 4 discusses relevant applications for

various astrophysical sources.

2. RADIO RECOMBINATION LINE MODELING

Various authors have addressed the relevance of non-LTE effects for inter-

preting observed RRLs. A discussion of progress on the topic can be found

in Gordon & Sorochenko (2002). Relevant to wind-broadened emission lines,

Viner et al. undertook a calculation of departure coefficients for studies of

H ii regions. As previously noted, they allowed for spherical

outflow and found that line shapes can be asymmetric. Peters,

Longmore, & Dullemond (2012) conducted a similar study for H ii

regions, and elaborated further on line asymmetry for an out-

flow. However, neither Viner et al. nor Peters et al. explored

the possibility of analytic solutions for the radiative transfer.

Here, the approach largely follows Ignace (2009), but relaxing the assump-

tion that the line and continuum source functions are equal. The primary

assumptions of the model are as follows:

i. The wind is spherically symmetric in time average.

ii. The wind is optically thick to free-free opacity. The line can be thin or

thick.

iii. While the line and continuum source functions may not be equal, they

are taken as constant with radius.

iv. Microclumping is included in the treatment, specifically as a power-law

distribution2 with radius. Clumping in massive star winds is both pre-

dicted and measured to vary with radius (e.g., Runacres & Owocki 2002;

Blomme et al. 2002, 2003; Puls et al. 2006).

2.1. Wind Parameters

Spherical symmetry requires that the wind has a strictly radial wind ve-

locity and density. Being optically thick to free-free opacity, only the large

radius flow at constant expansion will be considered. The wind terminal speed

is represented by v∞. The wind also has a time-average mass-loss rate of Ṁ ,

and the star has radius R∗.

Microclumping is represented as

2The additional power-law distribution need not be attributed to clumping. It could be

attributed to something else that modifies the density. However, it cannot be the velocity

law, since that would lead to a different geometry for the isovelocity zones and would

invalidate the derivation that follows. The inclusion of the additional power law follows the

spirit of the approach in Cassinelli & Hartmann (1977).
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Fig. 1. Coordinate definitions used in the derivation for the line and continuum

emission from a spherical ionized wind. See text for explanation.

〈ρ2〉 = Dcl 〈ρ〉
2, (1)

where 〈x〉 represents spatial averaging. On the right-hand side, the average

density is given by the smooth wind relation for spherical symmetry, with

〈ρ〉 =
Ṁ

4π R2
∗
v∞

(

R∗

r

)2

≡ ρ0

(

R∗

r

)2

. (2)

For emissivity jν ∝ ρ2, the emission is enhanced above the smooth wind by

the clumping factor Dcl. It is often common to represent the clumping in

the wind with a volume filling factor, fV = D−1
cl . Both approaches are used

in the literature (c.f., clumping factor: Hamann & Koesterke 1998 or Ignace,

Quigley, & Cassinelli 2003; volume filling factor: Abbott et al. 1981 or Dessart

et al. 2000).

For this study the clumping factor is allowed to vary with radius as a

power law, with
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Dcl ∝ r−m. (3)

The case of m = 0 is for clumping that is constant throughout the flow; m > 0

implies that clumping declines with radius; m < 0 is the opposite case. (Note

that some care must be taken with use of the power law for clumping, since

Dc ≥ 1.)

2.2. Line and Continuum Opacities

The free-free opacity, κν , is given by

κν ρ = Kff ni ne, (4)

where ni = ρ/µimH is the number density of ions, with µi the mean molecular

weight per free ion; ne = ρ/µemH is the number density of electrons, with

µe the mean molecular weight per free electron; mH is the mass of hydrogen;

and (Cox 2001)

Kff = 3.692× 108
(

1− e−hν/kTC

)

Z2
i gνT

−1/2
C ν−3. (5)

In the preceding equation, h is Planck’s constant, k is the Boltzmann constant,

TC is the temperature of the gas appropriate for the continuum emission, Zi

is the root mean square ion charge, ν is frequency, and gν is the Gaunt factor.

Figure 1 shows the geometry for evaluating the optical depth τ along a

ray. Cylindrical coordinates for the observer are (p, α, z), with the observer

located at great distance along the +z-axis. Spherical observer coordinates

are (r, θ, α), with r2 = p2 + z2. The continuum optical depth along a ray of

fixed impact parameter, p, is

τC = TC(λ)

∫

ρ̃2(r̃)Dcl(r̃) dz̃, (6)

where x̃ signifies a normalized parameter, in this case ρ̃ = ρ/ρ0 and lengths

are relative to R∗, and the optical depth scaling is

TC =
Kff R∗ ρ

2
0

µi µe m2
H

. (7)

At long wavelengths that are the focus of this paper, TC ∝ gν λ
2 for the

Rayleigh-Jeans limit, and gν ∝ λ0.1.

The line opacity is somewhat similar to that of the continuum in the

sense that there is a dependence on the square of density for recombination.

Assuming that the wind speed is highly supersonic, the line optical depth can

be approximated from Sobolev theory (Sobolev 1960). The line optical depth

becomes

τL =
κL ρ λ

(v∞/r) (1 − µ2)
, (8)
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where κL ρ ∝ Dcl ρ
2 F (TL), for F (TL) a function of temperature appropriate

for the line emission, and µ = cos θ.

For the case of constant expansion of the wind at v∞, the line-of-sight

velocity shift due to the Doppler effect is vz = −v∞ µ. It is convenient to

introduce a normalized velocity shift with

wz = vz/v∞ = −µ. (9)

Also note that p = r sin θ. Then the line optical depth becomes

τL = TL p̃−3−m (sin θ)1+m, (10)

where the power-law dependence of Dcl with radius has been substituted into

the expression, along with ρ̃2 = r̃−4, and TL is the optical depth scaling for

the line. Casting the line optical depth in terms of p and θ will prove useful

for solving the radiative transfer problems in the following sections.

2.3. Solution for the Case of SL = SC

When the line and continuum source functions are the same, let S0 =

SL = SC . At wavelength λ, just outside the maximum velocity shift of the

line, the flux of continuum emission is given by

fC =
2πR2

∗

d2

∫

∞

0

Iν p̃ dp̃, (11)

where Iν is the emergent intensity as given by

Iν = S0

[

1− e−τC(p̃)
]

. (12)

When the wind is optically thick, such that the excess emission from the wind

greatly exceeds the attentuated stellar emisison through the wind, the radia-

tive transfer has a well-known solution when there is no clumping (Panagia

& Felli 1975; Wright & Barlow 1975). When constant clumping is present

(m = 0), the spectral energy distribution is unchanged, and the flux is simply

enhanced above that of a smooth wind (Nugis et al. 1998).

Ignace (2009) also showed that an analytic solution can result with a

power-law distribution in the clumping. The following integral relation will

be found of general use in subsequent steps:

∫

∞

0

(

1− e−axβ
)

x dx =
1

β
Γ

(

2

β

)

a2/β , (13)

where Γ is the Gamma-function.

For the case at hand, the continuum optical depth is

τC(p̃) =

∫ +∞

−∞

TC
dz̃

r̃4+m
(14)

= TC p̃−3−m

∫ π

0

(sin θ)2+m dθ (15)

= TC p̃−3−mGm(π), (16)
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where the second line above uses a change of variable to θ, with tan θ = p/z,

and

Gm(θ) =

∫ θ

0

(sinx)2+m dx. (17)

The flux of continuum emission becomes

fC =
2πR2

∗

d2
S0

(

1

3 +m

)

Γ

(

2

3 +m

)

[Gm(π) TC(λ)]
2/(3+m)

. (18)

In the Rayleigh-Jeans limit, the continuum flux will have a power-law slope

of −2 + 4.2/(3 +m), with S0 scaling as λ−2 for the Planck function. When

m = 0, the canonical slope of −0.6 results. Formally, the analytic solution of

Equation (18) requires that m > −1.

Within the line, the solution is really not any more complicated. Again,

Ignace (2009) showed that

f(wz) =
2πR2

∗

d2
S0

∫

∞

0

{

1− exp
[

−(TC Gm(π) + TL sin θ)p̃−3−m
]}

p̃ dp̃.

(19)

While the argument of the exponential now has two terms, the form of the

integral is just like that of the pure continuum. The analytic result is

f(wz) =
2πR2

∗

d2
S0

(

1

3 +m

)

Γ

(

2

3 +m

)

[Gm(π) TC(λ) + TL sin θ]
2/(3+m)

.

(20)

Note that sin θ =
√

1− w2
z . When m = 0, the result of Rodŕıguez (1982)

is recovered. The foremost outcome for when the line and continuum source

functions are equal is that regardless of the value of m, the line profile is

always symmetric about line center. However, when the two source functions

are not equal, the line shape will be asymmetric, as demonstrated in the next

section.

2.4. Solution for the Case of SL 6= SC

In the previous section, a relatively complicated radiative transfer prob-

lem for line and continuum was found to have an analytic solution. The

simplifications required to obtain that solution were spherical symmetry, time-

independent flow, and the limit of constant wind expansion. Variation in the

clumping factor could be included if the variation can be treated as a power

law. Especially key was that both the free-free and line opacities scaled as the

square of density.

The final key assumption was that the line and continuum source functions

were equal. However, this assumption can be relaxed to allow for unequal

source functions (yet still constant throughout the flow at large radius). In
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this case the solution for the emergent intensity is more complicated, and

becomes

Iν(p̃, wz) = SC

(

e−τW − e−τC
)

e−τL + SC

(

1− e−τW
)

+ SL

(

1− e−τL
)

e−τW .

(21)

This expression has three terms. A ray at impact parameter p̃ intersects the

conical isovelocity zone in the form of a ring. Considering just one point on

this ring corresponding to z̃ for a given velocity shift wz, we have two path

segments and one point to consider for the accumulation of sinks and sources

that contribute to the emergent intensity. The first term in the expression is

for the continuum emission up to the point of interest, and then its attenuation

by the line opacity at the point. The second term is for the continuum emission

from the point of interest to the observer. The third term is the contribution

by the line emission, as attenuated by the foreground continuum opacity. Thus

as before, τC is the total continuum optical depth along the ray, and we also

have τW as the continuum optical depth from the observer to the point of

interest where the line emissivity contributes to the emission.

When SL = SC , terms involving τW cancel out. With unequal source func-

tions, the dependence on τW persists. The emergent intensity now becomes:

Iν(p̃) = SC

(

1− e−τC−τL
)

− (SL − SC) e
−τW−τL + (SL − SC) e

−τW . (22)

For this expression the first term closely mimics the result from the preceding

section when SL = SC . Thus the other two terms in the arrangement of

Equation (22) represent modifications when the source functions are unequal.

The flux still has an analytic solution. However, an additional standard

integral relation is required, of the form

∫

∞

0

x−β e−ax dx = Γ(1− β) aβ−1. (23)

This relation can be applied to the solution for the flux by allowing x =

p̃−3−m, for which p̃ = x−1/(3+m). One also has pdp = −(3 +m)x−β dx with

β = (5 +m)/(3 +m).

The flux in the continuum, outside the velocities of the line, is the same

as in the preceding section. However, within the line, the flux now becomes

f(wz)

f0
=

(

1

3 +m

)

Γ

(

2

3 +m

)

[

Gm(π) TC(λ) + TL (sin θ)1+m
]2/(3+m)

−δLC Γ

(

−2

3 +m

)

[

Gm(θ) TC(λ) + TL (sin θ)1+m
]2/(3+m)

+δLC Γ

(

−2

3 +m

)

[Gm(θ) TC(λ)]
2/(3+m) , (24)

where
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δLC =
SL

SC
− 1, (25)

and

f0 =
2πR2

∗

d2
SC . (26)

It is frequently the case that line profile data are plotted as continuum

normalized. The continuum-normalized emission line profile is given by

f(wz)

fC
=

[

1 +
tLC

Gm(π)
(sin θ)1+m

]

+δLC γm

{

[

Gm(θ)

Gm(π)
+

tLC

Gm(π)
(sin θ)1+m

]2/(3+m)

−

[

Gm(θ)

Gm(π)

]2/(3+m)
}

(27)

where

tLC(λ) = TL/TC , (28)

and

γm = −(3 +m)
Γ[−2/(3 +m)]

Γ[+2/(3 +m)]
, (29)

where the negative anticipates that the Gamma function in the numerator is

also negative.

Note the following special cases. Of course, where there is no line opacity,

the radio SED will be a power law in wavelength with

fν ∝ Bν T
2/(3+m)
c ∝ g2/(3+m)

ν λ−2(1+m)/(3+m). (30)

for SC = Bν(TC). The opposite extreme is when the line opacity is significant,

but the continuum is negligible. The emission line profile shape becomes

f(wz) ∝ SL (TL)
2/(3+m)

(

1− w2
z

)1/(3+m)
, (31)

Note that the line shape is symmetric about line center in the limit of a strong

line. Wavelength dependence pertinent to the specific line transition is implied

through the factors SL and TL.

Equation (27) is the main result of this study. The first term represents a

symmetric component to the emission line profile. The subsequent two terms

contribute generally to asymmetric influences to the line in the form of Gm(θ).

These influences depend on the clumping power-law exponent m, on the ratio

of the source functions SL/SC , and on the ratio of optical depths TL/TC . Note

that if δLC > 0, the line is in emission, whereas for δLC < 0, the line is in

absorption. Illustrative examples are given in the following section.
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Fig. 2. Continuum normalized emission line profiles for the case of m = −0.5. The

4 panels are: upper left is for δLC = −0.15, lower left is for δLC = +0.23, upper

right is for δLC = +0.62, and lower right is for δLC = +1.0. In each panel, the 5 line

profiles are for tLC = 0.32 (dot-dashed), 0.75 (long dashed), 1.8 (short dashed), 4.2

(dotted), and 10 (solid), from the weakest line to the strongest. Lines are plotted

against normalized velocity shift. Note that each panel has a different scale.

3. RESULTS

Figures 2–4 provide illustrative results for line profile shapes. Figure 2 is

for m = −0.5 (i.e., clumping that increases with radius); Figure 3 is for m = 0

(i.e., clumping that is constant with radius); and Figure 4 is for m = +1

(i.e., clumping that declines with radius). Each figure has 4 panels: upper

left is for δLC = −0.15, lower left is for δLC = +0.23, upper right is for

δLC = +0.62, and lower right is for δLC = +1.0 for Figures 2 and 3, but

δLC = −0.1, 0.4, 0.9, and 1.4 for Figure 4. Each panel has 5 line profiles, with

tLC = 0.32, 0.75, 1.8, 4.2, and 10, from the weakest line to the strongest. The

profiles are continuum normalized and plotted against velocity shift, wz. Note

that each panel has a different ordinate scale.
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Fig. 3. As with Fig. 2, except for m = 0.

In the case that δLC < 0, the line profile is actually in absorption. In the

case of m = +1, the line shape takes the appearance of a weak P Cygni line

shape, with blueshifted net absorption and redshifted net emission.

For m = −0.5, the line profiles are more symmetric about line center as

compared to either m = 0.0 or m = +1.0. As m approaches −1, the line

profile becomes perfectly symmetric, because the factor contributing to the

line asymmetry cancels exactly when 2/(3 +m) = 1. As m increases, the line

shapes become increasingly asymmetric with the line skewed preferentially

toward blueshifted velocities. This is natural generally because the attentua-

tion of line emission from the farside hemisphere of the wind is greater than

from the nearside hemisphere. When SL = SC , absorption is exactly com-

pensated by emission, and no asymmetry in the line can result. For the given

assumptions, the line asymmetry occurs only when the source functions are

unequal.

The line profiles display some degeneracy between δLC and tLC . As tLC

becomes large, asymmetry in the line shape lessens, in the sense that the
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Fig. 4. As with Fig. 2, except for m = 1 and with δLC = −0.1, 0.4, 0.9, and 1.4.

peak emission shifts closer to line center. A large line optical depth means

that (positive) δLC has less influence on the line shape. Generally, tLC controls

the degree of asymmetry in the line, and δLC acts as an overall amplitude for

the line emission (or line equivalent width).

4. CONCLUSIONS

The focus of this contribution has been to highlight the asymmetry of

RRLs arising from a spherical wind using an analytic derivation. Previous

analytic work produced symmetric line shapes. Numerical calculations have

demonstrated that asymmetric lines can be produced. Here, with the assump-

tion of constant but unequal line and continuum source functions, asymmetric

line shapes are produced. The derivation allows for the presence of micro-

clumping in the wind in terms of a power-law distribution (rising or declining

with radius from the star). While the clumping distribution can impact line

asymmetry, the line asymmetry results even with constant clumping, or no
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Fig. 5. The line profiles for the case m = 0.0 shown to highlight the evolution of line

asymmetry as a function of tLC . The line profiles have been continuum subtracted

and normalized to peak emission of unity. The parameter δLC = 0.5 was held fixed.

The line profiles are for log tLC = −0.5 (red), −0.125 (blue), +0.25 (green), +0.625

(magenta), and +1.0 (black)

clumping whatsoever. Under the model assumptions, emission line asymme-

try arises from the continuum opacity (specifically the appearance of the term

with Gm(θ) in Equation [27]) that absorbs the redshifted emission from the

far hemisphere more than the blueshifted emission from the near hemisphere.

The result is a line shape with blueshifted emission peak. (The same effect

arises in X-ray lines; c.f., Ignace 2016b).

RRLs are vigorously pursued as a diagnostic of source properties, from

kinematics to geometrical aspects. Peters, Longmore, & Dullemond (2012)

have made an indepth study of various factors that affect the flux of line emis-

sion and the shape of the line profile, including line asymmetry. Observational

motivation for understanding line asymmetry of RRLs include some objects

as the early-type binary MWC349, specifically the H76α line (Escalante et
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al. 1989). Understanding the line formation is key for distinguishing between

radiative transfer effects for the line formation versus the influence of aspher-

ical effects intrinsic to the source, such as binarity or asymmetric mass-loss

or flow geometry. Applications for such effects include emission-line objects

like MWC349 (e.g., LkHα 101; Thum et al. 2013), outflow from star-forming

clumps (e.g., Kim et al. 2018), and Planetary Nebulae (e.g., Ershov & Berulis

1989; Sánchez Contreras et al. 2017). Analytic solutions are valuable to these

studies in two main respects: (a) they allow for rapid evaluation of parame-

ter space that can be honed with more detailed numerical calculations to fit

data, and (b) they are important for providing non-trivial benchmarks against

which numerical codes can be tested.

The author expresses appreciation to an anonymous referee for several

helpful comments.
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Hamann, W.-R., Gräfener, G., Liermann, A., 2006, A&A, 457, 1015

Hillier D. I., Jones, T. J., Hyland, A. R., 1983, ApJ, 271, 221

Hillier, D. I., Miller, D. L., 1999, ApJ, 519, 354

Ignace, R., 2009, Astronomische Nachrichten, 330, 717

Ignace, R., 2016a, MNRAS, 457, 4123

Ignace, R., 2016b, AdSpR, 58, 694

Kim, W.-J., Urquhart, J., Wyrowski, F., Menten, K., Csengeri, T., 2018, A&A, 616,

A107

Leitherer, C., Chapman, J. M., Koribalski, B., 1995, ApJ, 450, 289



ASYMMETRIC RADIO RECOMBINATION LINES 15

Lucy, L., White, r., 1980, ApJ, 241, 300

Nugis T., Crowther P. A., Willis A. J., 1998, A&A, 333, 956

Owocki, S., Castor, J., Rybicki, G., 1988, ApJ, 335, 914

Panagia, N., Felli, M., 1975, A&A, 39, 1

Pauldrach, A., Puls, J., Kudritzki, R., 1986, A&A, 164, 86

Puls, J., Markova, N., Scuderi, S., Stanghellini, C., Taranova, O., Burnley, A.,

Howarth, I., 2006, A&A, 454, 625
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Sánchez Contreras, C., Báez-Rubio, A., Alcolea, J., Bujarrabal, V., mart́ın-Pintado,

J., 2017, A&A, 603, A67

Sobolev, V., 1960, “Moving Envelopes of Stars” (Cambridge: Harvard University

Press)

Peters, P., Longmore, S., Dullemond, C., 2012, MNRAS, 425, 2352

Thum, C, Neri, R., Báez-Rubio, A., Krips, M., 2013, A&A, 556, A129

Weiler, K., Panagia, N., Monte, M., Sramek, R., 2002, ARA&A, 40, 387

Wright, A. E., Barlow, M. J., 1975, MNRAS, 170, 41

Richard Ignace: Department of Physics & Astronomy, East Tennessee State

University, Johnson City, TN 37614, USA (ignace@etsu.edu).


	Asymmetric Shapes of Radio Recombination Lines from Ionized Stellar Winds
	Citation Information

	Asymmetric Shapes of Radio Recombination Lines from Ionized Stellar Winds
	Copyright Statement

	tmp.1566668634.pdf.UxzB0

