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ABSTRACT

An Application of an In-Depth Advanced Statistical Analysis in Exploring the

Dynamics of Depression, Sleep Deprivation, and Self-Esteem

by

Muslihat Adejoke Gaffari

Depression, intertwined with sleep deprivation and self-esteem, presents a significant

challenge to mental health worldwide. The research shown in this paper employs

advanced statistical methodologies to unravel the complex interactions among these

factors. The study scrutinizes large datasets through log-linear homogeneous associa-

tion, multinomial logistic regression, and generalized linear models to uncover nuanced

patterns and relationships. By elucidating how depression, sleep disturbances, and

self-esteem intersect, the research aims to deepen understanding of mental health

phenomena. It clarifies the relationship between these variables and explores rea-

sons for prioritizing depression research. It evaluates how statistical models, such as

log-linear, multinomial logistic regression, and generalized linear models, shed light

on their intricate dynamics. Findings offer insights into risk and protective factors

associated with these variables, guiding tailored interventions for individuals in psy-

chological distress. Additionally, policymakers can utilize these insights to develop

comprehensive strategies promoting mental health and well-being at a societal level.
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1 INTRODUCTION

1.1 Background of the Study

Sadness is a main part of the human condition. Feeling down and a little blue is

sometimes a temporary experience connected to specific events. A sense of sadness

or hopelessness can be steadier, which is well-known as depression. Depression is a

serious problem that can affect people’s lives. What they think and feel will affect

their ability to sleep [1].

Depression, also known as Major Depressive Disorder (MDD) or clinical depres-

sion, is a common and severe mental health condition characterized by persistent

and pervasive feelings of sadness, hopelessness, and a lack of interest or pleasure in

most activities. It goes beyond the regular ups and downs that people experience

in life. Depression can affect a person’s thoughts, feelings, and physical well-being,

often leading to a range of emotional and physical symptoms [2].

There are different types of depression, some of which develop due to specific

circumstances, which include symptoms of depressed mood or loss of interest, most

of the time for at least two weeks. For example, Persistent Depressive Disorder, also

called Dysthymia or Dysthymic disorder, consists of less severe symptoms than other

Major Depressive Disorders. Still, it is longer lasting, usually up to 2 years. Perinatal

Depression occurs during or after pregnancy. Seasonal Affective Disorder comes and

goes with the seasons. Depression with Symptoms of Psychosis is a severe form of

depression in which a person experiences psychosis symptoms such as delusions or

hallucinations [2].
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There are some common causes of depression, such as a brain chemistry imbalance,

drug abuse, stress, female sex hormones, and physical health problems [3]. Depres-

sion symptoms can include suicidal thoughts or attempts, trouble concentrating, a

loss of interest in things that previously brought joy, insomnia, and irritability [4].

Depression also affects the body physically. For instance, an increased risk of heart

disease, a weakened immune system, impaired digestion, and the nervous system, a

lowered libido, and a lowered tolerance for pain are possible signs of depression [5].

The degrees of depression can vary from moderate to severe. Whether it is mild

or severe, it can be treated with either medication, psychotherapy, or a combination

of the two. Antidepressants are used to treat depression, which works by changing

how the brain produces or processes certain chemicals involved in mood or stress.

Psychotherapy or talk therapy is sometimes used alone for the treatment of mild de-

pression. For moderate to severe depression, psychotherapy is often implored along

with antidepressant medications. If medication or psychotherapy does not reduce

the symptoms of depression, brain stimulation therapies can be tried. There are

different types of brain stimulation therapies, such as Electro-Convulsive Therapy

(ECT), Repetitive Transcranial Magnetic Stimulation (RTMS), Vagus Nerve Stimu-

lation (VNS), Magnetic Seizure Therapy (MST), and Deep Brain Stimulation (DBS).

ECT and RTMS are the most widely used brain stimulation therapies [2].

This research examines two potential causes of depression, which are trouble sleep-

ing and feeling bad about oneself. Trouble sleeping, also known as insomnia, is most

often described as a subjective complaint of poor sleep quality or quantity despite

adequate time for sleep, resulting in daytime fatigue, irritability, and decreased con-

15



centration. Insomnia is classified as idiopathic or comorbid. Comorbid insomnias are

associated with psychiatric disorders, medical disorders, substance abuse, and specific

sleep disorders. Idiopathic insomnia is essentially a diagnosis of exclusion. There are

some causes of insomnia, such as poor sleep habits, stress, and anxiety [6].

On the other hand, sleeping too much or hypersomnia is the inability to stay awake

and alert during the day despite having more than an adequate amount of nighttime

sleep [7]. The treatment of sleep disorders (insomnia or hypersomnia) varies from

moderate to severe. Medications, lifestyle changes, and addressing underlying medical

conditions can be used to treat mild sleep disorders. At the same time, Cognitive

Behavioral Therapy (CBT) is a therapy used to treat severe sleep disorders [8].

Feeling bad about oneself, commonly called low self-esteem or poor self-image, is

a psychological state characterized by negative perceptions and beliefs about one’s

worth, abilities, and overall value. This state can manifest in various ways and

profoundly impact an individual’s emotions, thoughts, behaviors, and relationships.

Early life experiences such as negative criticism and abuse or bullying, traumatic

events such as loss, failure, or rejection, social comparison, and interpersonal relation-

ships can cause low self-esteem. Low self-esteem can be treated by having healthy

relationships, setting realistic goals, engaging in positive affirmations, seeking sup-

port, and practicing self-compassion [9].

Depression, sleep deprivation, and self-esteem are integral components of human

experience, each exerting a profound influence on mental well-being and quality of

life. These psychological constructs, individually and collectively, play pivotal roles

in shaping individuals’ emotional states, cognitive functioning, and interpersonal re-

16



lationships. Understanding the complex interplay among these variables is essential

for elucidating the mechanisms underlying mental health disorders and developing

targeted interventions to mitigate their impact.

The relationship between trouble sleeping, depression, and feeling bad about your-

self is complicated. Some people find they cannot sleep at all, while others find they

cannot stop sleeping. Sleep problems and depression may also be innate biologi-

cal factors that cause people to feel bad about themselves. Sleep problems are also

associated with more severe depressive illness [10].

The primary purpose of this research is to clarify the relationship between depres-

sion, trouble sleeping or sleeping too much, and feeling bad about yourself. We will

address that by answering the following questions:

RQ 1:What are the critical reasons for prioritizing the study of depression, and

how does a deeper understanding of this mental health condition contribute to im-

proved prevention, intervention, and overall well-being in individuals and society?

RQ 2: How can Log-Linear Models, Multinomial Logistic Regression, and Gener-

alized Linear Models(GLM) be employed to analyze the association between depres-

sion, sleep disturbances, and self-esteem, shedding light on the intricate relationships

within mental health?

RQ 3:How can the performance of proposed statistical models be effectively com-

pared using statistical measures such as the Likelihood ratio test, Pearson chi-square,

Mean Square Error, Bayesian Information Criterion (BIC), and Akaike Information

Criterion (AIC)?

17



1.2 Significance of the Study

Investigating the relationship between depression, sleep deprivation, and self-

esteem has important implications for mental health interventions and public policy.

These interconnected aspects worsen symptoms and lower well-being, emphasizing

the importance of comprehending their intricate relationships. To lessen psycho-

logical distress, specific therapies can be created by identifying changeable risk and

protective variables. Furthermore, the knowledge gained from this study helps shape

evidence-based policies supporting mental health and fair access to care. Promoting

social justice and well-being in society requires addressing the socioeconomic determi-

nants of mental health inequities, particularly among vulnerable communities. This

study contributes to the field’s understanding and helps develop solutions for better

mental health outcomes.

1.3 Terminologies

For easy understanding and readability, these are terms used in this research:

• MDD - Major Depressive Disorder

• ECT - ElectroConvulsive Therapy

• RTMS - Repetitive Transcranial Magnetic Stimulation

• VNS - Vagus Nerve Stimulation

• MST - Magnetic Seizure Therapy

• DBS - Deep Brain Stimulation

18



• GLM - Generalized Linear Models

• AIC - Akaike Information Criterion

• BIC - Bayesian Information Criterion

• MSE - Mean Square Error

• SLE - Systemic Lupus Erythematosus

• MEC - Mobile Examination Center

• CMH - Cochran-Mantel-Haenszel

• GEE - Generalized Estimation Equations

• MLE - Maximum Likelihood Estimation

• NCHS - National Center for Health Statistics

• MEC - Mobile Examination Center

• NHANES - National Health and Nutrition Survey
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2 LITERATURE REVIEW

Depression, sleep disturbances, and self-esteem are interconnected aspects of men-

tal health that significantly impact individuals’ well-being. Understanding the com-

plex relationships among these factors is crucial for developing effective interventions

and promoting mental health. In this literature review, we synthesize findings from

various studies to explore the bidirectional relationships between depression, sleep

disturbances, and self-esteem. The review encompasses research spanning different

populations and methodologies, providing insights into the nuanced dynamics of these

psychological phenomena.

A systematic review of the relationship between sleep disturbances and mental

health assessed the bidirectionality between sleep disturbances, anxiety, and depres-

sion, indicating a one-way relationship where anxiety predicted excessive daytime

sleepiness, highlighting the intricate interplay between sleep disturbances and mental

health problems [11]. Postpartum sleep disturbance and postpartum depression re-

vealed a strong relationship between the two among predominantly educated, middle-

class, older, white participants [12].

The study of depression is carried out on specific populations, such as the quality

of sleep and depression in college students, shedding light on the unique challenges

faced by a demographic group that highlighted the prevalence of depression among

college students and its association with sleep quality, emphasizing the importance

of addressing mental health issues in educational settings and the effect of anxiety

and depression on sleep quality in individuals at high risk for insomnia revealed the

complex relationship between psychiatric comorbidity and sleep disturbance [13, 14].
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The meta-analysis examination of the relationship between sleep disorders and sui-

cidal behavior in patients with depression indicated a significant association between

sleep disorders and various manifestations of suicidal behavior and estimated more

specific categories, including insomnia, nightmares, hypersomnia, suicidal ideation,

suicide attempt, and completed suicide underscoring the importance of addressing

sleep disturbances in suicide prevention efforts and highlighting the critical role of

sleep in the context of depression and suicidal thoughts [15].

The investigation of the relationship between sex hormones, sleep problems, and

depression emphasized the complex interplay between biological factors, sleep distur-

bances, and depression, which provides insights into potential mechanisms underlying

these relationships and the examination of the relationship between depression and

sleep quality, diseases, and general characteristics elucidated the multifaceted na-

ture of depression and its associations with various demographic and clinical factors

[16, 18].

The association between depression and sleep quality in patients with Systemic

Lupus Erythematosus (SLE) reveals the significant impact of chronic illness on mental

health outcomes and highlights the need for targeted interventions addressing both

physical and psychological aspects of chronic conditions [17].

In conclusion, the findings provide valuable insights into the complex dynamics of

depression, sleep disturbances, and self-esteem, underscoring the importance of holis-

tic approaches to mental health care guided by advanced statistical methodologies to

tailor interventions and promote well-being across diverse populations.
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3 RESEARCH AND METHODOLOGY

This chapter examines the methodologies aimed at addressing the purpose of this

research. These included methods and models such as the Log-linear, Multinomial

Logistic Regression, and Generalized Linear Models used to analyze this research.

3.1 Categorical Variables

Categorical variables, also called qualitative variables, place individuals into one

of several groups. Categorical variables have measurement scales consisting of a set of

categories. For instance, political philosophy is often measured as liberal, moderate,

or conservative. Diagnoses regarding breast cancer are based on a mammogram in

the categories normal, benign, probably benign, suspicious, and malignant [28]. In

the data used for this research, mental health is measured as “little interest in doing

things”, “depression,” “trouble sleeping”, “feeling tired,” “overeating,” and “feeling

bad about yourself.”

There are three types of categorical variables: nominal, ordinal, and interval. The

nominal categorical variable makes classifications without order, but the ordinal cat-

egorical variable creates classifications with an order that possibly varies between

groups. The interval categorical variable makes classifications with order and equal

distances between groups. For example, education is a nominal categorical variable

when measured as learning in a private or public school; It becomes an ordinal cate-

gorical variable when measured by the highest degree attained using categories such

as high school, bachelor’s, master’s, and doctorate. It is an interval categorical vari-

able when measured by the years required to attain a specific level of education, using
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the integers 0, 1, 2, · · · [28].

3.1.1 Distributions of Categorical Data

In this section, three key distribution categories will be reviewed.

• Bernoulli or Binomial Distribution

The Bernoulli distribution represents a single trial with a fixed total and un-

known time that has two responses, a success or a failure (0 or 1). The distri-

bution has a simple form of a random variable:

Z =


π if z = 1 (success)

1− π if z = 0 (failure)

Suppose π is the true probability of success. Then, the Bernoulli probability

mass function is

P (Z = z) = πz(1− π)(1−z), (1)

where π is the probability of success and 1− π is the probability of failure [20].

The binomial distribution involves n independent and identical trials such that

each trial can result in one of the two possible outcomes: success or failure. This

distribution is often used to estimate or determine the proportion of individuals

with a particular attribute in a large population. If π is the probability of

observing success in each trial, then the random variable Y , which is the number

of successes, can be observed from these n trials. The random variable Y is

defined as follows:

Y =
n∑

i=1

Zi (2)
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Then, the probability of observing y successes out of these n trials is given by

the Binomial probability mass function:

P (Y = y) =

(
n
y

)
πy(1− π)(n−y), (3)

where n is a fixed number of independent trials [21].

• Multinomial Distribution is a type of distribution with a fixed total and un-

known time in addition to multiple categories and responses. It models the

probability of selecting one of k mutually exclusive categories. This is also called

a multivariate distribution. The distribution is a generalization of the Binomial

distribution (k = 2) to many dimensions where, instead of two groups, the N

elements are divided into k groups, each with a probability πi ranging from 1

to k. The Multinomial probability mass function is given by:

P (Y1 = y1, . . . , Yk = yk) =
N !

y1! . . . yk!
πy1
1 . . . πyk

k , (4)

where Yi represents the random variable of the count for each category and πi

is the probability of an individual trial resulting in category i [20].

• Poisson Distribution is a type of distribution with a fixed time and unknown

total. This distribution gives the probability of observing y events in a given

time, assuming that events occur independently at a constant rate. Let Y

denote the number of events in a unit interval of time or a unit distance. Then,

Y is called the Poisson random variable with a mean number of events λ in a

unit interval. The Poisson probability density function with mean λ is given

by:

P (Y = y) =
e−λλy

y!
, y = 0, 1, 2, ... (5)
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where Y is the random variable representing the count and λ is the mean or

the rate.

3.2 Descriptive Table Calculations

We will consider four main types of descriptive table calculations in this research.

For simplicity, we will start with 2× 2 tables:

Table 1: 2× 2 tables

Success Failure
π11 π12

π21 π22

where π11 is the probability of success for the first row and first column, π21 is

the probability of success for the second row and first column, π12 is the probability

of failure for the first row and second column, and π21 is the probability of failure of

the second row and second column.

With only success or failure as options, we often focus only on the success proba-

bility for each row:

π11 is written as π(1|1) or simply as π1.

π21 is written as π(1|2) or simply as π2.

3.2.1 Relative Risk (RR)

In the Test of Proportions, we often compare success probabilities for two samples.

The statistics

π(1|1) − π(1|2) = π1 − π2 (6)
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is called the difference in proportions. Of course, a ratio better accounts for the

relative magnitudes of success probabilities.

The formula for relative risk is given by:

π(1|1)

π(1|2)
=

π1

π2

, (7)

where π1 is the probability of success for the first row and π2 is the probability of

success of the second row.

Therefore, relative risk is the ratio of success probabilities for two rows. With

more than two rows, we have multiple relative risks comparing all rows pairwise.

3.2.2 Properties of Relative Risk (RR)

(i) RR ∈ [0,∞). This means relative risk encompasses all possible scenarios, from

no risk to infinitely higher risk.

(ii) If RR = 1, then rows are independent or homogeneous. This indicates that the

risk of the event occurring is the same in both groups and suggests that the

exposure or treatment being studied does not affect the risk of the event.

(iii) If RR > 1, then the first group is at greater risk than the second group. This

indicates that the likelihood of occurrence is increased in comparison to the

other group by exposure or characteristics associated with the First Group.

(iv) If RR < 1, then the first group is at lower risk than the second group. This

suggests that, compared to the second group, the exposure or characteristic

associated with the first group decreases the likelihood of occurrence of the

event.
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(v) While the difference in proportions will be the same regardless of how “success”

is labeled, the relative risk will not. The illustration is shown below:

π1 − π2 = (1− π1)− (1− π2)

π1

π2

̸= (1− π1)

(1− π2)

In other words, this mean that while the difference in proportions remains con-

stant, the relative risk changes when the labeling of “success” changes due to

the different effect on the numerator and denominator of the relative risk ratio

[28].

3.2.3 Odds(Ω)

In general, for success probability π, the odds denoted as Ω are defined as the

ratio of success probability to failure probability.

The formula for odds is given by:

Ω =
π

1− π
, (8)

where Ω is the odds and π is the success probability.

We noticed that while relative risk compares success probabilities across groups,

odds compare probabilities for the same group.

3.2.4 Properties of Odds(Ω)

(i) Ω ∈ [0,∞). A value of 0 means that the event is impossible, while higher values

indicate increasing likelihood.
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(ii) Ω = 1 means that success and failure are equally likely. When the odds are

exactly 1, it signifies that the event is equally likely to occur as it is not to

occur.

(iii) Ω > 1 means that success is more likely than failure. It indicates that the event

is more likely to happen than not to happen.

(iv) Ω < 1 means that success is less likely than failure. It suggests that the event

is less likely to happen than not to happen.

(v) Switching the designation of “success” inverts Ω. This property arises be-

cause switching the labels of success and failure also switches their probabil-

ities. Therefore, if the probability of success was initially reduced compared to

failure, it would be more likely after a switch. This deviation ensures that the

relative probability of the identified events is accurately reflected in the odds

ratio, regardless of their designation [28].

3.2.5 Odds Ratio(θ)

It is often interesting to compare odds across rows. It is the combination of odds

and relative risk. Therefore, the odds ratio is the ratio of the odds of success in one

group to the odds of success in another group.

The formula for odds ratio is given by:

θ =
Ω1

Ω2

, (9)

where θ is the odds ratio and Ω is the odds.
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The odds ratio is written in many ways. For example, the odds for a 2 by 2 table

is given by:

θ =
π1

1−π1

π2

1−π2

=
π1(1− π2)

π2(1− π1)
, (10)

where π1 is the success probability of the first row and π2 is the success probability

of second row.

The odds ratio can also be written in terms of cell values as follows:

θ =
π11π22

π12π21

=
n11n22

n12n21

(11)

3.2.6 Properties of Odds Ratio(θ)

(i) θ ∈ [0,∞). As the odds ratio approaches ∞, it suggests increasingly higher

odds of success in the first group compared to the second group.

(ii) θ = 1 means subjects in both rows are equally likely to have success (indepen-

dent or homogeneous).

(iii) θ > 1 means the odds of success are greater for row 1 than row 2. Subjects of

row 1 are more likely to have success than those of row 2.

(iv) θ < 1 means the odds of success are lower for row 1 than row 2. Subjects of

row 1 are less likely to have success than those of row 2.

(v) Transposing rows (designation of success) and columns or groups does not

change the value of θ. This property makes the odds ratio preferable over

relative risk in certain scenarios because it remains consistent regardless of how

the data is arranged or labeled.
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3.2.7 Log-odds ( ln(θ) )

All the previous descriptive live on skewed distributions. Applying a logarithm

can reduce this skewness. The log odds, also known as the natural logarithm of the

odds ratio, is a transformation of the odds ratio (θ).

The formula of the log-odds is given as:

ln(θ) = ln

(
Ω1

Ω2

)
, (12)

where θ is the odd ratio, Ω1 is the odds of row 1 and Ω2 is the odds of row 2.

3.2.8 Properties of Log-Odds ( ln(θ) )

(i) ln(θ) ∈ (−∞,∞). If the log odds are negative, the odds ratio is less than 1,

suggesting lower odds of success. If the log odds are positive, the odds ratio is

greater than 1, indicating higher odds of success.

(ii) A log-odds of 0 equals an odds ratio less than 1. This means the odds of success

are equal to the odds of failure.

(iii) A log-odds less than 0 equals an odds ratio less than 1. This means the odds

of success are lower than the odds of failure.

(iv) A log-odds greater than 0 equals an odds ratio greater than 1. This means the

odds of success are higher than the odds of failure.

(v) Log-odds does not have an intuitive interpretation. It is typically used in making

inferences about odds ratios [28].
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3.3 Contingency Table

A contingency table, also known as a cross-tabulation or a two-way table, is a

statistical table used to display the frequency distribution of two or more categorical

variables. Each cell in the table represents the frequency count or percentage of

cases that fall into a particular combination of categories for the studied variables.

The primary purpose of cross-tabulation is to uncover patterns, associations, and

dependencies between categorical variables in a dataset [24].

Considering the case of two categorical variables X and Y , X with I categories

and Y with J categories, let nij represent the count of the number of responses that

fall into level i of X and level j of Y . This gives rise to a table of the following form:

Table 2: Contingency Table

1 2 · · · · · · · · · J
1 n11 n12 · · · · · · · · · n1J n1+

2 n21 n22 · · · · · · · · · n2J n2+
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

...
...

. . .
...

...
I nI1 nI2 · · · · · · · · · nIJ nI+

n+1 n+2 · · · · · · · · · n+J n++

where I is the number of rows or number of levels ofX, J is the number of columns

or number of levels of Y , nij is the count of cell i, j or number of responses in level i

of X and level j of Y , ni+ is the sum over row i or number of responses in level i of

X, n+j is the sum over column j or number of responses in level j of Y , and n++ is

the total number of counts [24].
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It was introduced by Karl Pearson in 1904. Classifications of subjects on both

variables have IJ possible combinations. A contingency table with I rows and J

columns is called an I × J table [28].

Considering two cases of calculations in a contingency table with more than two

levels of variables and more than two variables, it is important to be specific about

what is being compared in either of these cases.

3.3.1 More than two levels of variables

To compare across populations, both relative risk and odds ratios are used because

if there are more than two populations, there is more than one possible comparison

to make. For example, the table below shows the cross-classification between col-

lege graduation (graduated or not graduated) and three populations. We recorded

50 white individuals, 50 black or African-American individuals, and 50 Hispanic or

Latino individuals.

Table 3: Table of Graduation Status by Race

Graduated Not Graduated
White 38 12

Black or African American 32 18
Hispanic or Latino 29 21

The estimation of the odds of graduation for each row is calculated as follows:

• Ω̂1 =
38
12

≈ 3.17

• Ω̂2 =
32
18

≈ 1.78

• Ω̂3 =
29
21

≈ 1.38
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The estimation of odds ratios of graduation is calculated as follows:

• θ1,2 =
Ω1

Ω2
= 3.17

1.78
≈ 1.78

• θ1,3 =
Ω1

Ω3
= 3.17

1.38
≈ 2.30

• θ2,3 =
Ω2

Ω3
= 1.78

1.38
≈ 1.29

Three distinct odds ratios can be calculated as follows:

(i) The odds of graduation for Whites are 3.17
1.78

= 1.78 times that of African Amer-

icans.

(ii) The odds of graduation for Whites are 3.17
1.38

= 2.30 times that of Hispanics or

Latinos.

(iii) The odds of graduation for African Americans are 1.78
1.38

= 1.29 times that of

Hispanics or Latinos.

The following example will consider more than two options for both variables by

comparing the three races with high school, some college, and college graduation.

Table 4: Table of Education Level by Race

High School Some College College Graduation
White 15 20 15

Black or African American 25 15 10
Hispanic or Latino 30 15 5

In each row, three distinct odds can be calculated. To calculate these odds, there

are three pairings of populations to consider: high school and college graduation,
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some college and college graduation, and high school and some college, meaning nine

odds ratios can be estimated. The odds of high school versus college graduation are

calculated as follows:

• Ω13,1 =
15
15

= 1

• Ω13,2 =
25
10

= 2.5

• Ω13,3 =
30
5
= 6

The odds ratio for Hispanic versus white individuals is calculated as:

θ13,31 =
Ω13,3

Ω13,1

=
6

1

= 6

The odds ratio for Hispanic versus white individuals is 6. This means that for

Hispanic individuals, the odds of high school versus college graduation are six times

that of white individuals.

3.3.2 More Than Two Variables

For more than two variables, controlling for a third variable Z is often useful

in assessing the relationship between two other variables X and Y . There are two

options:

• A marginal contingency table provides the marginal distributions of the vari-

ables X and Y , showing the total frequencies or percentages for each variable
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category. In other words, it displays each row and column totals in the con-

tingency table [24]. Let πij denote the probability that X, Y occurs in the cell

in row i and column j. The probability distribution {πij} is the joint distri-

bution of X and Y . The marginal distributions are the row and column totals

that result from summing the joint probabilities. We denote these by {πi+} for

the row variable and {π+j} for the column variable, where the subscript “+”

denotes the sum over that index; that is, πi+ =
∑

j πij and π+j =
∑

i πij [28].

• A conditional contingency table examines the relationship between two vari-

ables X and Y while holding one variable constant. It provides the frequency

distribution of one variable for each category of the other variable. It is also

known as cell percentages or proportions, and it is calculated by dividing the

frequency in each contingency table cell by the corresponding marginal total.

Conditional frequencies express the proportion of observations in each cell rel-

ative to the total number of observations for that row or column [24]. Given

that a subject is classified in row i of X, πj|i denotes the probability of classifi-

cation in column j of Y , j = 1, . . . , J .The probabilities {π1|i, . . . , πJ |i} form the

conditional distribution of Y at category i of X where
∑

j πj|i = 1 [28].

For example, suppose at clinic 1, 18 of 30 males show evidence of staph infection

and 12 of 20 females show the same. At clinic 2, 2 of 10 males show evidence of staph,

and 8 of 40 females show the same.

The marginal contingency table for staph infection evidence for both clinics is

shown below:
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Table 5: Marginal table of staph infection versus for both clinics

Male Female
Staph 20 20

No Staph 20 40

The marginal odds ratio is calculated as follows:

θ̂XY =
n11+ · n22+

n21 · n12+

=
20× 40

20× 20

= 2

The conditional contingency table for staph infection evidence for each of the

clinic is shown below:

Table 6: Conditional Table for staph versus gender for Clinic 1 and Clinic 2

Male Female
Staph 18 12

No Staph 12 8

(a) Clinic 1

Male Female
Staph 2 8

No Staph 8 32

(b) Clinic 2

The conditional odds ratio for each clinic is calculated as follows:

θ̂XY |k =
n11kn22k

n21kn12k

,

where k is the clinics.

Clinic 1 : θ̂XY |1 =
18× 8

12× 12
= 1 Clinic 2 : θ̂XY |2 =

2× 32

8× 8
= 1

At each clinic, the odds of staph are equal for males and females. Overall, the odds

of staph for males are twice that of females.
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3.3.3 Hypothesis Testing of Contingency Table

Hypothesis testing for contingency tables involves examining the association of

two categorical variables by comparing observed frequencies to expected frequencies

under the assumption of independence. There are common tests used to test the

hypothesis for contingency tables.

• Linear trend test is used to determine whether there is an increasing or de-

creasing trend in the levels observed of one variable as the levels of the other

“increase”. The test assumes both variables X and Y are ordinal. When the

variables are ordinal, a trend association is common. As the level ofX increases,

responses on Y tend to increase toward higher levels, or responses on Y tend

to decrease toward lower levels.

The test statistic, sensitive to positive or negative linear trends, utilizes corre-

lation information in the data. The test statistic is calculated as follows:

M2 = (n++ − 1)r2uv|nij, (13)

where n++ is the total number of observations in the dataset, ruv is the Pearson

correlation coefficient, nij is the frequency of observations.

The Pearson correlation coefficient (r) between X and Y equals the covariance

divided by the product of the sample standard deviations of X and Y . That is,

r =

∑
i,j(ui − ū)(vj − v̄)pij√

(
∑

i(ui − ū)2pi+)
(∑

j(vj − v̄)2p+j

) , (14)

where ui is the row scores, vj is the column scores, ū is the sample mean of the

row scores, v̄ is the sample mean of the column scores [28].
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• The Cochran-Mantel-Haenszel (C M H) test is an alternative test of XY condi-

tional independence in 2 × 2 × K contingency tables. This test conditions on

the row totals and the column totals in each partial table. In the partial table

k, the row totals are n1+k, n2+k, and the columns totals are n+1k, n+2k. Given

these totals,

µ11k = E(n11k) =
n1+kn+1k

n++k

, (15)

where µ11k represents the expected frequency of observations falling into the

category defined by the intersection of the first level of variable 1, the first

level of variable 2, and level k of variable 3, n1+k denotes the total count of

observations that have the first level of variable 1 and level k of variable 3, n+1k

represents the total count of observations that have the first level of variable 2

and level k of variable 3 and n++k denotes the total count of observations that

have level k of variable 3.

Var(n11k) =
n1+kn2+kn+1kn+2k

n2++k(n++k − 1)
, (16)

where Var(n11k) denotes the variance of the count of observations falling into

the category defined by the intersection of the first level of variable 1, the first

level of variable 2, and level k of variable 3, n1+k represents the total count of

observations that have the first level of variable 1 and level k of variable 3,n2+k

denotes the total count of observations that have the second level of variable 1

and level k of variable 3, n+1k represents the total count of observations that

have the first level of variable 2 and level k of variable 3, n+2k denotes the total

count of observations that have the second level of variable 2 and level k of

variable 3, n2++k represents the total count of observations that have level k of
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variable 3 and the second level of variable 1, n++k denotes the total count of

observations that have level k of variable 3.

Hence, the Cochran-Mantel-Haenszel (C M H) Test Statistic is stated as follows:

CMH =
(
∑

k(n11k − µ11k))
2∑

k Var(n11k)
(17)

The associated hypotheses for the Cochran-Mantel-Haenszel (C M H) Test for

Conditional Independence are stated as follows:

Null Hypothesis (H0): X, Y are conditionally independent.

Alternative Hypothesis (Ha): X, Y are not conditionally independent [28].

3.4 Categorical Variable Models

Categorical variable models are statistical models designed to analyze data with

categorical or qualitative response variables. Categorical variable models are used

when the outcome of interest is not numerical but falls into distinct categories [28].

3.4.1 Log-Linear Models

Log-linear Models are a class of statistical models used to analyze the relationship

between two or more categorical variables. Log-linear models model cell counts re-

garding the row and column variables. The counts in the cells are treated as a third

variable, as the response. These models evaluate associations that can be visualized

using contingency tables [28].
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3.4.2 Independence Model

The independence model analyzes contingency tables to assess the association

between two or more categorical variables. This model assumes two categorical vari-

ables, X and Y , are independent, meaning that the occurrence of X is not influenced

by Y . Under the assumption of independence, the independence model is given as

follows:

µij = n++πi+π+j, (18)

where µij is the expected frequency for cell i and j, n++ is the total number of

observations, πi+ is the total count for row i, and π+j is the total count for column j.

The model in equation 18 can be transformed into an additive model by applying

a logarithm which is given by:

ln(µij) = ln(n++) + ln(πi+) + ln(π+j). (19)

Alternatively, by considering λ = ln(n++), λ
X
i = ln(πi+), and λY

j = ln(π+j), the

model in equation 19 can be written as:

ln(µij) = λ+ λX
i + λY

j , (20)

where λX
i is the row effect and λY

j is the column effect [28].

3.4.3 Estimation of the Independence Model

The Independence Model is estimated using the Maximum Likelihood Estima-

tion(MLE). The model assumes that the observed counts in each cell follow a Poisson

probability distribution function. The Poisson probability distribution function is
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stated as follows:

f(nij|µij) =
e−µijµ

nij

ij

nij!
, (21)

where µij is the mean rate of occurrence for cell i, j, and nij is the observed count.

The likelihood function for µij is the product of the Poisson Probability Distri-

bution Functions (PDF) for each observed count in the contingency table. It repre-

sents the probability of observing the observed cell counts given the parameter µij.

The likelihood for µij is given by:

lij(µij|nij) =
I∏

i=1

J∏
j=1

e−µijµ
nij

ij

nij!
, (22)

where I and J are the number of rows and columns in the contingency table, µij is

the mean rate of occurrence for cell {i, j}, and nij is the observed count [28].

3.4.4 Saturated Model

A saturated model is a statistical model that perfectly fits the observed data,

meaning it achieves zero discrepancy between the observed and expected values. It

represents the maximum possible degree of fit to the data, capturing all the variability

present in the observed data without any loss of information. It is often used as a

reference point for comparing the fit of the other, more complex models. This model

includes corrections to individual cells to account for deviations from independence.

The saturated model is given by:

ln(µij) = λ+ λX
i + λY

j + λXY
ij (23)

The log-odds of the saturated model is stated as follows:

ln(θ) = ln

(
π11π22

π21π12

)
= ln

(
µ11µ22

µ21µ12

)
= λXY

11 + λXY
22 − λXY

21 − λXY
12 (24)
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The parameters λXY
ij determine the log odds ratio. When these parameters equal

zero, the log odds ratio is zero, and X and Y are independent.

The odds ratio of the saturated model is stated as follows:

θ = e(λ
XY
11 +λXY

22 −λXY
21 −λXY

12 ) =
eλ

XY
11 eλ

XY
22

eλ
XY
21 eλ

XY
12

(25)

The Independence Model states the log odds as follows [28].:

λXY
11 + λXY

22 = λXY
21 + λXY

12 (26)

3.5 Inference of log-linear models

Inference for log-linear models involves conducting statistical inferences about the

parameters and structure of the model, checking the goodness of fit, and extending

log-linear models to higher dimensions.

3.5.1 Model Fit Statistics for Log-Linear Model

Both Pearson Chi-square (χ2) and the Likelihood Ratio (G2) statistics are used

as models for goodness of fit statistics for the log-linear model. The associated hy-

potheses for the goodness of fit are stated as follows:

Null Hypothesis (H0): Model fit is good.

Alternative Hypothesis (Ha): Model fit is not good.

The Pearson χ2 statistic is stated as follows:

χ2 =
∑
ij

(nij − µ̂ij)
2

µ̂ij

, (27)

where nij is the observed frequency for cell i, j and µ̂ij is the mean rate of occurrence

for cell {i, j}.
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For the independence model,

µ̂ij =
ni+ · n+j

n++

, (28)

where µ̂ij represents the expected cell count for the cell in the contingency table

corresponding to the ith level of the row variable and the jth level of the column

variable, ni+ represents the total frequency or count of observations in the ith row,

n+j represents the total frequency or count of observations in the jth column, and

n++ represents the total frequency or count of observations in the entire contingency

table.

The test value of the independence model is compared to a critical χ2 with degrees

of freedom of (I - 1)(J - 1). The degree of freedom is calculated as the number of model

parameters subtracted from the number of cell counts. In the saturated model, the

Chi-square (χ2) is zero because there is a lack of discrepancy between the observed

and expected frequencies.

In the likelihood ratio (G2) statistic, the model is used to calculate the value of

the likelihood using predicted values µ̂ij under the null hypothesis (H0), where:

lH0 = l(µ̂ij), (29)

where l(µ̂ij) represents the log-likelihood based on the observed cell counts.

Under the alternative hypothesis (Ha), the data is used to calculate the value of

the likelihood using the observed counts nij, where:

lHa = l(nij). (30)

where l(nij) represents the log-likelihood based on the observed cell counts. Then,
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the likelihood ratio is calculated as:

G2 = −2 ln

(
lH0

lHa

)
= −2 ln

(
l(µ̂ij)

l(nij)

)
(31)

By simplifying the likelihood ratio (
lH0

lHa
), we have:

lH0

lHa

=
∏
ij

(
(ni+n+j)

(n++nij)

)nij

, (32)

where ni+ represents the total frequency or count of observations in the ith row, n+j

represents the total frequency or count of observations in the jth column, and n++

represents the total frequency or count of observations in the entire contingency table.

The log of equation 32 is equivalent to the likelihood ratio (G2) test of inde-

pendence statistic, which is compared to a critical chi-square (χ2) value with (IJ −

Number of Parameters) degrees of freedom [28].

3.5.2 Hypothesis Testing

Understanding the log-linear model hypothesis testing is crucial as it allows us to

test the validity of our model in two key ways. The first phase involves testing the

overall hypotheses about the model, while the second phase focuses on the individual

parameters. This comprehensive approach ensures the robustness and reliability of

our statistical analysis.

In model comparisons, the deviance of a model compares its likelihood value to

that of the saturated model. The deviance statistic of the model is stated as follows:

D(nij|µ̂ij) = −2(L(µ̂ij;nij)− L(nij;nij)) = G2(M), (33)

where L(µ̂ij represents the log-likelihood of the model based on the expected cell

counts (µ̂ij) and the observed cell counts (nij), L(nij;nij) represents the log-likelihood
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of the saturated model based on the observed cell counts ( nij), and G2(M) represents

the likelihood ratio test statistic.

The difference in Deviance values for the independence and saturated models is

given by:

G2(M0;M1) = G2(M0)−G2(M1) = −2(L(µ̂0)− L(µ̂1)), (34)

where G2(M0;M1) represents the likelihood ratio test statistic for comparing the

goodness of fit between two nested models M0, and M1, G
2(M0) represents the de-

viance statistics for the models M0, G
2(M1) represents the deviance statistics for the

models M1, L(µ̂0) represent the log-likelihoods of the expected cell counts ( µ̂) for

models M0, and L(µ̂1) represent the log-likelihoods of the expected cell counts ( µ̂)

for models M1.

G2(M0;M1) is distributed as a chi-square (χ2) with degrees of freedom which is

equal to the difference in the number of model parameters and also used to test the

associated hypothesis stated as follows:

Null Hypothesis (H0): Extra model parameters are zero (not significant)

Alternative Hypothesis (Ha): Extra model parameters are non-zero

at least one is significant)

The individual parameter significance tests can be performed using Wald Statis-

tics. For any parameter λ in a log-linear model, we want to test the following hy-

potheses:

Null Hypothesis (H0) : λ = 0

Alternative Hypothesis (Ha) : λ ̸= 0

Using the maximum likelihood estimation, the normal statistics can be used, which
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is given by:

z =
λ̂

SE(λ̂)
, (35)

where λ̂ represents the estimated parameter value and SE(λ̂) represents the standard

error of the parameter estimate.

However, the χ2 statistics is the square of the normal statistic which is more

commonly used, is stated as follows:

χ2 =

(
λ̂

SE(λ̂)

)2

, (36)

where λ̂ represents the estimated parameter value and SE(λ̂) represents the standard

error of the parameter estimate [28].

3.6 Three-Way Table Models

When considering the modeling of cell counts using three independent classifica-

tion variables X, Y , and Z, several models can be used.

• The mutual independence model assumes that all three variables X, Y , and Z

are independent. The mutual independence model is of the form:

πijk = πi++π+j+π++k, (37)

where πijk is the observed probability of observing the combination of values

(i,j,k) for X, Y , and Z, πi++ is the marginal probability of observing level

i of variable X across all levels of variables Y and Z, π+j+ is the marginal

probability of observing level j of variable Y across all levels of variables X and

Z and π++k is the marginal probability of observing level k of variable Z across

all levels of variables X and Y .
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By multiplying n++ and applying a logarithm, this corresponds to:

ln(µijk) = λ+ λX
i + λY

j + λZ
k (38)

where µijk is the expected count or mean response for the combination of values

(i,j,k) forX,Y , and Z, λ is the intercept term, which is the expected count when

all predictor variables are at their reference levels, λX
i is the effect of level i of

variable X on the expected count, relative to the reference level of X, λY
j is the

effect of level j of variable Y on the expected count, relative to the reference

level of Y , λZ
k is the effect of level k of variable Z on the expected count, relative

to the reference level of Z.

The mutual independence model has an independent correction to λ for each

variable.

• In the joint independence model, one of the variables X is to be independent of

the joint distribution of the other two variables Y and Z. Similarly, the models

XY and Y Z allow for models with independence of Z and Y , respectively. The

joint independence model is given by:

πijk = πi++π+jk, (39)

where πijk is the observed probability of observing the combination of values

(i, j, k) for X, Y , and Z, πi++ is the marginal probability of observing level i

of variable X across all levels of variables Y and Z, and π+jk is the conditional

probability of observing levels j of variable Y and k of variable Z given level i

of variable X.
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By multiplying n++ and applying a logarithm, this corresponds to:

ln(µijk) = λ+ λX
i + λY

j + λZ
k + λY Z

jk , (40)

where µijk is the expected count or mean response for the combination of values

(i, j, k) for X, Y , and Z, λ is the intercept term, which is the expected count

when all predictor variables are at their reference levels, λX
i is the effect of level

i of variable X on the expected count, relative to the reference level of X, λY
j is

the effect of level j of variable Y on the expected count, relative to the reference

level of Y , λZ
k is the effect of level k of variable Z on the expected count, relative

to the reference level of Z, and λY Z
jk is the interaction effect between levels j of

variable Y and k of variable Z, indicating how the joint presence of Y and Z

affects the expected count, beyond the effects of the individual variables.

• The variables X and Y in the conditional independence model are to be inde-

pendent and conditional on the value of variable Z. Similarly, (XY , Y Z) and

(XY , XZ) are conditional independence models.The conditional independence

model is given by:

πij|k = πi+|kπ+j|k, (41)

where πij|k is the observed probability of observing the combination of values (i,

j) for X and Y given level k of variable Z, πi+|k is the conditional probability

of observing level i of variable X given level k of variable Z, and π+j|k is the

conditional probability of observing level j of variable Y given level k of variable

Z.
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By multiplying n++ and applying a logarithm, this corresponds to:

ln(µijk) = λ+ λX
i + λY

j + λZ
k + λXZ

ik + λY Z
jk , (42)

where µijk is the expected count or mean response for the combination of values

(i, j, k) for X, Y , and Z, λ is the intercept term, which is the expected count

when all predictor variables are at their reference levels, λX
i is the effect of

level i of variable X on the expected count, relative to the reference level of X,

λY
j is the effect of level j of variable Y on the expected count, relative to the

reference level of Y , λZ
k is the effect of level k of variable Z on the expected

count, relative to the reference level of Z, λXZ
ik is the interaction effect between

levels i of variable X and k of variable Z, indicating how the joint presence of X

and Z affects the expected count, beyond the effects of the individual variables,

and λY Z
jk is the interaction effect between levels j of variable Y and k of variable

Z, indicating how the joint presence of Y and Z affects the expected count,

beyond the effects of the individual variables.

• The homogeneous association model allows associations between variables X

and Y , but assumes the association is independent of k that denotes the num-

ber of categories for Z.The model contains the interaction of the variables in

pairs:XZ, Y Z, XY . This means when there is a homogeneous XY association,

there is a homogeneous XZ association and a homogeneous Y Z association.

The homogeneous association model is given by:

ln(µijk) = λ+ λX
i + λY

j + λZ
k + λXZ

ik + λY Z
jk + λXY

ij , (43)
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where µijk is the expected count or mean response for the combination of values

(i, j, k) for X, Y , and Z, λ is the intercept term, which is the expected count

when all predictor variables are at their reference levels, λX
i is the effect of

level i of variable X on the expected count, relative to the reference level of X,

λY
j is the effect of level j of variable Y on the expected count, relative to the

reference level of Y , λZ
k is the effect of level k of variable Z on the expected

count, relative to the reference level of Z, λXZ
ik is the interaction effect between

levels i of variable X and k of variable Z, indicating how the joint presence of X

and Z affects the expected count, beyond the effects of the individual variables,

and λY Z
jk is the interaction effect between levels j of variable Y and k of variable

Z, indicating how the joint presence of Y and Z affects the expected count,

beyond the effects of the individual variables, and λXY
ij is the the interaction

effect between levels i of variable X and j of variable Y , indicating how the

joint presence of X and Y affects the expected count, beyond the effects of the

individual variables.

• The saturated model contains all possible parameters. It includes a three-factor

interaction. The saturated model is stated as:

ln(µijk) = λ+ λX
i + λY

j + λZ
k + λXZ

ik + λY Z
jk + λXY

ij + λXY Z
ijk , (44)

where µijk is the expected count or mean response for the combination of values

(i, j, k) for X, Y , and Z, λ is the intercept term, which is the expected count

when all predictor variables are at their reference levels, λX
i is the effect of level i

of variableX on the expected count, relative to the reference level ofX, λY
j is the
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effect of level j of variable Y on the expected count, relative to the reference level

of Y , λZ
k is the effect of level k of variable Z on the expected count, relative to

the reference level of Z, λXZ
ik is the interaction effect between levels i of variable

X and k of variable Z, indicating how the joint presence of X and Z affects

the expected count, beyond the effects of the individual variables,λY Z
jk is the

interaction effect between levels j of variable Y and k of variable Z, indicating

how the joint presence of Y and Z affects the expected count, beyond the effects

of the individual variables, and λXY
ij is the the interaction effect between levels

i of variable X and j of variable Y , indicating how the joint presence of X

and Y affects the expected count, beyond the effects of the individual variables,

and λXY Z
ijk is the three-way interaction effect between levels i of variable X,

j of variable Y , and k of variable Z, indicating how the joint presence of all

three variables affects the expected count, beyond the effects of the individual

variables and two-way interactions.

The term λXY Z
ijk allows odds ratios to change across levels of the third factor

[28].

3.6.1 Inferential Methods

Two inferential methods are tested for three-way models. One is the Wald statis-

tic, used to test for individual parameters, and the other is the likelihood ratio or

deviance statistic, used to test for model comparisons. The deviance statistics test is

given by:

G2(M0|M1) = G2(M0)−G2(M1), (45)
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where G2(M0) is the likelihood ratio of the saturated model (full model) and G2(M1)

is the likelihood ratio of the reduced model.

The deviance statistic test is compared to the chi-square (χ2) with the degree of

freedom of difference in parameters [28].

3.7 Logistic Regression Models

To model the probability associated with each cell, logistic regression is used. It

estimates the probability of an event occurring based on a given dataset of indepen-

dent variables. It is commonly used for tasks like binary classification, where the

outcome can be either a yes or no, 0 or 1, or true or false [28].

3.7.1 Logistic Regression Links

The link function relates the linear combination of the predictors to the probability

of the outcome variable. These link functions help transform the linear predictor into

a probability, allowing logistic regression to model binary outcomes effectively. The

standard link functions used in logistic regression are as follows:

• The linear link is the probability of success is equated to parameters:

πi = XT
i β, (46)

where πi is the probability or expected value of the response variable for ob-

servation i, XT
i is the transpose of the predictor variable vector Xi, converting

it from a row vector to a column vector or vice versa, and β is the vector of

parameters associated with the predictor variables.
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• The logit link models the log odds of the probability of an event occurring. It

uses the canonical statistic from the binomial distribution:

ln

(
πi

1− πi

)
= XT

i β, (47)

where ln
(

πi

1−πi

)
is the logit function, representing the natural logarithm of the

odds of the response variable being in the positive category, πi is the probability

or expected value of the response variable for observation i, XT
i is the transpose

of the predictor variable vector Xi, converting it from a row vector to a column

vector or vice versa, and β is the vector of parameters associated with the

predictor variables.

The logit transformation is preferred because it allows interpretations using

odds ratios and has efficient standard errors.

• The probit link models the inverse cumulative distribution function to the stan-

dard normal distribution.

Φ−1(πi) = XT
i β, (48)

where Φ−1(πi) is the inverse of the cumulative distribution function (CDF )

of the standard normal distribution evaluated at πi, πi is the probability or

expected value of the response variable for observation i, XT
i is the transpose

of the predictor variable vector Xi, converting it from a row vector to a column

vector or vice versa, and β is the vector of parameters associated with the

predictor variables.

This takes advantage of the fact that any continuous cumulative distribution

function maps from (−∞,∞) to [0, 1].
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• The complementary Log-Log models the complementary log-log transformation

of the probability of an event occurring. This is another creative transformation

from [0, 1] to (−∞,∞).

ln(− ln(πi)) = XT
i β, (49)

where ln(− ln(πi)) is the natural logarithm of the negative log-transformed prob-

ability − ln(πi), πi is the probability or expected value of the response variable

for observation i, XT
i is the transpose of the predictor variable vector Xi, con-

verting it from a row vector to a column vector or vice versa, and β is the vector

of parameters associated with the predictor variables [28].

3.7.2 Logistic Regression Models Predictors

The logistic regression models are different combinations of predictors and their

associated interpretations.

• One binary predictor model compares probabilities between two groups (Prob-

ability of Success versus Level of X).

The one binary predictor model is presented as follows:

ln

(
πi

1− πi

)
= αi, (50)

where πi is the probability of the response variable being in the positive category

for observation i and αi represents different values of the log odds for each row.

To calculate the odds of either population A and population B, the formula is

given as follows:
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Population A:

ΩA =
π1

1− π1

= eα1 , (51)

where ΩA is the odds of the response variable being in the positive category of

population A.

Population B:

ΩB =
π2

1− π2

= eα2 , (52)

where ΩB is the odds of the response variable being in the positive category of

population B.

Similarly, the odds ratio of population A and population B is calculated as:

θ =
ΩA

ΩB

=
eα1

eα2
= eα1−α2 (53)

If α1 = α2, then X and Y are independent.

• One categorical predictor model compares probabilities across the many groups

the predictor X defines.

The one categorical predictor model is given by:

ln

(
πi

1− πi

)
= αi, (54)

where πi is the probability of the response variable being in the positive category

for observation i and αi represents different values of the log odds for each row.

The log-odds ratio of the model is presented as follows:

ln (θii′) = ln

(
πi(1− πi′)

(1− πi)πi′

)
= logit(πi)− logit(πi′) = αi − αi′ (55)
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The odds ratio of the model is estimated using the exponential difference in

parameters from the logistic regression mode, which is given by:

θii′ = eαi−αi′ (56)

• One continuous predictor model predicts probabilities of success for different

populations defined by different values of the continuous predictor. The one

continuous predictor model uses regression notation.

The one continuous predictor model is presented as:

ln

(
πi

1− πi

)
= β0 + β1xi, (57)

where β0 is the baseline value of the log-odds when x = 0 and β1 is the effect

of the predictor which is the expected change in the log-odds for an increase of

one unit of x.

The log - odds ratio of the model is given by:

ln
(
θ(x+1),x

)
= ln

(
π(x+1)(1− πx)

(1− π(x+1))πx

)
= logit(π(x+1))− logit(πx)

= (β0 + β1(x+ 1))− (β0 + β1x)

= β1

(58)

The odds ratio of the model is given by:

θ(x+1),x = eβ1 (59)
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• With multiple predictors, it is useful to use regression notation with indicator

variables in two binary predictors model.

Suppose x1 and x2 are indicators for two binary predictors of interest; the model

is presented as:

ln

(
πi

1− πi

)
= β0 + β1x1i + β2x2i, (60)

where β0 is the expected log of the odds when both x1 and x2 are zero, β1 is

the adjustment to the log of the odds when x1 = 1, and β2 is the adjustment

to the log of the odds when x2 = 1.

The log – odd ratio of the model is given by:

ln(θ1) = ln

(
π(x1=1)(1− π(x1=0))

π(x1=0)(1− π(x1=1))

)
= (β0+β1(1)+β2x2)−(β0+β1(0)+β2x2) = β1

(61)

The odd ratio for is x1, with x2 held fixed which is similar for x2 is given as

follows:

θ1 = eβ1 (62)

• Models with continuous and categorical predictors combine continuous and cat-

egorical predictors within one model.

To start with one binary and one continuous predictor and also consider x1 as

an indicator and x2 as continuous, the model is presented as:

ln

(
πi

1− πi

)
= β0 + β1x1 + β2x2, (63)

where β0 is the expected log of the odds when x1 = 0 and x2 = 0, β1 is the

adjustment to the odds when x1 = 1 and x2 is fixed, and β2 is the adjustment
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to the log of the odds for a unit increase of x2 and x1 is fixed.

The odd ratio for is x1, with x2 held fixed which is similar for x2 is given as

follows:

θ1 = eβ1 , (64)

where eβ1 is the odds ratio associated with a unit increase of x1 when x2 = 0

[28].

3.7.3 Logistic Regression Inference

Logistic regression inference involves making statistical inferences about the pa-

rameters of a logistic regression model. These inferences include estimating parame-

ters, hypothesis testing, and assessing model fit.

(i) Parameter Estimation

Logistic regression estimates the parameters or coefficients of the model using

Maximum Likelihood Estimation(MLE). The MLE finds the parameter esti-

mates that maximize the likelihood of observing the given data, assuming the

data follows a binomial distribution. The likelihood function represents the

probability of observing the data given the model parameters, and MLE aims

to maximize this likelihood function.

Suppose N binary responses are assumed to be independent and appear as

identical Bernoulli random variables. In that case, the joint likelihood function

for logistic regression is the product of the probabilities of observing the response
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for each observation which is given by:

L(π;y) =
N∏
i=1

πyi(1− π)(1−yi), (65)

where L(π;y) represents the joint likelihood function,
∏N

i=1 denotes the product

of terms from i = 1 to N , N is the total number of observations, πyi is the

probability of observing a success, and (1−π)(1−yi) is the probability of observing

a failure.

Additionally, the log-likelihood function is the natural logarithm of the joint

likelihood function which is given by:

l(π;y) =
N∑
i=1

(yi ln(π) + c, (66)

where l(π;y) represents the log-likelihood function,
∑N

i=1 denotes the summa-

tion of terms from i = 1 to N , N is the total number of observations, yi ln(π)

is the log-likelihood contribution from the ith observation when yi = 1, and

yi ln(π) is the log-likelihood contribution from the ith observation when yi = 0

[28].

(ii) Goodness of Fit

The goodness of fit of a logistic regression model evaluates the quality of the

model and assesses how well the model fits the observed data. Several methods

are commonly used to assess the goodness of fit of logistic regression models,

which are as follows:

• The Pearson’s Chi-square (χ2) or Model deviance is used to classify pre-

dictors.
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The Pearson’s Chi-square is given by:

χ2 =
I∑

i=1

(
(yi − ŷi)

2√
ŷi(1− ŷi)

)2

, (67)

where yi is the observed response for the ith observation and ŷi is the

predicted response or probability for the ith observation.

The test value is compared to the critical chi-square (χ2) with a degree

of freedom, the number of parameters in the model subtracted from the

number of predictor(s) classifications.

The model deviance is given by:

D̂(π̂;y) = −2(l(π̂;y)− l(y;y)) = 2
N∑
i=1

[yi ln

(
yi
π̂i

)
+ (1− yi) ln

(
1− yi
1− π̂i

)
],

(68)

where l(π̂;y) is the log-likelihood function evaluated at the fitted model

(π̂), l(y;y) is the log-likelihood function evaluated at the saturated model(y),

which is the maximum attainable likelihood, yi represents the observed re-

sponse for the ith observation, π̂i represents the predicted probability of

success for the ith observation obtained from the logistic regression model.

The model deviance (D̂) is compared to a critical chi-square (χ2) value

with a degree of freedom, which is the number of parameters subtracted

from the number of groups [28].

• The Hosmer-Lemeshow test divides the data into groups based on pre-

dicted probabilities and compares the observed and expected frequencies

within each group. It can be used for any predictor.
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By applying the χ2 goodness of fit test:

χ2 =

g∑
i=1

(∑
j yij −

∑
j π̂ij

)2(∑
j π̂ij

)(
1− 1

ni

∑
j π̂ij

) , (69)

where
∑

j yij represents the total observed frequency in the ith category

of the variable,
∑

j π̂ij represents the total expected frequency in the ith

category of the variable under the null hypothesis of independence, ni

represents the total sample size for the ith category of one of the variables.

Then, the test value is compared to a critical χ2 value with a degree of

freedom which is g – 2 [28].

For any predictor, we can compare models and not evaluate fit individually

using information criteria to measure the information lost between the data

and the model. These are measures of information lost between the data and

the model. The smaller the value of these measures, the better they are. These

measures are explained as follows:

• AIC (Akaike Information Criterion) is a statistical measure that balances

the model fit and complexity and estimates the relative amount of informa-

tion lost by a model. It imposes a penalty on k, the number of parameters.

The AIC is calculated as follows:

AIC = −2ℓ(π̂; y) + 2k, (70)

where ℓ(π̂; y) represents the maximized log-likelihood of the fitted model,

k is the number of estimated parameters in the model [25].
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• BIC (Bayesian Information Criterion) is a criterion for model selection

among a finite set of models. It also balances the goodness of fit of a

model but imposes a stronger penalty than AIC. The BIC is calculated

as follows:

BIC = −2ℓ(π̂; y) + k ln(N), (71)

where ℓ(π̂; y) represents the maximized log-likelihood of the fitted model,

k is the number of estimated parameters in the model and N is the number

of observations [25].

• AICc (Akaike Information Criterion “corrected”) is an adjustment made

to the AIC to account for the bias that can occur when the sample sizes N

is relatively small compared to the number of parameters k in the model.

It imposes a stronger penalty than AIC but converges to AIC as N grows.

The AICc is calculated as follows:

AICc = AIC +
2k(k + 1)

N − k − 1
, (72)

where k is the number of estimated parameters in the model and N is the

number of observations in the dataset.

The correction term 2k(k+1)
N−k−1

penalizes the AIC further when the sample size

is small, preventing over-fitting and providing a more accurate measure of

model fit [25].

• QIC (Quasi-Likelihood Information Criterion) is an extension of the AIC

for models estimated using quasi-likelihood estimation methods, such as

Generalized Estimating Equations(GEE). It is used to compare the fit of
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different models to the same dataset. The QIC is calculated similarly to

AIC, but it uses the quasi-likelihood instead of the likelihood. The QIC

is calculated as follows:

QIC = −2 log(QL) + 2k, (73)

where QL is the maximized value of the quasi-likelihood function of the

model and k is the number of estimated parameters in the model.

• QICu (Quasi-Likelihood Information Criterion with under-dispersion) is

an extension of QIC that accounts for potential under-dispersion in the

data. It helps to select predictors. It adjusts the QIC to penalize for

under-dispersion, providing a more accurate measure of model fit. The

QICu is calculated as follows:

QICu = QIC +
k(k + 1)

N − k − 1
, (74)

where k is the number of estimated parameters in the model and N is the

number of observations in the dataset.

The additional term k(k+1)
N−k−1

in QICu corrects for potential under-dispersion

in the data, providing a more accurate measure of model fit.

The QIC and the QICu are useful for selecting the most appropriate model

for longitudinal or clustered data, considering the correlation structure

within the data and potential issues such as under-dispersion [28].

• The Mean Square Error (MSE) is a metric used to assess the accuracy of a

statistical model’s predictions. It quantifies the average squared difference
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between the observed values and the predicted values by the model. In

the context of model evaluation, the Mean Square Error (MSE) is often

used to compare the performance of different models or assess a particular

model’s goodness of fit.

The MSE is calculated as the average of the squared differences between

the observed values yi and the predicted values ŷi for each observation i.

Mathematically, it is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (75)

where n is the number of observations in the dataset,yi represents the

observed value for observation i, ŷi represents the predicted value for ob-

servation i [26].

(iii) Hypothesis Testing

The hypothesis testing involves making inferences about the model’s parame-

ters, which assesses the significance of the relationship between the predictor

variables and the response variable. There are two methods of hypothesis test-

ing, which are as follows:

• Individual Parameters

In logistic regression, the significance of individual predictors is often as-

sessed using Wald tests. The Wald test assesses whether the coefficient of

each predictor is significantly different from zero.

• Model Comparisons

The likelihood ratio (deviance) test compares the fit of a model with pre-
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dictors to the fit of a null model with no predictors. It assesses whether

adding predictors significantly improves the model’s fit [28].

3.8 Multinomial Logistic Regression Model

The multinomial logistic regression model is an extension of binary logistic re-

gression that allows the prediction of outcomes with more than two categories. It

is used when the dependent variable is categorical with more than two levels, but

the independent variables are still continuous or categorical. It models a categori-

cal response using any predictor and assumes the total number of responses is fixed.

Multinomial logistic regression is widely used in various fields, including social sci-

ences, epidemiology, marketing, and finance, whenever the outcome of interest has

multiple unordered categories [28]. There are different situations for multinomial

logistic regression models, which are considered below.

3.8.1 Nominal Responses

In the Multinomial Logistic Regression model, a nominal response variable has

distinct categories and no inherent order or ranking. Each category is distinct and

separate, with no natural ordering between them. It constructs a model that compares

each response category with a baseline category. The baseline category is arbitrary.

The multinomial logistic regression considering nominal responses are as follows:

ln

(
πj

πB

)
= β0j +

K∑
k=1

βkjxk, (76)

where πj is the probability of interest, πB is the baseline probability, β0j is the unique
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intercept for each response category, βkj is the unique slope for each predictor at each

response category, and xk does not depend on j.

In this case of nominal response, we are constructing separate logistic regression

models for each response category except the baseline. When the last category ( J )

is equal to 2, the model in equation 70 simplifies to a single equation for log
(

π1

π2

)
=

logit(π1), resulting in ordinary logistic regression for binary responses [28].

3.8.2 Estimation of Multinomial Logistic Regression Models

Estimating a multinomial logistic regression model involves determining the co-

efficients associated with each predictor variable for each category of the dependent

variable. The Maximum Likelihood Estimation is used to estimate the multinomial

logistic regression model to find the parameter estimates that maximize the likelihood

function, representing the probability of observing the given sample data given the

model parameters [28].

3.8.3 Hypothesis Testing of Multinomial Logistic Regression Models

Hypothesis testing in multinomial logistic regression involves assessing the signif-

icance of the predictor variables in explaining the variability in the outcome variable,

which has multiple unordered categories. The Wald Test assesses whether the coeffi-

cients of the predictor variables are significantly different from zero. The Likelihood

Ratio Test compares the fit of the full model to a reduced model with fewer predictors

[28].
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3.8.4 Model fit of Multinomial Logistic Regression Models

The model fit of a multinomial logistic regression model assesses how well the

model predicts the observed outcome categories based on the predictor variables. The

Deviance or Pearson χ2 statistic measures the difference between the log-likelihood

of the fitted model and the log-likelihood of the saturated model, which is a model

with a perfect fit for classification predictors [28]

3.8.5 Ordinal Responses

The ordinal response variable consists of categories with a natural order or ranking.

While the categories are distinct, like nominal variables, they also have an inherent

order or hierarchy.

In ordinal response, three standard link functions are used, which are as follows:

• Cumulative logit model assumes that the cumulative log - odds of being in the

category j or below. It is precisely for situations where the outcome variable has

ordered responses, splits categories into half, and models the lower and upper

half. It can be expressed as a linear combination of the predictor variables:

log

(
P (Y ≤ j)

1− P (Y ≤ j)

)
= ln

( ∑j
k=1 πk∑J

k=j+1 πk

)
= β0j +β1X1+β2X2+ . . .+βp, (77)

where P (Y ≤ j) is the cumulative probability of being in category j or below,

β0j,β1X1,β2X2, . . .,βp are the model coefficients.

• Adjacent categories logit model compares each category to the previous or the
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following category. The model will be presented as follows:

ln

(
πj

π(j−1)

)
= β0j +

K∑
k=1

βkxk (j = 2, . . . , J), (78)

where ln
(

πj

π(j−1)

)
represents the natural logarithm of the odds of being in cat-

egory j compared to category (j − 1), β0j represents the unique intercept for

each response category, and
∑K

k=1 βkxk represents the sum of products of the

regression coefficients ( βk) and the predictor variables ( xk).

This model is used if response categories are sufficiently far from each other

that comparisons beyond adjacent categories do not have meaning.

• Continuation ratio logit model compares each response category to all previous

or following categories. The model will be presented as:

ln

(
πj∑j−1
l=1 πl

)
= β0j +

K∑
k=1

βkxk (j = 2, . . . , J), (79)

where ln
(

πj∑j−1
l=1 πl

)
represents the natural logarithm of the odds of belonging

to category j compared to the cumulative odds of belonging to categories 1

through (j − 1), β0j represents the unique intercept for each response category,

and
∑K

k=1 βkxk represents the sum of products of the regression coefficients (

βk) and the predictor variables ( xk).

This model is often used when each level is associated with the sum of all

previous levels [28].
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3.9 Generalized Linear Models ( GLMs )

Generalized linear models are a class of statistical models that generalize linear

regression to handle response variables with error distributions other than the normal

distribution. Log-linear, binary, and multinomial logistic regression models all involve

the function of response parameter(s) equal to the linear combination of predictors

and model parameters.

This approach can be formulated for any response from the exponential family

of distributions, such as Normal, Poisson, and Binary distributions. The right-hand

side of the equation looks like a standard linear model, but the left-hand side involves

a transformation of the mean [28].

3.9.1 Generalized Linear Models (GLMs) Components

Any Generalized Linear Model is made up of three components:

• A random component represents the distributional assumptions about the re-

sponse variable Y . It accounts for the variability or randomness in the response

variable that is not explained by the predictor variables. It is specified by se-

lecting a probability distribution from the exponential family of distributions,

such as normal, binomial, Poisson, or gamma distributions.

• A systematic component describes the relationship between predictor variables

X and parameters in the model.

• A link component connects the mean of the response to the model’s parameters.

It links the other two components.
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For example, for the logistic regression model, we would have:

Random component: Yi ∼ Bin(1, π),

where Yi represents the outcome of the ith observation, which can take values of either

0 or 1 and Bin(1, π) indicates that the distribution of Yi is a Bernoulli distribution

with parameter π.

Systematic component: ηi = XT
i β,

where ηi represents the linear predictor for the ith observation, Xi represents the

vector of predictor variables for the ith observation, and β represents the vector of

coefficients or parameters associated with the predictor variables.

Link component: ηi = ln
(

π
1−π

)
,

where ηi represents the linear predictor for the ith observation, π represents the

probability of success [28].

3.9.2 Generalized Linear Models (GLMs) Properties

A generalized linear model is appropriate for a response distributed according to

any exponential distribution. The exponential distributions are formulated as follows:

f(y; θ, ϕ) = e(
(yθ−b(θ))

(a(ϕ))
+c(y,ϕ)), (80)

where θ is the canonical parameter,ϕ is the dispersion parameter, b(θ) is a scalar

function, and c(y, ϕ) is a normalizing function.

Here, we will show how a Poisson distribution can be classified as an exponential

distribution. The Poisson distribution can be modeled as:

f(y;λ) =
e−λλy

y!
= e[y ln(λ)−eln(λ)−ln(y!)], (81)
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where θ = ln(λ), b(θ)= eθ, a(ϕ) = 1, c(y, ϕ) = − ln(y!)

3.9.3 Generalized Linear Models (GLMs) Parameter Estimation

In Generalized Linear Models, parameter estimation involves finding the values of

the model coefficients that maximize the likelihood of observing the given data. The

process often involves iterative algorithms, such as Newton-Raphson or Fisher scor-

ing, to iteratively update the parameter estimates until convergence. The parameter

estimation process is the Maximum Likelihood Estimation.

Maximum Likelihood Estimation is used to find the parameter estimates that

maximize the log-likelihood function. The goal is to find the values of β that maximize

l(β).

For an individual response yi, the log-likelihood is given as:

li(θi; yi, ϕ) =
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ), (82)

where li(θi; yi, ϕ) represents the log-likelihood function for the ith observation,yi is

the observed value of the response variable for the ith observation, θi is the canonical

parameter associated with the response variable, ϕ is the dispersion parameter, and

c(yi, ϕ) is a constant term that does not depend on the parameters.

3.9.4 Generalized Linear Models (GLMs) Inference

Inference in generalized linear models involves making statistical inferences about

the model’s parameters and assessing the model’s goodness of fit to the data. The

components of inference in the generalized linear model are as follows:
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• Hypothesis Testing

In Generalized Linear Models, the hypothesis testing is done by constructing

Wald Statistics based on Maximum Likelihood Estimation:

z∗i =
β̂i − 0√
[I (β̂)]−1

ii

where z∗i represents the standardized coefficient estimate for the ith parameter

(β̂i) represents the estimated coefficient for the ith parameter, and I is the

Fisher information matrix.

The Fisher information matrix is given by:

I (β̂) = E

[(
∂l

∂β

)2
]
|β=β̂

,

where E

[(
∂l
∂β

)2]
|β=β̂

is the expected value of the squared score function.

• Model Fit

The Deviance test is used to assess the goodness of fit by comparing the deviance

of the fitted model to the deviance of a saturated model.

D̂(µ̂; y) = −2(lmodel − ldata) = 2
N∑
i=1

1

a(ϕ)

(
yi(θyi − θ̂)− (b(θyi)− b(θ̂))

)
, (83)

where D̂(µ̂; y) represents the deviance statistics, lmodel represents the log-likelihood

of the fitted model, ldata represents the log-likelihood of the saturated model,

N represents the number of observations, yi represents the observed response

variable for the ith observation, and θ̂ represents the fitted values of the mean

response variable obtained from the model.
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This is called the scaled deviance with a(ϕ) included in the above equation.

Without it, it is simply the deviance. Components are called the deviance

residuals [28].
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4 ANALYSIS OF RESULTS

This chapter aims to thoroughly discuss the research questions and provide the

relevant information and analyses to clarify their significance. The research questions

are as follows:

RQ 1:What are the critical reasons for prioritizing the study of depression, and

how does a deeper understanding of this mental health condition contribute to im-

proved prevention, intervention, and overall well-being in individuals and society?

RQ 2: How can Log-Linear Models, Multinomial Logistic Regression, and Gener-

alized Linear Models(GLM) be employed to analyze the association between depres-

sion, sleep disturbances, and self-esteem, shedding light on the intricate relationships

within mental health?

RQ 3:How can the performance of proposed statistical models be effectively com-

pared using statistical measures such as the Likelihood ratio test, Pearson chi-square,

Mean Square Error, Bayesian Information Criterion (BIC), and Akaike Information

Criterion (AIC)?

4.1 Description of Data

The dataset is obtained from the National Center for Health Statistics(NCHS).

The data was downloaded from the National Health and Nutrition Examination Sur-

vey (NHANES) website [22]. In this data set, a nine-item depression screening instru-

ment, also called the Patient Health Questionnaire, was administered to determine

the frequency of depression symptoms over the past two weeks with a follow-up ques-

tion to assess the overall impairment of the symptoms [19]. The responses for the
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nine-item instrument were categorized as “not at all”, “several days,” “more than

half the days,” and “nearly every day” and were given a point ranging from 0 to 3. In

this data, mental health is measured as “little interest in doing things”, “depression,”

“trouble sleeping” or “sleeping too much,” “feeling tired” or “having little energy,”

“poor appetite” or “overeating,” “feeling bad about yourself,” “lack of concentra-

tion,” “moving or speaking slowly or too fast,” and suicidal thought. The questions

are asked at the Mobile Examination Center (MEC) by trained interviewers using the

Computer-Assisted Personal Interview system as part of the MEC interview. Both

male and female participants aged twelve and older are eligible for the screening,

but only data from participants aged eighteen and older are studied in this research.

Participants requiring a proxy were not eligible because of the sensitive nature of

the questions. The data for youth aged twelve to seventeen is accessible through

the NCHS Research Data Center [23]. In this study, three categories “depression”,

“trouble sleeping,” and “feeling bad about yourself,” are considered.

4.2 Methodology Flowchart: Analysis Techniques

In the methodology of this thesis, a detailed flowchart has been included to illus-

trate the progression of techniques utilized. The dataset consists of 10 variables with

5162 observations. Three of the variables are considered for this research. The data

analysis is done by checking the descriptive statistics such as mosaic plots and contin-

gency tables, and the relationship of these variables and their effect on mental health

is analyzed using the Log-linear Model, Multinomial Logistic Regression Model, and

Generalized Linear Models. Each variable will be analyzed as a dependent variable,
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and the other two will be independent. The Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC), Deviance Statistic, and Mean Square Error

(MSE) of these models are used to obtain the best model for the analysis.

Figure 1: Methodology Flowchart

4.3 Analysis of Feeling Bad About Yourself

The feeling bad about yourself variable will be analyzed. At the same time,

depression and trouble sleeping are kept constant. To explain multi-dimensional

categorical data, it would be better to look at the structure between variables visually.

A mosaic plot is an area-proportional visualization of frequencies composed of the

cells created by a rectangle’s recursive vertical and horizontal splits [27]. The plot is
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a graphical display that allows the examination of relationships among two or more

categorical variables. It is a special type of stacked bar chart. It provides a visual

representation of a contingency table.

The plot in Figure 2 is drawn for this data, and we would like to highlight if

there are too many depressed people who have trouble sleeping. The plot depicts

relationships between “Depression”, “Trouble Sleeping,” and “Feeling Bad About

Yourself.” “Depression” levels are shown on the vertical axis, and “Trouble Sleeping”

levels are shown on the horizontal axis, ranging from 0 to 3. On the right side of the

plot, there is a vertical bar labeled “Pearson residuals” with a scale from − 12 to 69

which provide a visual presentation of the deviations of observed cell frequencies from

the frequencies expected under the assumption of independence between “Depression”

and “Trouble Sleeping.” Large positive residuals greater than 4 can be found for

“Not At All” levels of “Depression” and “Trouble Sleeping” and are colored in green.

These positive residuals (4 to 69) indicate that the observed frequency is higher than

expected under the independence assumption. On the other hand, there are large

negative residuals, which are less than 4 for “Several Days of Depression” or “Several

Days of Trouble Sleeping,” colored orange. These negative residuals indicate that

the observed frequency is lower than expected under the independence assumption.

Residuals between − 4 and 4, shaded in gray, indicate that the observed frequency is

close to the expected frequency under the independence assumption. The p-value less

than 2.22e−16 represents the probability of observing deviations from independence

computed from a chi-square distribution with a degree of freedom 9. The degree of
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freedom of the chi-square (χ2) test of independence is calculated as follows:

df = (I − 1)(J − 1)

= (4− 1)(4− 1))

= 9,

where df is the degree of freedom, I is the number of levels of “Depression” and J is

the number of levels of “Trouble Sleeping”.

The association between “Depression” and “Trouble Sleeping” will be evaluated

statistically with the p-value from the chi-square distribution in the mosaic plot. The

associated hypotheses for the chi-square distribution are as follows:

Null Hypothesis (H0): There is no association between depression and trouble sleep-

ing.

Alternative Hypothesis (Ha): There is an association between depression and trouble

sleeping.

The p-value is small enough to reject the null hypothesis of independence and

conclude that there is an association between depression and trouble sleeping.
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Figure 2: The mosaic plot of feeling bad about yourself

There are two ways to account for the third variable, “Feeling bad about yourself,”

which are conditional and marginal tables. Conditional contingency tables can be

constructed for each “Feeling bad about yourself” level as follows. Tables 7, 8, 9,

and 10 display the conditional contingency table between “Depression” and “Trouble

sleeping” for each level of “Feeling bad about yourself. ”.

Table 7 displays the conditional contingency table between “Depression” and

“Trouble sleeping” for the ‘Not At All” level of “Feeling bad about yourself.”
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Table 7: Conditional contingency table for “Not At All” level of “Feeling Bad About

Yourself”.

Trouble Sleeping
Depression Not at all Several More than half Nearly
Not at all 2851 216 42 19
Several 233 198 14 9

More than half 65 26 22 8
Nearly 57 20 8 11

Table 8 displays the conditional contingency table between “Depression” and

“Trouble sleeping” for “Several Days” level of “Feeling bad about yourself.”

Table 8: Conditional contingency table for “Several Days” level of “Feeling Bad About

Yourself”.

Trouble Sleeping
Depression Not at all Several More than half Nearly
Not at all 374 90 6 3
Several 109 146 25 4

More than half 12 28 14 8
Nearly 5 18 8 16

Table 9 displays the conditional contingency table between “Depression” and

“Trouble sleeping” for the “ More Than Half The Days” level of “Feeling bad about

yourself.”
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Table 9: Conditional contingency table for “More Than Half The Days” level of

“Feeling Bad About Yourself”

Trouble Sleeping
Depression Not at all Several More than half Nearly
Not at all 83 19 9 1
Several 16 36 10 1

More than half 8 11 14 8
Nearly 6 8 4 8

Table 10 displays the conditional contingency table between “Depression” and

“Trouble sleeping” for the “Nearly Everyday” level of “Feeling bad about yourself.”

Table 10: Conditional contingency table for “Nearly Every Day” level of “ Feeling

Bad About Yourself”

Trouble Sleeping
Depression Not at all Several More than half Nearly
Not at all 59 15 6 9
Several 14 22 9 5

More than half 10 5 9 7
Nearly 8 10 9 40

Since each category has four levels, we can calculate several odds ratios. For

simplicity, one level of the “Feeling Bad About Yourself” variable, which is more

meaningful, is picked to compute the odds ratio. The calculation of the odds ratio

between “Several Days” and “More Than Half The Days” levels of “Feeling Down,

Depressed, or Hopeless” and “Trouble Sleeping” for “More Than Half The Days” level

of “Feeling Bad About Yourself” is done with the circled values in the conditional

contingency table 11.
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Table 11: Conditional contingency table for “More Than Half The Days” level of

“Feeling Bad About Yourself” for odds ratio calculation.

Trouble Sleeping
Depression Not at all Several More than half Nearly
Not at all 83 19 9 1

Several 16 36 10 1

More than half 8 11 14 8

Nearly 6 8 4 8

The conditional probability, θXY |Z can be calculated as follows:

θXY |Z = θXY |k =
nijkni′j′k

nij′kni′jk

= θXY |4 =
n222n322

n232n332

=
36× 14

11× 10

=
504

110

= 4.582

It means that for those who have had depression for several days, the odds of “several

days of trouble sleeping” will be 4.58 times more than those who have had depression

for more than half the days due to more than half the days of feeling bad about

themselves.

Also, the calculation of the odds ratio between “Several Days” and “Nearly Ev-

ery Day of “Feeling Down” and having “Trouble Sleeping” for “More Than Half

The Days” of “Feeling Bad About Yourself” is done with the circled figures in the

conditional contingency table 12.
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Table 12: Conditional contingency table for “More Than Half The Days” level of

“Feeling Bad About Yourself” for second odds ratio calculation.

Trouble Sleeping
Depression Not at all Several More than half Nearly
Not at all 83 19 9 1

Several 16 36 10 1

More than half 8 11 14 8

Nearly 6 8 4 8

The conditional probability θXY |Z can be calculated as follows:

θXY |Z = θXY |k =
nijkni′j′k

nij′kni′jk

= θXY |4 =
n222n442

n242n422

=
36× 8

8× 1

=
288

8

= 36

It means that for those who have depression for several days, the odds of “several

days of trouble sleeping” will be 36 times more than those who have depression nearly

every day due to “more than half the days feeling bad about themselves”. If the rest

of the odds ratio is calculated, it is found that all odd ratios are greater than one. In

other words, θXY |2 = c > 1, for all X,Y , where c is a constant.

We conclude that depression has a greater effect on mental health than trouble

sleeping, which are independent of each other condition on “more than half the days

feeling bad about yourself. ”.
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We will determine whether there is an increasing or decreasing trend between the

levels of depression and trouble sleeping. The associated hypotheses for the linear

trend are given by:

Null Hypothesis (H0): There is no trend between depression and trouble sleeping.

Alternative Hypothesis (Ha): A positive linear trend exists between depression and

trouble sleeping.

The linear trend test statistic is calculated as follows:

Q =
√
(n++ − 1)r2

=
√
(242− 1)(1)2

≈ 15.524,

where n++ is the total number of counts in the conditional contingency table for

“More Than The Days” level of “Feeling Bad About Yourself” and r is the weighted

correlation between “Depression” and “Trouble Sleeping”.

The linear trend test statistic value is compared with the critical value of chi-square

with a degree of freedom 3 (χ2(3) = 7.815). The degree of freedom of chi-square is

calculated as follows:

df = k − 1

= 4− 1

= 3,

where df is the degree of freedom and k is the number of levels of “Feeling Bad About

Yourself”.
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This comparison suggests the null hypothesis (H0) should be rejected since the

test statistic value is greater than the critical value. The data provide sufficient

evidence to conclude there is a positive linear association between trouble sleeping

and depression due to more than half the days feeling bad about yourself. This test

must be appropriate only if researchers suspect a positive linear association before

seeing data.

Then, the marginal contingency table that presents the total counts across all

levels of “Feeling Bad About Yourself” levels is shown below in Table 13.

Table 13: Marginal contingency table between “Depression” and “Trouble Sleeping.”

Trouble Sleeping
Depression Not at all Several More than half Nearly
Not at all 3367 340 63 32

Several 372 402 58 19

More than half 95 70 59 31

Nearly 76 56 29 75

The odds ratio between “several days” and “more than half the days” of feeling

down and having trouble sleeping would be calculated. Therefore, the joint probabil-

ity (θXY ) between “Depression” (X) and “Trouble Sleeping” (Y ) can be calculated

as follows:

θXY =
n11+ · n22+

n12+ · n21+

=
402× 59

70× 58

=
23718

4060

= 5.84
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It means that for those who have depression for several days, the odds of several days

of trouble sleeping will be 5.84 times more than those who have depression for more

than half the days. If we calculate all odds ratios for the marginal table, we will find

that all are greater than 1. Therefore, we would conclude the odds of success are

more significant for those who have depression.

Finally, a test is performed to evaluate the conditional independence (conditional

on Feeling Bad About Yourself level). An appropriate test would be the Cochran-

Mantel-Haenszel (C M H) Test of conditional independence [28]. The Cochran-

Mantel-Haenszel Test assesses the conditional independence of categorical predictors

associated with categorical outcomes.

The associated hypotheses of the Cochran-Mantel-Haenszel Test are stated as

follows:

Null Hypothesis (H0): Depression and Trouble sleeping are conditionally independent.

Alternative Hypothesis (Ha): Depression and Trouble sleeping are not conditionally

independent.

The Cochran-Mantel-Haenszel (C M H) χ2 statistic is approximately 1178, which

is greater than the chi-square critical value of the degree of freedom 9 (χ2(9) = 16.919).

The degree of freedom of the chi-square test of conditional independence is calculated

as follows:

df = (I − 1)(J − 1)

= (4− 1)(4− 1))

= 9,
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where df is the degree of freedom, I is the number of levels of “Depression” and J is

the number of levels of “Trouble Sleeping.”

We would reject H0 since the test statistic value exceeds the critical value. We

conclude that “Depression” and “Trouble Sleeping” are not conditionally independent

conditional on each “Feeling Bad About Yourself” level. For at least one feeling level,

there is a significant association between depression and trouble sleeping.

We will investigate if there is any homogeneous association between all two-factor

interaction terms, i.e., XY (Depression × Sleeping). The appropriate model would

be the Log-linear Homogeneous Association Model (M0). The general form of the

Loglinear Homogeneous Association Model for this data is given by:

ln(µij) = λ+ λX
i + λY

j + λXY
ij for i = 1, 2, 3, 4, j = 1, 2, 3, 4 (84)

The fitted model can be represented as follows:

ln(µijk) = −1.348789+0.313508 Depression
i +0.525302 Sleeping

j −0.062089 Depression × Sleeping
ij

(85)

To perform a test to assess the overall fit of this model, the deviance statistic, G2(M0),

is calculated by finding the difference between the null deviance, which is the saturated

or full model and the residual deviance which is the reduced model.

The associated hypotheses for the deviance statistic are stated as follows:

Null Hypothesis (H0): Extra model parameters are zero (not significant).

Alternative Hypothesis (Ha): Extra model parameters are non-zero

(at least one is significant).
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The test statistic of the deviance statistic is calculated as follows:

G2(M0|M1) = G2(M0)−G2(M1)

= 6177.6− 5242.2

= 935.35

The degree of freedom of the chi-square test of the Log-linear Homogeneous Associ-

ation Model is calculated as follows:

df = nulldf − residualdf

= 5161− 5158

= 3,

where df is the degree of freedom, nulldf is the degree of freedom of the null deviance

and residualdf is the degree of freedom of the residual deviance.

By comparing the test value to the critical value (χ2
0.05(3) = 7.815), we would

reject the null hypothesis. Therefore, the data provide sufficient evidence to conclude

the homogeneous association model fits well. It means that there is an association

between any pair of variables. Additionally, it implies that we have no three-way

interaction between depression, sleeping, and feeling bad about ourselves.

We will model a categorical response, “Feeling Bad About Yourself,” using any

predictor and assume the total number of responses is fixed. The appropriate model

would be the Multinomial Logistic Regression model. The Multinomial Logistic Re-

gression Model uses three standard link functions: cumulative logit, adjacent cate-

gories logit, and continuation ratio logit.
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The Cumulative Logit Model is used in this analysis to split categories in half

model lower half versus upper half. The model has different intercepts because it

models the cumulative probabilities of observing an outcome falling into a specific

category or below. Each intercept represents the log odds of being in or below a

specific category relative to a reference category.

The model can be written mathematically as follows:

logit

(
P ≤ j

P < j

)
= β0 + β1X1i + β2X2i , j = 0, 1, 2

So,

logit

(
P ≤ j

P < j

)
= β0 + β1 Depressioni + β2 Sleepingi

More specifically, the model can be expanded as follows:

log

(
P0

P1 + P2 + P3

)
= 1.5523 + 0.4206 Depressioni + 0.7741 Sleepingi,

log

(
P0 + P1

P2 + P3

)
= 2.9644 + 0.4206 Depressioni + 0.7741 Sleepingi, and

log

(
P0 + P1 + P2

P3

)
= 3.8131 + 0.4206 Depressioni + 0.7741 Sleepingi

To perform a test to assess the overall fit of this model, the deviance statistics, G2(M0)

is calculated and compared to the chi-square critical value. The associated hypothe-

ses of the deviance statistic are stated as follows:

Null Hypothesis (H0): Model fit is good.

Alternative Hypothesis (Ha): Model fit is not good.
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The test statistic of the deviance statistic is calculated as follows:

G2(M0|M1) = G2(M0)−G2(M1)

= 8414.769− 7699.33

= 715.44

The degree of freedom of the chi-square test of the Cumulative Logit Model is calcu-

lated as follows:

df = K − 1

= 4− 1

= 3,

where df is the degree of freedom, K is the number of levels of “Feeling Bad About

Yourself”.

By comparing the test value to the critical value (χ2
0.05(3) = 7.815), we would

reject the null hypothesis. Therefore, the data provide sufficient evidence to conclude

the cumulative logit model fits well. It means that there is an association between

any pair of variables. Additionally, it implies that we have no three-way interaction

between depression, sleeping, and feeling bad about ourselves.

We will model the response variable, ”Feeling Bad About Yourself,” with gener-

alized linear models (GLMs). Since the data’s response variable is a count variable,

we will use the Poisson regression and the negative binomial regression.

Using a log-linear model, Poisson regression models the relationship between pre-

dictor variables and the expected value of a count variable (response variable). The
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general form of the model is given by:

ln(µi) = β0 + β1X1i + β2X2i, (86)

where µi is the mean count, β0 is the intercept term of the model, β1 and β2 are the

coefficients of the predictor variables X1i (Depression) and X2i (Trouble Sleeping)

respectively.

So, the model will be represented as follows:

ln(µ̂) = −1.27599 + 0.23081( Depressioni) + 0.41123( Sleepingi). (87)

Now, we are interpreting the coefficients in two ways, general and specific interpreta-

tions.

The general interpretation is as follows:

“There is an expected increase in the mean count of people feeling bad about them-

selves”.

The specific interpretations are given as follows:

“The number of times people feel bad about themselves with depression is expected

to be e0.23081 ≈ 1.259 times, while trouble sleeping is constant” and “the number

of times people feel bad about themselves with trouble sleeping is expected to be

e0.41123 ≈ 1.509 times, while depression is constant”.

The assumptions and fit of the Poisson model are independent of response, there

is no collinearity among predictors, Poisson sampling is good, and variance is equal

to the mean. These assumptions are checked to determine whether the model is a

good fit. The model is a Poisson sampling in which time is fixed, and the total is

unknown. The data was collected over two weeks.
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The histogram of the data is right-skewed which is shown in Figure 3 below:

Figure 3: The histogram of feeling bad about yourself

The overdispersion test checks if the variance is equal to the mean. The associated

hypotheses of overdispersion test is stated as:

Null Hypothesis (H0): variance = mean

Alternative Hypothesis (H1): variance > mean

The dispersion estimate (ϕ̂) = 1.437269, which is greater than 1. The p-value for

the over-dispersion test is 2.2 × 10−16, which is less than α = 0.05. The variance is

equal to 0.6681336, greater than the mean, equal to 0.4074002. Therefore, the null

hypothesis is rejected, and we conclude that the variance is greater than the mean.

A scatter plot is commonly used for visualizing the relationship between two con-

92



tinuous variables. The plot in Figure 4 depicts the scatter plot of the Poisson Regres-

sion Model. The x-axis represents feeling bad about yourself, while the y-axis displays

deviance residuals from the Poisson model. These residuals quantify the deviation

between observed and model-predicted values, with values closer to zero indicating

better model fit. The plot’s spread showcases how “Feeling Bad About Yourself”

categories correlate with deviance residuals, with discernible vertical alignments po-

tentially indicating discrete or categorical data. Clusters of points at various “Feeling

Bad About Yourself” levels demonstrate how residuals vary across this variable, with

patterns or trends suggesting model influential outliers. Outlying points, located

farther from the central horizontal line (y=0), denote larger discrepancies between

observed and predicted values, warranting further investigation.
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Figure 4: Scatter Plot of Poisson Model of Feeling Bad About Yourself

The over-dispersion test shows the Poisson model is a poor fit; therefore, we

changed the model to Negative Binomial Regression.

The general form of the Negative Binomial Regression model is given as follows:

ln(µi) = β0 + β1X1i + β2X2i, (88)

where µi is the mean count, β0 is the intercept term of the model, β1 and β2 are the

coefficients of the predictor variables X1i (Depression) and X2i (Trouble Sleeping)

respectively.
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Therefore, the fitted model would be:

ln(µ̂) = −1.37535 + 0.31645 Depressioni + 0.47472 Sleepingi (89)

The Negative Binomial Regression model is presented in a scatter plot shown in

Figure 5. Ideally, the residuals should be randomly dispersed around the horizontal

line representing zero, indicating that the model fits well across all levels of the ”Feel-

ing” variable. In the scatter plot, the residuals seem to be symmetrically distributed

around zero. Still, the clustering at fixed intervals on the x-axis indicates that “Feel-

ing Bad About Yourself” is not a continuous variable. The spread of residuals does

not show a clear pattern indicating systematic model error for “Feeling Bad About

Yourself”, but the presence of outliers, particularly for higher values of “Feeling Bad

About Yourself,” could warrant further investigation.

95



Figure 5: Scatter Plot of Negative Binomial Regression Model of Feeling Bad About

Yourself

The statistical measures obtained from the analysis of “Feeling Bad About Your-

self” are shown in Table 14 below. These measures are visualized graphically below,

and colored vertical lines represent the best model.
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Table 14: Feeling Bad About Yourself

Statistical Measures
Models AIC BIC G2 MSE

Log-Linear 8347.642 8373.839 935.4 0.615654
Multinomial 7711.33 7750.624 715.439 0.07756587
GLM(Poisson) 8400.514 8420.161 880.5 1.384698
GLM (NB) 8113.765 8139.961 655.3 1.069236

Figure 6: Graph of AIC values for “Feeling Bad About Yourself”.

Figure 6 above shows the graph of AIC values for “Feeling Bad About Yourself,”
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the colored vertical line depicts that the Cumulative Logit Model is the best model

for the analysis.

Figure 7: Graph of BIC values for “Feeling Bad About Yourself”.

Figure 7 above shows the graph of BIC values for “Feeling Bad About Yourself,”

the colored vertical line depicts that the Cumulative Logit Model is the best model

for the analysis.

98



Figure 8: Graph of MSE values for “Feeling Bad About Yourself”.

Figure 8 above shows the graph of MSE values for “Feeling Bad About Yourself,”

the colored vertical line depicts that the Cumulative Logit Model is the best model

for the analysis.
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Figure 9: Graph of Deviance Statistic for “Feeling Bad About Yourself”.

Figure 9 above shows the graph of deviance statistic values for “Feeling Bad About

Yourself,” the colored vertical line depicts that the Negative Binomial Regression

Model is the best model for the analysis.

The graphs of AIC, BIC, and MSE values depict that the cumulative logit model

consistently has the lowest value among other models. This finding suggests that the

cumulative logit model is the best model to describe the relationship between feeling

bad about yourself, depression, and trouble sleeping. On the other hand, the graph
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of Deviance Statistic value shows that the negative binomial model has the lowest

value among other models. This finding indicates that the negative binomial model

is the best model to describe the relationship between the variables.

4.4 Analysis of Depression

The analysis of depression is figured out through two variables, which are feeling

bad about yourself and having trouble sleeping.

The mosaic plot in Figure 10 is drawn for this data, and we would like to high-

light if too many trouble-sleeping people feel bad about themselves. The plot depicts

relationships between “Feeling Bad About Yourself”, “Trouble Sleeping,” and “De-

pression.” “Trouble Sleeping” levels are shown on the vertical axis, and “Feeling Bad

About Yourself” levels are shown on the horizontal axis, ranging from 0 to 3. On

the right side of the plot, there is a vertical bar labeled “Pearson residuals” with

a scale from − 12 to 69 which provide a visual presentation of the deviations of

observed cell frequencies from the frequencies expected under the assumption of in-

dependence between “Feeling Bad About Yourself” and “Trouble Sleeping”. Large

positive residuals greater than 4 can be found for “Not At All” levels of “Trouble

Sleeping” and “Feeling Bad About Yourself” and are colored in green. These positive

residuals (4 to 69) indicate that the observed frequency is higher than expected under

the independence assumption. On the other hand, there are large negative residuals,

which are less than 4 for “Several Days of “Feeling Bad About Yourself” or “Several

Days of Trouble Sleeping,” colored in orange. These negative residuals indicate that

the observed frequency is lower than expected under the independence assumption.
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Residuals between − 4 and 4, shaded in gray, indicate that the observed frequency is

close to the expected frequency under the independence assumption. The p-value less

than 2.22e−16 represents the probability of observing deviations from independence

computed from a chi-square distribution with a degree of freedom 9. The degree of

freedom of the chi-square (χ2) test of independence is calculated as follows:

df = (I − 1)(J − 1)

= (4− 1)(4− 1))

= 9,

where df is the degree of freedom, I is the number of levels of “Feeling Bad About

Yourself” and J is the number of levels of “Trouble Sleeping”.

The association between “Feeling Bad About Yourself” and “Trouble Sleeping”

will be evaluated statistically with the p-value from the chi-square distribution in the

mosaic plot. The associated hypotheses for the chi-square distribution are:

Null Hypothesis (H0): There is no association between feeling bad about yourself and

trouble sleeping.

Alternative Hypothesis (Ha): There is an association between feeling bad about your-

self and trouble sleeping.

The p-value is small enough to reject the null hypothesis of independence and

conclude that there is an association between feeling bad about yourself and trouble

sleeping.
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Figure 10: The mosaic plot of depression

The conditional contingency tables and marginal contingency tables constructed

for each level of feeling bad about yourself and trouble sleeping are shown below.

Tables 15, 16, 17, and 18 display the conditional contingency table between ”Feeling

Bad About Yourself” and ”Trouble Sleeping” for each level of ”Depression.”

Table 15 displays the conditional contingency table between “Feeling Bad About

Yourself” and “Trouble Sleeping” for the “Not At All” level of “Depression.”
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Table 15: Conditional contingency table for “Not At All” level of “Feeling Depressed”.

Feeling Bad About Yourself
Trouble Sleeping Not at all Several More than half Nearly

Not at all 2851 374 83 59
Several 216 90 19 15

More than half 42 6 9 6
Nearly 19 3 1 9

Table 16 displays the conditional contingency table between ”Feeling Bad About

Yourself” and ”Trouble Sleeping” for” Several Days” level of “Depression.”

Table 16: Conditional contingency table for “Several Days” level of “Feeling De-

pressed”.

Feeling Bad About Yourself
Trouble Sleeping Not at all Several More than half Nearly

Not at all 233 109 16 14
Several 198 146 36 22

More than half 14 25 10 9
Nearly 9 4 1 5

Table 17 displays the conditional contingency table between “Feeling Bad About

Yourself” and “Trouble Sleeping” for the “More Than Half The Days” level of “De-

pression.”
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Table 17: Conditional contingency table for “More Than Half The Days” level of

“Feeling Depressed”.

Feeling Bad About Yourself
Trouble Sleeping Not at all Several More than half Nearly

Not at all 65 12 8 10
Several 26 28 11 5

More than half 22 14 14 9
Nearly 8 8 8 7

Table 18 displays the conditional contingency table between “Feeling Bad About

Yourself” and “Trouble Sleeping” for “Nearly Everyday” level of “Depression”.

Table 18: Contingency conditional contingency table for “Nearly Every Days” level

of “Feeling Depressed”

Feeling Bad About Yourself
Trouble Sleeping Not at all Several More than half Nearly

Not at all 57 5 6 8
Several 20 18 8 10

More than half 8 8 4 9
Nearly 11 16 8 40

Since each category has four levels, we can calculate several odds ratios. For

simplicity, one level of the “Depression” variable, which is more meaningful, is picked

to compute the odds ratio. The calculation of the odds ratio between “Several Days”

and “More Than Half The Days” levels of “Feeling Bad About Yourself” and “Trouble

Sleeping” for “More Than Half The Days” level of “Feeling Down, Depressed and

Hopeless” is done with the circled values in the conditional contingency table 19.
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Table 19: Conditional contingency table for “More Than Half The Days” level of

“Feeling Depressed” for odds ratio calculation.

Feeling Bad About Yourself
Trouble Sleeping Not at all Several More than half Nearly

Not at all 65 12 8 10

Several 26 28 11 5

More than half 22 14 14 9

Nearly 8 8 8 7

The conditional probability θXY |Z can be calculated as follows:

θXY |Z = θXY |k =
nijkni′j′k

nij′kni′jk

= θXY |4 =
n222n322

n232n332

=
28× 14

14× 11
=

28

11

= 2.545

It means that for those who have trouble sleeping for several days, the odds of “Several

Days of Feeling Bad About Yourself” will be 2.545 times more than those who have

trouble sleeping for more than half the days due to more than half the days of feeling

down, depressed, and hopeless.

Also, the calculation of the odds ratio between “Several Days” and “Nearly Ev-

eryday” levels of “Trouble Sleeping” and “Feeling Bad About Yourself” for “More

Than Half The Days” level of “Feeling Down, Depressed, and Hopeless” is done with

the circled values in the conditional contingency table 20.
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Table 20: Conditional contingency table for “More Than Half The Days” level of

“Feeling Depressed” for second odds ratio calculation.

Feeling Bad About Yourself
Trouble Sleeping Not at all Several More than half Nearly

Not at all 65 12 8 10

Several 26 28 11 5

More than half 22 14 14 9

Nearly 8 8 8 7

The conditional probability θXY |Z can be calculated as follows:

θXY |Z = θXY |k =
nijkni′j′k

nij′kni′jk

= θXY |4 =
n222n442

n242n422

=
28× 7

8× 5
=

196

40

= 4.90

It means that for those who have trouble sleeping for several days, the odds of

several Days of feeling bad about yourself” will be 4.90 times more than those who

have trouble sleeping nearly every day due to more than half the days of feeling down,

depressed, and hopeless. If the rest of the odds ratio is calculated, it is found that all

odds ratios are greater than one. In other words, θXY |4 = c > 1, ∀X, Y , where c is a

constant.

We conclude that trouble sleeping has a greater effect on mental health than

feeling bad about yourself, which are independent of each other condition on “more

than half the days feeling down, depressed, and hopeless. ”.
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We will determine whether there is an increasing or decreasing trend between the

levels of depression and trouble sleeping. The associated hypotheses for the linear

trend are stated as follows:

Null Hypothesis (H0): There is no trend between depression and trouble sleeping.

Alternative Hypothesis (Ha): A positive linear trend exists between depression and

trouble sleeping.

The test statistic of the linear trend is calculated as follows:

Q =
√
((n++ − 1)r2)

=
√

((255− 1)(1)2)

≈ 15.937,

where n++ is the total number of counts in the conditional contingency table for

“More Than The Days” level of “Feeling Down, Depressed, and Hopeless” and r is the

weighted correlation between “Feeling Bad About Yourself” and “Trouble Sleeping.”

The linear trend test statistic value is compared with the critical value of chi-

square with degree of freedom 3 (χ2(3) = 7.815). The degree of freedom of chi-square

is calculated as follows:

df = k − 1

= 4− 1

= 3,

where df is the degree of freedom and k is the number of levels of “Feeling Down,

Depressed, and Hopeless.”.

108



The comparison of the test statistic value to the critical value χ2(3) suggests the

null hypothesis (H0) should be rejected since the test statistic value is greater than

the critical value. The data provide sufficient evidence to conclude there is a positive

linear association between feeling bad about yourself and trouble sleeping due to

more than half the days feeling down, depressed, and hopeless. This test must be

appropriate only if researchers suspect a positive linear association before seeing data.

Then, the marginal contingency table that presents the total counts across all

levels of “Depression” is shown below in Table 21.

Table 21: Marginal contingency table between “Feeling Bad About Yourself” and

“Trouble Sleeping”.

Feeling Bad About Yourself
Trouble Sleeping Not at all Several More than half Nearly

Not at all 3209 500 113 91

Several 461 282 75 52

More than half 86 53 37 33

Nearly 48 31 18 61

The odds ratio between “Several Days” and “More Than Half The Days” levels

of “Trouble Sleeping” and “Feeling Bad About Yourself” would be calculated.

The joint probability (θXY ) between “Feeling Bad About Yourself” (X) and “Trou-

ble Sleeping” (Y ) can be calculated as follows:

θXY =
n11+n22+

n12+n21+

=
282× 37

53× 75

=
10434

3975
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= 2.625

It means that for those who have trouble sleeping for several days, the odds of several

days of feeling bad about yourself will be 2.63 times more than those who have trouble

sleeping for more than half the days of feeling down, depressed, and hopeless. If we

calculate the odds for the marginal table, we will find that all are greater than 1.

Therefore, we would conclude that the odds of success are greater for those with

trouble sleeping.

Finally, a test to evaluate the conditional independence (conditional on “De-

pression” levels) is performed. An appropriate test would be the Cochran-Mantel-

Haenszel (C M H)Test of conditional independence [28].

The associated hypotheses of the Cochran-Mantel-Haenszel Test are stated as fol-

lows:

Null Hypothesis (H0): Feeling bad about yourself and Trouble sleeping are condition-

ally independent.

Alternative Hypothesis (Ha): Feeling bad about yourself and Trouble sleeping are

not conditionally independent.

The Cochran-Mantel-Haenszel (C M H) χ2 statistic is approximately 280.35, which

is greater than any χ2(9) critical value of the degree of freedom 9 (χ2(9) = 16.919).

The degree of freedom of the chi-square test of conditional independence is calculated

as follows:
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df = (I − 1)(J − 1)

= (4− 1)(4− 1))

= 9,

where df is the degree of freedom, I is the number of levels of “Feeling Bad About

Yourself” and J is the number of levels of “Trouble Sleeping.”

We would reject the null hypothesis (H0) since the test statistic value is greater

than the critical value and conclude that “Feeling Bad About Yourself” and “Trouble

Sleeping” are not conditionally independent of “Depression” levels. For at least one

“Depression” level, there is a significant association between trouble sleeping and

feeling bad about yourself.

We will investigate if there is any homogeneous association between all two-factor

interaction terms, i.e., XY (Sleeping × Feeling). The appropriate model would be the

Log-linear Homogeneous Association Model (M0). The general form of the Log-linear

Homogeneous Association Model for this data is given by:

ln(µij) = λ+ λX
i + λY

j + λXY
ij ∀i = 1, 2, 3, 4, j = 1, 2, 3, 4. (90)

The fitted model can be represented as follows:

ln(µijk) = −1.42978 + 0.63156 Sleeping
i + 0.36246 Feeling

j − 0.07570 Sleeping × Feeling
ij (91)

To perform a test to assess the overall fit of this model, the deviance statistic, G2(M0),

is calculated by finding the difference between the null deviance, which is the saturated

or full model, and the residual deviance, which is the reduced model.

111



The associated hypotheses of the deviance statistics are stated as follows:

Null Hypothesis (H0): Extra model parameters are zero (not significant).

Alternative Hypothesis (Ha): Extra model parameters are non-zero

(at least one is significant).

The test statistic of the deviance statistic is calculated as follows:

G2(M0|M1) = G2(M0)−G2(M1)

= 6442.9− 5062.3

= 1380.6

The degree of freedom of the chi-square test of the Log-linear Homogeneous Associ-

ation Model is calculated as follows:

df = nulldf − residualdf

= 5161− 5158

= 3,

where df is the degree of freedom, nulldf is the degree of freedom of the null deviance

and residualdf is the degree of freedom of the residual deviance.

By comparing the test value to the critical value (χ2
0.05(3) = 7.815), since the test

value is greater than the critical value, we would reject the null hypothesis. There-

fore, the data provide sufficient evidence to conclude the homogeneous association

model fits well. It means that there is an association between any pair of variables.

Additionally, it implies that we have no three-way interaction between depression,

sleeping, and feeling bad about ourselves.
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For the Multinomial Logistic Regression Model, the model can be written math-

ematically as follows:

logit

(
P ≤ j

P < j

)
= β0 + β1X1i + β2X2i ; j = 0, 1, 2

So,

logit

(
P ≤ j

P < j

)
= β0 + β1 Sleepingi + β2 Feelingi

More specifically, the model can be expanded as follows:

log

(
P0

P1 + P2 + P3

)
= 1.7994 + 1.264 Sleepingi + 0.495 Feelingi,

log

(
P0 + P1

P2 + P3

)
= 3.3841 + 1.264 Sleepingi + 0.495 Feelingi, and

log

(
P0 + P1 + P2

P3

)
= 4.3852 + 1.264 Sleepingi + 0.495 Feelingi.

To perform a test to assess the overall fit of this model, the deviance statistics, G2(M0)

is calculated and compared to the chi-square critical value. The associated hypotheses

of the deviance statistic are stated as follows:

Null Hypothesis (H0): Model fit is good.

Alternative Hypothesis (Ha): Model fit is not good.

The test statistic of the deviance statistic is calculated as follows:

G2(M0|M1) = G2(M0)−G2(M1)

= 8557.117− 7214.218

= 1342.899
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The degree of freedom of the chi-square test of the Cumulative Logit Model is calcu-

lated as follows:

df = k − 1

= 4− 1

= 3,

where df is the degree of freedom and k is the number of levels of “Feeling Down,

Depressed, and Hopeless”.

By comparing the test value to the critical value (χ2
0.05(3) = 7.815), we would

reject the null hypothesis (H0) since the test value is greater than the critical value.

Therefore, the data provide sufficient evidence to conclude the cumulative logit model

fits well. It means that there is an association between any pair of variables. Addi-

tionally, it implies that we have no three-way interaction between depression, sleeping,

and feeling bad about ourselves.

We will model the response variable, ”Depression,” with generalized linear models

(GLMs). Since the data’s response variable is a count variable, we will use the Poisson

regression and the negative binomial regression.

The general form of the Poisson model is given by:

ln(µi) = β0 + β1X1i + β2X2i, (92)

where µi is the mean count, β0 is the intercept term of the model, β1 and β2 are the

coefficients of the predictor variables X1i (Trouble Sleeping) and X2i (Feeling Bad

About Yourself) respectively.
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So, the fitted model will be represented as follows:

ln(µ̂) = −1.36237 + 0.54893 Sleepingi + 0.25197 Feelingi (93)

The interpretation of the coefficients will be made in two ways, general and specific

interpretations.

The general interpretation is as follows:

“There is an expected increase in the mean count of people feeling down, depressed,

and hopeless.”.

The specific interpretations are given as follows:

“The number of times people feel depressed with trouble sleeping is expected to

be e0.54893 ≈ 1.73 times, feeling bad about yourself is constant”, and “the number

of times people feel depressed with feeling bad about themselves is expected to be

e0.25197 ≈ 1.29 times, depression is constant”.

The histogram of the data is right-skewed, shown in Figure 11 below:
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Figure 11: The histogram of depression

The over-dispersion test is used to check if the variance is equal to the mean. The

associated hypotheses of the over-dispersion test are stated as:

Null Hypothesis (H0): variance = mean

Alternative Hypothesis (Ha): variance > mean

The dispersion estimate (ϕ̂) = 1.624339, greater than 1. The p-value for the

over-dispersion test is 8.788 × 10−9, which is less than α = 0.05. The Variance,

equal to 0.7530648, is greater than the mean, equal to 0.4213483. Therefore, the null
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hypothesis is rejected, and we conclude that the variance is greater than the mean.

The plot in Figure 12 depicts the scatter plot of the Poisson Model of “Depres-

sion”.If the Poisson model fits well, we expect to see the residuals dispersed randomly

around the zero line on the y-axis without any clear pattern. The presence of clusters

of points vertically aligned at specific values of “Depression” implies several unique

levels of this variable. Residuals that are far from zero, especially if they form a pat-

tern, may indicate potential issues with the model’s fit at certain levels of depression.

There are some potential outliers, especially at higher levels of depression, which have

higher deviance residuals. Suppose these outliers are not random but correspond to

specific levels of the depression variable. In that case, it might suggest that the Pois-

son model does not capture all the nuances of the relationship between depression

and the outcome variable.
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Figure 12: Scatter Plot of Poisson Regression Model of Depression

The overdispersion test shows the model is a poor fit. Therefore, we changed the

model to Negative Binomial Regression.

The general form of the Negative Binomial Regression model is:

ln(µi) = β0 + β1X1i + β2X2i, (94)

where µi is the mean count, β0 is the intercept term of the model, β1 and β2 are the

coefficients of the predictor variables X1i (Trouble Sleeping) and X2i (Feeling Bad
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About Yourself) respectively.

ln(µ̂) = −1.47999 + 0.69791 Sleepingi + 0.27767 Feelingi (95)

From the scatter plot of the negative binomial model in Figure 13, the residuals do

not show a clear pattern, which might initially indicate that the model does not have

systematic bias. However, the presence of outliers, particularly at higher depression

levels, indicates instances where the model’s predictions deviate significantly from the

observed data.

Figure 13: Scatter Plot of Negative Binomial Regression Model of Depression
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The statistical measures obtained from the analysis of “Depression” are shown in

Table 22. These measures are visualized graphically below, and colored vertical lines

represent the best model.

Table 22: Statistical measures of “Feeling Down, Depressed, and Hopeless”.

Statistical Measures
Models AIC BIC G2 MSE

Log-Linear 8152.288 8178.484 1431.3 0.7365462
Multinomial 7228.218 7274.062 1342.899 0.05878926
GLM(Poisson) 8201.003 8220.65 1380.6 1.542902
GLM (NB) 7947.697 7973.894 1064.6 1.324138
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Figure 14: Graph of AIC values for “Depression”.

Figure 14 above shows the graph of AIC values for “Depression,” the colored ver-

tical line depicts that the Cumulative Logit Model is the best model for the analysis.
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Figure 15: Graph of BIC values for “Depression”.

Figure 15 above shows the graph of BIC values for “Depression,” the colored ver-

tical line depicts that the Cumulative Logit Model is the best model for the analysis.
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Figure 16: Graph of MSE values for “Depression”.

Figure 16 above shows the graph of MSE values for “Depression,” the colored ver-

tical line depicts that the Cumulative Logit Model is the best model for the analysis.
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Figure 17: Graph of Deviance Statistics for “Depression”.

Figure 17 above shows the graph of Deviance Statistics values for “Depression,”

and the colored vertical line depicts that the Negative Binomial Regression Model is

the best model for the analysis.

The graphs of AIC, BIC, and MSE values depict that the cumulative logit model

has the lowest value among other models, which shows that it is the best model for

describing the relationship between the three variables. The graph of the Deviation

Statistics value, on the other hand, depicts that the negative binomial model has the
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lowest value among other models, which shows that it is the best model to describe

the relationship between the variables.

4.5 Analysis of Trouble Sleeping

The analysis of trouble sleeping is figured out through two variables: feeling bad

about yourself and depression.

The mosaic plot in Figure 18 is drawn for this data, and we would like to high-

light if there are too many depressed people who feel bad about themselves. The

plot depicts relationships between “Feeling Bad About Yourself”, “Depression,” and

“Trouble Sleeping.” “Depression” levels are shown on the vertical axis, and “Feeling

Bad About Yourself” levels are shown on the horizontal axis, ranging from 0 to 3. On

the right side of the plot, there is a vertical bar labeled “Pearson residuals” with a

scale from − 12 to 69 which provide a visual presentation of the deviations of observed

cell frequencies from the frequencies expected under the assumption of independence

between “Feeling Bad About Yourself” and “Depression.” Large positive residuals

greater than 4 can be found for “Not At All” levels of “Feeling Bad About Yourself”

and “Depression” and are colored in green. These positive residuals (4 to 69) indicate

that the observed frequency is higher than expected under the independence assump-

tion. On the other hand, there are large negative residuals, which are less than 4 for

“Several Days of “Feeling Bad About Yourself” or “Several Days of Depression,” col-

ored in orange. These negative residuals indicate that the observed frequency is lower

than expected under the independence assumption. Residuals between − 4 and 4,

shaded in gray, indicate that the observed frequency is close to the expected frequency
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under the independence assumption. The p-value, less than 2.22e−16, represents the

probability of observing deviations from independence computed from a chi-square

distribution with a degree of freedom 9. The degree of freedom of the chi-square (χ2)

test of independence is calculated as follows:

df = (I − 1)(J − 1)

= (4− 1)(4− 1))

= 9,

where df is the degree of freedom, I is the number of levels of “Feeling Bad About

Yourself” and J is the number of levels of “Depression”.

The association between “Feeling Bad About Yourself” and “Depression” will be

evaluated statistically with the p-value from the chi-square distribution in the mosaic

plot. The associated hypotheses of a chi-square distribution are stated:

Null Hypothesis (H0): There is no association between feeling bad about yourself and

depression.

Alternative Hypothesis (Ha): There is an association between feeling bad about your-

self and depression.

The p-value is small enough to reject the null hypothesis of independence and con-

clude that there is an association between feeling bad about yourself and depression.
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Figure 18: The mosaic plot of trouble sleeping

The Conditional contingency tables and marginal contingency table constructed

for each level of feeling bad about yourself and depression are as follows. Tables

23,24,25, and 26 display the conditional contingency table between “Feeling Bad

About Yourself” and “Depression” for each level of “Trouble Sleeping.”

Table 23 displays the conditional contingency table between “Feeling Bad About

Yourself” and “Depression” for the “Not At All” level of “Trouble Sleeping.”
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Table 23: Conditional contingency table for “Not At All” level of “Trouble Sleeping”.

Feeling Bad About Yourself
Depression Not at all Several More than half Nearly
Not at all 2851 374 83 59
Several 233 109 16 14

More than half 65 12 8 10
Nearly 57 5 6 8

Table 24 displays the conditional contingency table between “Feeling Bad About

Yourself” and “Depression” for the “Several Days” level of “Trouble Sleeping.”

Table 24: Conditional contingency table for “Several Days” level of “Trouble Sleep-

ing”.

Feeling Bad About Yourself
Depression Not at all Several More than half Nearly
Not at all 216 90 19 15
Several 198 146 36 22

More than half 26 28 11 5
Nearly 20 18 8 10

Table 25 displays the conditional contingency table between “Feeling Bad About

Yourself” and “Depression” for the “More Than Half The Days” level of “Trouble

Sleeping.”
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Table 25: Conditional contingency table for “More Than Half Days” level of “Trouble

Sleeping”.

Feeling Bad About Yourself
Depression Not at all Several More than half Nearly
Not at all 42 6 9 6
Several 14 25 10 9

More than half 22 14 14 9
Nearly 8 8 4 9

Table 26 displays the conditional contingency table between “Feeling Bad About

Yourself” and “Depression” for the “Nearly Everyday” level of “Trouble Sleeping.”

Table 26: Conditional contingency table for “Nearly Every Day” level of “Trouble

Sleeping”.

Feeling Bad About Yourself
Depression Not at all Several More than half Nearly
Not at all 19 3 1 9
Several 9 4 1 5

More than half 8 8 8 7
Nearly 11 16 8 40

Since each category has four levels, we can calculate several odds ratios. For

simplicity, one level of the “Sleeping” variable, which is more meaningful, is picked

to compute the odds ratio. The calculation of the odds ratio between “Several Days”

and “More Than Half The Days” levels of “Depression” and “Feeling Bad About

Yourself” for “More Than Half The Days” of “Trouble Sleeping” is done with the

circled values in the conditional contingency table 27.
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Table 27: Conditional contingency table for “More Than Half The Days” level of

“Trouble Sleeping” for odds ratio calculation.

Feeling Bad About Yourself
Depression Not at all Several More than half Nearly
Not at all 42 6 9 6

Several 14 25 10 9

More than half 22 14 14 9

Nearly 8 8 4 9

The conditional probability θXY |Z between the “Several Days” and the “More

Than Half The Days” levels of “Feeling Bad About Yourself” and “Depression” can

be calculated as follows:

θXY |Z = θXY |k =
nijkni′j′k

nij′kni′jk

= θXY |4 =
n222n322

n232n332

=
25× 14

14× 10
=

25

10

= 2.50

It means that for those who have had depression for several days, the odds of

several days of feeling bad about yourself will be 2.50 times more than those who

have had depression for more than half the days due to more than half the days of

trouble sleeping.

Also, the calculation of the odds ratio between “Several Days” and “Nearly Every-

day” levels of “Depression” and “Feeling Bad About Yourself” for “More Than Half
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Days” level of “Trouble Sleeping” is done with the circled values in the conditional

contingency table 28.

Table 28: Conditional contingency table for “More Than Half The Days” level of

“Trouble Sleeping” for second odds ratio calculation.

Feeling Bad About Yourself
Depression Not at all Several More than half Nearly
Not at all 42 6 9 6

Several 14 25 10 9

More than half 22 14 14 9

Nearly 8 8 4 9

The Conditional Probability θXY |Z between “Several Days” and “Nearly Every-

day” levels of “Feeling Bad About Yourself” and “Trouble Sleeping” is calculated as

follows:

θXY |Z = θXY |k =
nijkni′j′k

nij′kni′jk

= θXY |4 =
n222n442

n242n422

=
25× 9

8× 9
=

25

8

= 3.125

It means that for those who have depression for several days, the odds of several

days of feeling bad about themselves will be 3.125 times more than those who have

depression nearly every day due to more than half the days of trouble sleeping. If

the rest of the odds ratio is calculated, it is found that all odd ratios are greater than

one. In other words, θXY |4 = c > 1, ∀X, Y , where c is a constant.
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We conclude that depression has a greater effect on mental health than feeling

bad about yourself, which are independent of each other condition on “more than

half the day’s trouble sleeping.”

We will determine whether there is an increasing or decreasing trend between the

levels of depression and trouble sleeping. The associated hypotheses of the linear

trend are stated as follows:

Null Hypothesis (H0): There is no trend between feeling bad about yourself and

depression.

Alternative Hypothesis (Ha): There is a positive linear trend between feeling bad

about yourself and depression.

The test statistic of the linear trend is calculated as follows:

Q =
√

((n++ − 1)r2)

=
√

((209− 1)(1)2)

≈ 14.422,

where n++ is the total number of counts in the conditional contingency table for

“More Than The Days” level of “Trouble Sleeping” and r is the weighted correlation

between “Feeling Bad About Yourself” and “Depression”.

The linear trend test statistic value is compared with the critical value of chi-

square with degree of freedom 3 (χ2(3) = 7.815). The degree of freedom of chi-square

is calculated as follows:
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df = k − 1

= 4− 1

= 3,

where df is the degree of freedom, and k is the number of levels of “Trouble Sleeping”.

The linear trend test is a crucial part of our analysis. The comparison of the

test statistic value to the critical value χ2(3) suggests that the null hypothesis (H0)

should be rejected since the test statistic value is greater than the critical value. This

means that the data provide sufficient evidence to conclude there is a positive linear

association between depression and feeling bad about yourself due to more than half

the days of feeling down, depressed, and hopeless. It’s important to note that this

test is appropriate only if a positive linear association is suspected by researchers

before seeing data, further validating our findings.

The marginal contingency table, which presents the total counts across all levels

of ”Trouble Sleeping,” is shown in Table 29.

Table 29: Marginal contingency table for “More Than Half the Days” of “Trouble

Sleeping”.

Feeling Bad About Yourself
Depression Not at all Several More than half Nearly
Not at all 3128 473 112 89

Several 454 284 63 50

More than half 121 62 41 31

Nearly 96 47 26 67
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The odds ratio between the ”Several Days” and ”More Than Half The Days”

levels of ”Feeling Bad About Yourself” and ”Depression” would be calculated.

The joint probability (θXY ) between “Feeling Bad About Yourself” (X) and “De-

pression” (Y ) can be calculated as follows:

θXY =
n11+ · n22+

n12+ · n21+

=
284× 41

62× 63

=
11644

3906

= 2.98

It means that for those who have depression for several days, the odds of several

days of feeling bad about yourself will be 2.98 times more than those who have

depression for more than half the days of trouble sleeping. If we calculate the odds

for the marginal table, we will find that all are greater than 1. Therefore, we would

conclude that the odds of success are greater for those with trouble sleeping.

Finally, a test is performed to evaluate the conditional independence (conditional

on Feeling level). An appropriate test would be the Cochran-Mantel-Haenszel(C M

H) Test of conditional independence [28].

The associated hypotheses for the Cochran-Mantel-Haenszel Test are stated as

follows:

Null Hypothesis (H0): Feeling bad about yourself and depression are conditionally

independent.

Alternative Hypothesis (Ha): Feeling bad about yourself and depression are not con-
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ditionally independent.

The Cochran-Mantel-Haenszel(C M H) χ2 statistic is approximately 222.61, which

is greater than the chi-square critical value of the degree of freedom 9 (χ2(9) = 16.919).

The degree of freedom of the chi-square test of conditional independence is calculated

as follows:

df = k − 1

= 4− 1

= 3,

where df is the degree of freedom and k is the number of levels of “Trouble Sleeping”.

We would reject the null hypothesis(H0) since the test statistic value is greater

than the critical value and conclude depression and feeling bad about yourself are

not conditionally independent of trouble sleeping levels. For at least one trouble

sleeping level, there is a significant association between feeling bad about yourself

and depression.

We will investigate if there is any homogeneous association between all two-factor

interaction terms, i.e., XY (Depression × Feeling).

The appropriate model would be the Log-linear Homogeneous Association Model

(M0). The general form of the Log-linear Homogeneous Association Model for this

data is given by:

ln(µij) = λ+ λX
i + λY

j + λXY
ij ∀i = 1, 2, 3, 4, j = 1, 2, 3, 4. (96)
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So, the fitted model can be represented as follows:

ln(µij) = −1.621580 + 0.434453 Depression
i + 0.428898 Feeling

j − 0.049198Depression×Feeling
ij

(97)

To perform a test to assess the overall fit of this model, the deviance statistic,

G2(M0), is calculated by finding the difference between the null deviance, which is

the saturated or full model, and the residual deviance, which is the reduced model.

The associated hypotheses for the deviant statistics are stated as follows:

Null Hypothesis (H0): Extra model parameters are zero (not significant).

Alternative Hypothesis (Ha): Extra model parameters are non-zero

(at least one is significant).

The test statistic of the deviance statistic is calculated as follows:

G2(M0|M1) = G2(M0)−G2(M1)

= 5503.7− 4291.8

= 1211.9

The degree of freedom of the chi-square test of the Log-linear Homogeneous As-

sociation Model is calculated as follows:

df = (I − 1)(J − 1)(K − 1)

= (4− 1)(4− 1)(2− 1)

= 9,
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where df is the degree of freedom, I is the number of levels of “Feeling Bad About

Yourself”, J is the number of levels of “Depression” and K is the number of levels of

parameters (Feeling Bad Yourself and Depression).

By comparing the test value to the critical value χ2
0.05(9), we would reject the null

hypothesis (H0). Therefore, the data provide sufficient evidence to conclude the ho-

mogeneous association model fits well. It means that there is an association between

any pair of variables. Additionally, it implies that we have no three-way interaction

between depression, sleeping, and feeling bad about ourselves.

The Multinomial Logistic Regression model can be written mathematically as:

logit

(
P ≤ j

P < j

)
= β0 + β1X1i + β2X2i ; j = 0, 1, 2

So,

logit

(
P ≤ j

P < j

)
= β0 + β1Depressioni + β2Feelingi

More specifically, the model can be expanded as follows:

log

(
P0

P1 + P2 + P3

)
= 1.9811 + 1.0219Depressioni + 0.6357Feelingi,

log

(
P0 + P1

P2 + P3

)
= 3.8039 + 1.0219Depressioni + 0.6357Feelingi, and

log

(
P0 + P1 + P2

P3

)
= 4.9173 + 1.0219Depressioni + 0.6357Feelingi

To perform a test to assess the overall fit of the Cumulative Logit Model, the

deviance statistic G2(M0) is calculated and compared to the chi-square critical value.

The associated hypotheses of the deviance statistic are stated as follows:
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Null Hypothesis(H0): Model fit is good.

Alternative Hypothesis (Ha): Model fit is not good.

The test statistic of the deviance statistic is calculated as follows:

G2(M0|M1) = G2(M0)−G2(M1)

= 7758.285− 6502.324

= 1255.961

The degree of freedom of the chi-square test of the Cumulative Logit Model is

calculated as follows:

df = K − 1

= 4− 1

= 3,

where df is the degree of freedom, K is the number of levels of “Trouble Sleeping”.

By comparing the test value to the chi-square critical value (χ2
0.05(3) = 7.815), we

would reject the null hypothesis. Therefore, the data provide sufficient evidence to

conclude the cumulative logit model fits well. It means that there is an association

between any pair of variables. Additionally, it implies that we have no three-way

interaction between depression, trouble sleeping, and feeling bad about ourselves.

We will model the response variable, ”Trouble Sleeping,” with generalized linear

models (GLMs). Since the data’s response variable is a count variable, we will use

the Poisson regression and negative binomial regression models.
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The general form of the Poisson Regression Model is given by:

ln(µi) = β0 + β1X1i + β2X2i, (98)

where µi is the mean count, β0 is the intercept term of the model, β1 and β2 are the

coefficients of the predictor variables X1i (Depression) and X2i (Feeling Bad About

Yourself) respectively.

So, the Poisson Regression Model will be represented as follows:

ln(µ̂) = −1.56708 + 0.40148 Depressioni + 0.32368 Feelingi (99)

The coefficients will be interpreted in two ways, general and specific interpreta-

tions.

The general interpretation is as follows:

“There is an expected increase in the mean count of people having trouble sleeping”.

The specific interpretations are given as follows:

“The number of times people have trouble sleeping with depression is expected to

be e0.40148 ≈ 1.49 times, feeling bad about yourself is constant, and “The number of

times people have trouble sleeping with feeling bad about themselves is expected to

be e0.32368 ≈ 1.38 times, depression is constant”.

The histogram of the data is right-skewed which is shown in the Figure 19 below:
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Figure 19: The histogram of trouble sleeping

The over-dispersion test checks if the variance is equal to the mean. The associated

hypotheses to the over-dispersion test are stated as:

Null Hypothesis (H0): variance = mean

Alternative Hypothesis (Ha): variance > mean

The dispersion estimate (ϕ̂) = 1.230287, greater than 1. The p-value for the over-

dispersion test is 2.764× 10−6, which is less than α = 0.05. The variance is equal to
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0.5172042, greater than the mean, equal to 0.3467648. Therefore, the null hypothesis

is rejected, and we conclude that the variance is greater than the mean.

The plot in Figure 20 depicts the scatter plot of the Poisson Model of “Trouble

Sleeping”. Clusters of points vertically aligned at specific x-values suggest that the

“Sleeping” variable might be categorical or has been binned into distinct levels. The

spread of the residuals (the distance of the points from the horizontal line at zero

on the y-axis) is indicative of the negative binomial model’s performance at different

levels of the “Sleeping” variable. Residuals far from zero can indicate poor model fit

or potential outliers. A good model fit would be indicated by a random scatter of

points around the horizontal line at zero without any discernible pattern. Patterns,

trends, or outliers in the plot could indicate issues with the model’s specifications or

potential influential observations.
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Figure 20: Scatter Plot of Poisson Regression Model for Trouble Sleeping

The over-dispersion test shows the model is a poor fit, therefore, we changed the

model to Negative Binomial Regression.

The general form of the Negative Binomial Regression Model is given by: ln(µi) =

β0+β1X1i+β2X2i, where µi is the mean count, β0 is the intercept term of the model,

β1 and β2 are the coefficients of the predictor variables X1i ( Depression) and X2i (

Feeling Bad About Yourself) respectively.
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Therefore, the fitted model would be:

ln(µ̂) = −1.74508 + 0.57225 Depressioni + 0.27767 Feelingi (100)

From the scatter plot of the Negative Binomial Regression model in Figure 21,

there are distinct columns of data points, which likely correspond to the different

categories of ’Sleeping.’ Points that deviate significantly from zero may indicate

potential outliers or leverage points that could influence the model fit. The absence

of a clear pattern across different levels of ’Sleeping’ suggests that the model’s fit

does not systematically vary with this predictor. However, the presence of points

with high positive or negative residuals might be areas to investigate further for

model improvement.
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Figure 21: Scatter Plot of Negative Binomial Regression Model for Trouble Sleeping

The statistical measures obtained from the analysis of “Trouble Sleeping” are

shown in Table 30. These measures are visualized graphically below, and colored

vertical lines represent the best models.
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Table 30: Trouble Sleeping

Statistical Measures
Models AIC BIC G2 MSE

Log-Linear 7053.431 7079.627 1238.3 0.5409994
Multinomial 6514.324 6553.619 1255.961 0.06607545
GLM(Poisson) 7077.584 7097.405 1211.9 1.109951
GLM (NB) 6907.558 6933.754 1120.3 0.9982505

Figure 22: Graph of AIC values for “Trouble Sleeping”

Figure 22 above shows the graph of AIC values for “Trouble Sleeping,” the col-
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ored vertical line depicts that the Cumulative Logit Model is the best model for the

analysis.

Figure 23: Graph of BIC values for “Trouble Sleeping”

Figure 23 above shows the graph of BIC values for “Trouble Sleeping,” the col-

ored vertical line depicts that the Cumulative Logit Model is the best model for the

analysis.
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Figure 24: Graph of MSE values for “Trouble Sleeping”

Figure 24 above shows the graph of MSE values for “Trouble Sleeping,” the col-

ored vertical line depicts that the Cumulative Logit Model is the best model for the

analysis.
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Figure 25: Graph of Deviance Statistics for “Trouble Sleeping”

Figure 25 above shows the graph of Deviance statistic values for “Trouble Sleep-

ing,” and the colored vertical line depicts that the Negative Binomial Regression

Model is the best model for the analysis.

The AIC, BIC, and MSE values graphs depict that the Cumulative Logit Model

has the lowest value among other models, showing the best model to describe the

relationship between the three variables. The Deviance Statistic value, on the other

hand, depicts that the Negative Binomial Model has the lowest value among other
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models, showing the best model to describe the relationship between the variables.

We observed from the tables and graphs of values that the best model to analyze

the relationship between Feeling bad about yourself, Feeling down, depressed, and

hopeless, and Trouble Sleeping is the Multinomial Logistic Regression Model.
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5 DISCUSSION AND FUTURE WORK

5.1 CONCLUSION

In this research, we wanted to investigate if there is any association between

depression, trouble sleeping, and feeling bad about yourself. To do this, we employed

three models. The first model was the log-linear model which showed We concluded

that there are relationships between any pair of variables but no relationship between

three variables simultaneously. In other words, people with depression commonly

experience disturbed sleep patterns, people with trouble sleeping will feel bad about

themselves, and those who have depression will feel bad about themselves. But there

is no relationship between the three variables at the same time.

5.2 FUTURE WORK

In future studies exploring the dynamics of the relationship between depression,

trouble sleeping, and feeling bad about yourself, non-parametric models such as those

that do not assume any assumptions could be employed.

Additionally, supervised machine learning techniques, such as random forest, could

assist researchers in seeing if there is any improvement in the relationship of the

variables. Furthermore, since there was no association between depression, trouble

sleeping, and feeling bad about yourself, adding more variables as predictors could

potentially reveal more information regarding mental health.
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APPENDIX: R Code

install.packages("haven")

library(Hmisc)

library(haven)

install.packages("remotes")

library(remotes)

# Reading of Data

file.choose()

mental<-read_xpt("C:\\Users\\musli\\OneDrive\\Desktop\\DPQ_I.XPT")

colnames(mental)=c("LitteleInterest","Depression","Sleeping",

"LittleEnergy","Appetite","Feeling")

View(mental)

head(mental)

dim(mental)

summary(mental)

nrow(mental)

#Analysis of Feeling

# Contingency Tables

t= table(mental$Depression,mental$Sleeping,mental$Feeling);t

ftable(t,row.vars =3)

ftable(mental$Depression,mental$Sleeping,mental$Feeling,exclude=c(NA),

row.vars = NULL,col.vars = NULL)

# Feeling Contingency Table
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tab1 <- xtabs(~Depression+Sleeping+Feeling,data=mental)

tab1

summary(xtabs(~Depression+Sleeping+Feeling,data=mental))

tab_1 = tab1[-c(5:6), -c(5:6), -5]

tab_1

# Marginal Contingency Table

addmargins(tab_1)

require(vcd)

# Feeling Mosaic Plot

MP_1=mosaicplot(~Depression+Sleeping+Feeling,data=mental,

color = TRUE,las=1)

mosaic(tab_1,split_horizontal = c(TRUE, TRUE, FALSE))

mosaic(tab_1,gp = shading_hcl,

gp_args = list(h = c(130, 43), c = 100, l = c(90, 70)))

mosaic(tab_1,shade=T)

assoc(tab_1)

fill_colors <- matrix(c("dark cyan","gray","gray","dark magenta"),

ncol = 2)

mosaic(tab_1, gp = gpar(fill = fill_colors, col = 0))

# Feeling Linear Trend

library(wCorr)
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Mental= data.frame(cbind(Depression=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4),

TroubleSleeping=c(1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4),

count=c(83,19,9,1,16,36,10,1,8,11,14,8,6,8,4,8),

u=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4),

v=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)))

# CALCULATE CORRELATION DIRECTLY #

weightedCorr(Mental$u, Mental$v, weights=Mental$count, method=’Pearson’)

# Feeling CMH test

install.packages("xtable")

library(xtable)

design.table <- xtable(mental,auto=TRUE)

print(design.table)

my_ftable1 <- (tab_1)

my_df1 <- as.data.frame(my_ftable1)

my_xtable1 <- xtable(my_df1)

print(my_xtable1)

mantelhaen.test(tab_1)

# Cochran-Mantel-Haenszel test

#data: tab_1 (Feeling)

#Cochran-Mantel-Haenszel M^2 = 1178, df = 9, p-value < 2.2e-16

# LOGLINEAR MODEL Feeling

attach(mental)
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loglin_model_1 <- glm(Feeling ~ (Depression + Sleeping)^2,

data = mental, family = poisson())

# Check the summary of the model

summary(loglin_model_1)

# AIC/ BIC

AIC(loglin_model_1)

# AIC = 8347.642

BIC(loglin_model_1)

# BIC = 8373.839

# Chi Square Test

null_model_1 <- glm(Feeling ~ 1, family = poisson(), data = mental)

chi_square_LM1 <- anova(null_model_1, loglin_model_1, test = "Chisq")

print(chi_square_LM1)

# Pr(Chi)= < 2.2e-16

# MSE

# Fit the log-linear model

loglin_model_1 <- glm(Feeling ~ (Depression + Sleeping)^2,

data = mental, family = poisson())

y_hat_1 <- predict(loglin_model_1, type = "response")

y_1 <- mental$Feeling

# Remove missing values

y_1 <- y_1[!is.na(y_1)]

y_hat_1 <- y_hat_1[!is.na(y_hat_1)]
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sse_1 <- sum((y_1 - y_hat_1)^2)

print(sse_1)

# SSE = 3178.006

n_1 <- length(y_1)

mse_1 <- sse_1 / n_1

print(mse_1)

# MSE = 0.615654

# Deviance Stat.

Dev_LM1 <- 6177.6 - 5242.2

Dev_LM1

# Dev = 935.4

#Multi- nominal Logistic regression (Cumulative Logit Model)

library(MASS)

mental$Feeling <- factor(mental$Feeling)

cumulative_model_1 <- polr(Feeling ~ Depression + Sleeping,

data = mental, Hess = TRUE)

summary(cumulative_model_1)

# AIC/BIC

AIC(cumulative_model_1 )

# AIC = 7711.33

BIC(cumulative_model_1)

# BIC = 7750.624

# Null Deviance
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null_model_1 <- polr(Feeling ~ 1, data = mental)

null_deviance_1 <- deviance(null_model_1)

print(null_deviance_1)

# Null Deviance = 8414.769

# MSE

cumulative_model_1 <- polr(Feeling ~ Depression + Sleeping,

data = mental, Hess = TRUE)

predicted_probs_1 <- predict(cumulative_model_1, type = "probs")

observed_responses_1 <- model.matrix(~ Feeling - 1, data = mental)

squared_residuals_1 <- (observed_responses_1 - predicted_probs_1)^2

mse_CM1 <- mean(squared_residuals_1)

print(mse_CM1)

# MSE = 0.07756587

# Dev. Stat.

Dev_CM1 <- 8414.769 - 7699.33

Dev_CM1

# Dev = 715.439

# GLM Poisson

library(MASS)

mental <- mental[!is.na(mental$Feeling), ]

mental$Feeling <- as.numeric(as.character(mental$Feeling))

if (any(mental$Feeling < 0)) {

mental <- mental[mental$Feeling >= 0, ]
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}

Pmodel_1 <- glm(Feeling ~ Depression + Sleeping,

data = mental, family = poisson())

summary(Pmodel_1)

#AIC/BIC

AIC(Pmodel_1)

# AIC = 8400.514

BIC(Pmodel_1)

# BIC = 8420.161

#MSE

Pmodel_1 <- glm(Feeling ~ Depression + Sleeping,

data = mental, family = poisson())

residuals_pb1 <- residuals(Pmodel_1, type = "pearson")

mse_pb1 <- mean(residuals_pb1^2)

print(mse_pb1)

# MSE = 1.384698

# Deviance Stat.

Dev_Pb1 <- 6177.6 - 5297.1

Dev_Pb1

# Dev = 880.5

#Over-Dispersion Test

attach(mental)

library(AER)
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library(ggplot2)

dispersiontest(Pmodel_1)

mean(mental$Feeling)

var(mental$Feeling)

hist(mental$Feeling, main = "Histogram of Feeling Bad About Yourself",

xlab = "Feeling Bad About Yourself")

library(ggplot2)

qplot(mental$Feeling, summary(Pmodel_1)$deviance.resid,

xlab = "Feeling Bad About Yourself",

ylab = "Poisson Model") +

ggtitle("Scatter Plot of Feeling Bad About Yourself") +

theme(plot.title = element_text(hjust = 0.5))

# Dispersion = 1.437269

# Mean = 0.4074002

# Variance = 0.6681336

# GLM (Negative Binomial)

nbmodel_1 <- glm.nb(Feeling ~ Depression + Sleeping, data = mental)

summary(nbmodel_1)

qplot(mental$Feeling, summary(nbmodel_1)$deviance.resid,

xlab = "Feeling Bad About Yourself",

ylab = "Negative Binomial Model") +

ggtitle("Scatter Plot of Feeling Bad About Yourself") +

theme(plot.title = element_text(hjust = 0.5))
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# AIC/BIC

AIC(nbmodel_1)

# AIC = 8113.765

BIC(nbmodel_1)

# BIC = 8139.961

# Mean Square Error

residuals_nb1 <- residuals(nbmodel_1, type = "pearson")

mse_nb1 <- mean(residuals_nb1^2)

print(mse_nb1)

# MSE = 1.069236

# Deviance Stat.

Dev_nb1 <- 4428.2 - 3772.9

Dev_nb1

# Dev = 655.3

# Graph of values for Feeling

AIC <- c(AIC(loglin_model_1), AIC(cumulative_model_1),

AIC(Pmodel_1), AIC(nbmodel_1))

BIC <- c(BIC(loglin_model_1), BIC(cumulative_model_1),

BIC(Pmodel_1), BIC(nbmodel_1))

MSE <- c(mse_1, mse_CM1, mse_pb1, mse_nb1)

DEV <- c(Dev_LM1,Dev_CM1, Dev_Pb1, Dev_nb1)

best_model_index <- which.min(AIC)

best_model_index_1 <- which.min(BIC)
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best_model_index_2 <- which.min(MSE)

best_model_index_3 <- which.min(DEV)

models <- c("Log-linear", "Cumulative Logit",

"Poisson","Negative Binomial")

if(length(AIC) != length(BIC) || length(BIC) != length(MSE) ||

length(MSE) != length(DEV)|| length(DEV) != length(models)){

stop("Lengths of vectors don’t match.")}

AIC <- na.omit(AIC)

BIC <- na.omit(BIC)

MSE <- na.omit(MSE)

DEV <- na.omit(DEV)

# Set the plot size to accommodate longer labels

par(mar = c(5, 6, 4, 2) + 0.1, cex.axis = 0.8)

# Plot each vector separately

plot(AIC, type="b", xlab="Model", ylab="AIC",

main="AIC Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index, col="brown")

plot(BIC, type="b", xlab="Model", ylab="BIC",

main="BIC Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_1, col="navyblue")

plot(MSE, type="b", xlab="Model", ylab="MSE",
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main="MSE Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_2, col="pink")

plot(DEV, type="b", xlab="Model", ylab="DEV",

main="DEV Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_3, col="skyblue")

# Analysis of Depression

# Depression Contingency Table

tab2 <- xtabs(~Sleeping+Feeling+Depression,data=mental)

tab2

summary(xtabs(~Sleeping+Feeling+Depression,data=mental))

tab_2 = tab2[-c(5:6), -c(5:6), -5]

tab_2

#Depression Marginal Contingency table

addmargins(tab_2)

# Depression Mosaic plot

require(vcd)

# Create mosaic plot with title

MP_2 <- mosaicplot(~Sleeping + Feeling + Depression,

data = mental, color = TRUE, las = 1,

main = "Mosaic Plot of Sleeping
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and Feeling vs. Depression")

mosaic(tab_2,gp = shading_hcl, gp_args = list(h = c(130, 43),

c = 100, l = c(90, 70)))

mosaic(tab_2,split_horizontal = c(TRUE, TRUE, FALSE))

mosaic(tab_2,shade=T)

assoc(tab_2)

fill_colors <- matrix(c("yellow","green","green","purple")

, ncol = 2)

mosaic(tab_2, gp = gpar(fill = fill_colors, col = 0))

# Depression CMH Test

my_ftable2 <- (tab_2)

my_df2 <- as.data.frame(my_ftable2)

my_xtable2 <- xtable(my_df2)

print(my_xtable2)

mantelhaen.test(tab_2)

# Cochran-Mantel-Haenszel test

# data: Depression

#Cochran-Mantel-Haenszel M^2 = 280.35, df = 9,

# p-value < 2.2e-16

# Depression Linear Trend

library(wCorr)

Mental= data.frame(cbind(Depression=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4),

TroubleSleeping=c(1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4),
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count=c(65,12,8,10,26,28,11,5,22,14,14,9,8,8,8,7),

u=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4),

v=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)))

# CALCULATE CORRELATION DIRECTLY #

weightedCorr(Mental$u, Mental$v, weights=Mental$count,

method=’Pearson’)

# LOGLINEAR MODEL Depression

loglin_model_2 <- glm(Depression ~ (Sleeping + Feeling)^2,

data = mental, family = poisson())

summary(loglin_model_2)

# AIC/ BIC

AIC(loglin_model_2)

# AIC = 8152.288

BIC(loglin_model_2)

# BIC = 8178.484

# Chi Square Test

null_model_2 <- glm(Depression ~ 1, family = poisson(), data = mental)

chi_square_test_2 <- anova(null_model_2, loglin_model_2, test = "Chisq")

print(chi_square_test_2)

# Chi-Square = < 2.2e-16

# MSE

# Fit the log-linear model

loglin_model_2 <- glm(Depression ~ (Sleeping + Feeling)^2,
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data = mental, family = poisson())

y_hat_2 <- predict(loglin_model_2, type = "response")

y_2 <- mental$Depression

# Remove missing values

y_2 <- y_2[!is.na(y_2)]

y_hat_2 <- y_hat_2[!is.na(y_hat_2)]

sse_2 <- sum((y_2 - y_hat_2)^2)

print(sse_2)

n_2 <- length(y_2)

mse_2 <- sse_2 / n_2

print(mse_2)

# MSE = 0.7365462

# Deviance Stat.

Dev_LM2 <- 6442.9 - 5011.6

Dev_LM2

# Dev = 1431.3

#Multi- nominal Logistic regression (Cumulative Logit Model)

library(MASS)

mental$Depression <- factor(mental$Depression)

cumulative_model_2 <- polr(Depression ~ Sleeping + Feeling,

data = mental, Hess = TRUE)

summary(cumulative_model_2)

# AIC/BIC
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AIC(cumulative_model_2 )

# AIC = 7228.218

BIC(cumulative_model_2)

# BIC = 7274.062

# Null Deviance

null_model_2 <- polr(Depression ~ 1, data = mental)

null_deviance_2 <- deviance(null_model_2)

print(null_deviance_2)

# Null Deviance = 8557.117

# 1342.899

# Deviance Stat.

Dev_CM2 <- 8557.117 - 7214.218

Dev_CM2

# Dev = 1342.899

# MSE

mental$Depression <- factor(mental$Depression)

cumulative_model_2 <- polr(Depression ~ Sleeping + Feeling,

data = mental, Hess = TRUE)

predicted_probs_2 <- predict(cumulative_model_2, type = "probs")

observed_responses_2 <- model.matrix(~ Depression - 1, data = mental)

squared_residuals_2 <- (observed_responses_2 - predicted_probs_2)^2

mse_CM2 <- mean(squared_residuals_2)

print(mse_CM2)
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# MSE = 0.05878926

# GLM Poisson

mental <- mental[!is.na(mental$Depression), ]

mental$Depression <- as.numeric(as.character(mental$Depression))

if (any(mental$Depression< 0)){

mental <- mental[mental$Depression>= 0, ]}

Pmodel_2 <- glm(Depression ~ Sleeping + Feeling,

data = mental, family = poisson())

summary(Pmodel_2)

#AIC/BIC

AIC(Pmodel_2)

# AIC = 8201.003

BIC(Pmodel_2)

# BIC = 8220.65

#MSE

Pmodel_2 <- glm(Depression ~ Sleeping + Feeling,

data = mental, family = poisson())

residuals_pb2 <- residuals(Pmodel_2, type = "pearson")

mse_pb2 <- mean(residuals_pb2^2)

print(mse_pb2)

# MSE = 1.542902

# Deviance Stat.

Dev_Pb2 <- 6442.9 - 5062.3
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Dev_Pb2

# Dev = 1380.6

#Over-Dispersion Test

library(AER)

library(ggplot2)

dispersiontest(Pmodel_2)

mean(mental$Depression)

var(mental$Depression)

hist(mental$Depression, main = "Histogram of Depression",

xlab = "Depression")

library(ggplot2)

qplot(mental$Depression, summary(Pmodel_2)$deviance.resid,

xlab = "Depression",

ylab = "Poisson Model") +

ggtitle("Scatter Plot of Depression") +

theme(plot.title = element_text(hjust = 0.5))

# Dispersion = 1.624339

# Mean = 0.4213483

# Variance = 0.7530648

# GLM (Negative Binomial)

nbmodel_2 <- glm.nb(Depression ~ Sleeping + Feeling,

data = mental)

summary(nbmodel_2)
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qplot(mental$Depression, summary(nbmodel_2)$deviance.resid,

xlab = "Depression",

ylab = "Negative Binomial Model") +

ggtitle("Scatter Plot of Depression") +

theme(plot.title = element_text(hjust = 0.5))

# 1064.6

# AIC/BIC

AIC(nbmodel_2)

# AIC = 7947.697

BIC(nbmodel_2)

# BIC = 7973.894

# Mean Square Error

residuals_nb2 <- residuals(nbmodel_2, type = "pearson")

mse_nb2 <- mean(residuals_nb2^2)

print(mse_nb2)

# MSE = 1.324138

# Deviance Stat.

Dev_nb2 <- 4819.6 - 3755.0

Dev_nb2

# Dev = 1064.6

# Graph of values for Depression

AIC <- c(AIC(loglin_model_2), AIC(cumulative_model_2),

AIC(Pmodel_2), AIC(nbmodel_2))
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BIC <- c(BIC(loglin_model_2), BIC(cumulative_model_2),

BIC(Pmodel_2), BIC(nbmodel_2))

MSE <- c(mse_2, mse_CM2, mse_pb2, mse_nb2)

DEV <- c(Dev_LM2,Dev_CM2,Dev_Pb2,Dev_nb2)

best_model_index <- which.min(AIC)

best_model_index_1 <- which.min(BIC)

best_model_index_2 <- which.min(MSE)

best_model_index_3 <- which.min(DEV)

models <- c("Log-linear", "Cumulative Logit",

"Poisson","Negative Binomial")

if(length(AIC) != length(BIC) || length(BIC) != length(MSE) ||

length(MSE) != length(DEV)|| length(DEV) != length(models)){

stop("Lengths of vectors don’t match.")}

AIC <- na.omit(AIC)

BIC <- na.omit(BIC)

MSE <- na.omit(MSE)

DEV <- na.omit(DEV)

# Set the plot size to accommodate longer labels

par(mar = c(5, 6, 4, 2) + 0.1, cex.axis = 0.8)

# Plot each vector separately

plot(AIC, type="b", xlab="Model", ylab="AIC",

main="AIC Values", xaxt="n")

axis(1, at=1:length(models), labels=models)
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abline(v=best_model_index, col="green")

plot(BIC, type="b", xlab="Model", ylab="BIC",

main="BIC Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_1, col="magenta")

plot(MSE, type="b", xlab="Model", ylab="MSE",

main="MSE Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_2, col="orange")

plot(DEV, type="b", xlab="Model", ylab="DEV",

main="DEV Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_3, col="maroon")

# Analysis for Sleeping

# Sleeping Contingency Table

tab3 <- xtabs(~Depression+Feeling+Sleeping,data=mental)

tab3

summary(xtabs(~Depression+Feeling+Sleeping,data=mental))

tab_3 = tab3[-c(5:6), -c(5:6), -5]

tab_3

# Sleeping Marginal Contingency Table

addmargins(tab_3)
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# Sleeping Mosaic Plot

MP_3 =mosaicplot(~Depression+Feeling+Sleeping,

data=mental,color = TRUE,las=1)

mosaic(tab_3,split_vertical = c(TRUE, TRUE, FALSE))

mosaic(tab_3,gp = shading_hcl,

gp_args = list(h = c(130, 43), c = 100,

l = c(90, 70)))

mosaic(tab_3,shade=T)

assoc(tab_3)

fill_colors <- matrix(c("red","blue","blue","orange"),

ncol = 2)

mosaic(tab_3, gp = gpar(fill = fill_colors, col = 0))

# Sleeping CMH Test

my_ftable3 <- (tab_3)

my_df3 <- as.data.frame(my_ftable3)

my_xtable3 <- xtable(my_df3)

print(my_xtable3)

mantelhaen.test(tab_3)

# Cochran-Mantel-Haenszel test

# data: Sleeping

# Cochran-Mantel-Haenszel M^2 = 222.61, df = 9, p-value < 2.2e-16

# Sleeping Linear Trend

library(wCorr)
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Mental= data.frame(cbind(Depression=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4),

TroubleSleeping=c(1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4),

count=c(42,6,9,6,14,25,10,9,22,14,14,9,8,8,4,9),

u=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4),

v=c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)))

# CALCULATE CORRELATION DIRECTLY #

weightedCorr(Mental$u, Mental$v, weights=Mental$count,

method=’Pearson’)

# LOGLINEAR MODEL

loglin_model_3 <- glm(Sleeping ~ (Depression + Feeling)^2,

data = mental, family = poisson())

summary(loglin_model_3)

# AIC/ BIC

AIC(loglin_model_3)

# AIC = 7053.431

BIC(loglin_model_3)

# BIC = 7079.627

# MSE

# Fit the log-linear model

loglin_model_3 <- glm(Sleeping ~ (Depression + Feeling)^2,

data = mental, family = poisson())

y_hat_3 <- predict(loglin_model_3, type = "response")

y_3 <- mental$Sleeping
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# Remove missing values

y_3 <- y_3[!is.na(y_3)]

y_hat_3 <- y_hat_3[!is.na(y_hat_3)]

sse_3 <- sum((y_3 - y_hat_3)^2)

print(sse_3)

n_3 <- length(y_3)

mse_3 <- sse_3 / n_3

print(mse_3)

# MSE = 0.5409994

Dev_LM3 <- 5503.7 - 4265.4

Dev_LM3

# Dev Stat. = 1238.3

#Multi- nominal Logistic regression (Cumulative Logit Model)

library(MASS)

mental$Sleeping <- factor(mental$Sleeping)

cumulative_model_3 <- polr(Sleeping ~ Depression + Feeling,

data = mental, Hess = TRUE)

summary(cumulative_model_3)

# AIC/BIC

AIC(cumulative_model_3)

# AIC = 6514.324

BIC(cumulative_model_3)

# BIC = 6553.619
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# Null Deviance

null_model_3 <- polr(Sleeping ~ 1, data = mental)

null_deviance_3 <- deviance(null_model_3)

print(null_deviance_3)

# Null Deviance = 7758.285

#Deviance Stat.

Dev_CM3 <- 7758.285 - 6502.324

Dev_CM3

# Dev = 1255.961

# MSE

mental$Sleeping <- factor(mental$Sleeping)

cumulative_model_3 <- polr(Sleeping ~ Depression + Feeling,

data = mental, Hess = TRUE)

predicted_probs_3 <- predict(cumulative_model_3, type = "probs")

observed_responses_3 <- model.matrix(~ Sleeping - 1, data = mental)

squared_residuals_3 <- (observed_responses_3 - predicted_probs_3)^2

mse_CM3 <- mean(squared_residuals_3)

print(mse_CM3)

# MSE = 0.06607545

# GLM Poisson

mental <- mental[!is.na(mental$Sleeping), ]

mental$Sleeping <- as.numeric(as.character(mental$Sleeping))

if (any(mental$Sleeping< 0)){

178



mental <- mental[mental$Sleeping>= 0, ]}

Pmodel_3 <- glm(Sleeping ~ Depression + Feeling,

data = mental, family = poisson())

summary(Pmodel_3)

# AIC

AIC(Pmodel_3)

# AIC = 7077.758

#BIC

BIC(Pmodel_3)

# BIC = 7097.405

#MSE

Pmodel_3 <- glm(Sleeping ~ Depression + Feeling,

data = mental, family = poisson())

residuals_pb3 <- residuals(Pmodel_3, type = "pearson")

mse_pb3 <- mean(residuals_pb3^2)

print(mse_pb3)

# MSE = 1.109951

#Dev. Stat

Dev_Pb3 <- 5503.7 - 4291.8

Dev_Pb3

# Dev. Stat = 1211.9

#Over-Dispersion Test

library(AER)

179



library(ggplot2)

dispersiontest(Pmodel_3)

mean(mental$Sleeping)

var(mental$Sleeping)

hist(mental$Sleeping, main = "Histogram of Sleeping",

xlab = "Sleeping")

library(ggplot2)

qplot(mental$Sleeping, summary(Pmodel_3)$deviance.resid,

xlab = "Sleeping",

ylab = "Poisson Model") +

ggtitle("Scatter Plot of Sleeping") +

theme(plot.title = element_text(hjust = 0.5))

#Dispersion = 1.230287

#Mean = 0.3467648

#Variance= 0.5172042

# GLM (Negative Binomial)

nbmodel_3 <- glm.nb(Sleeping ~ Depression + Feeling,

data = mental, maxit = 1000)

summary(nbmodel_3)

# 1120.3

library(ggplot2)

qplot(mental$Sleeping, summary(nbmodel_3)$deviance.resid,

xlab = "Sleeping",
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ylab = "Negative Binomial Model") +

ggtitle("Scatter Plot of Sleeping") +

theme(plot.title = element_text(hjust = 0.5))

# AIC/BIC

AIC(nbmodel_3)

# AIC = 6907.558

BIC(nbmodel_3)

# BIC = 6933.754

# Mean Square Error

residuals_3 <- residuals(nbmodel_3, type = "pearson")

mse_nb3 <- mean(residuals_3^2)

print(mse_nb3)

# MSE = 0.9982505

# Dev Stat.

Dev_nb3 <- 4536.9 - 3416.6

Dev_nb3

# Dev Stat. = 1120.3

# Graph of values for Sleeping

AIC <- c(AIC(loglin_model_3), AIC(cumulative_model_3),

AIC(Pmodel_3), AIC(nbmodel_3))

BIC <- c(BIC(loglin_model_3), BIC(cumulative_model_3),

BIC(Pmodel_3), BIC(nbmodel_3))

MSE <- c(mse_3, mse_CM3, mse_pb3, mse_nb3)
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DEV <- c(Dev_LM3,Dev_CM3,Dev_Pb3,Dev_nb3)

best_model_index <- which.min(AIC)

best_model_index_1 <- which.min(BIC)

best_model_index_2 <- which.min(MSE)

best_model_index_3 <- which.min(DEV)

models <- c("Log-linear", "Cumulative Logit",

"Poisson","Negative Binomial")

if(length(AIC) != length(BIC) || length(BIC) != length(MSE) ||

length(MSE) != length(DEV)|| length(DEV) != length(models)){

stop("Lengths of vectors don’t match.")}

AIC <- na.omit(AIC)

BIC <- na.omit(BIC)

MSE <- na.omit(MSE)

DEV <- na.omit(DEV)

# Set the plot size to accommodate longer labels

par(mar = c(5, 6, 4, 2) + 0.1, cex.axis = 0.8)

# Plot each vector separately

plot(AIC, type="b", xlab="Model", ylab="AIC",

main="AIC Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index, col="red")

plot(BIC, type="b", xlab="Model", ylab="BIC",

main="BIC Values", xaxt="n")
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axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_1, col="blue")

plot(MSE, type="b", xlab="Model", ylab="MSE",

main="MSE Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_2, col="cyan")

plot(DEV, type="b", xlab="Model", ylab="DEV",

main="DEV Values", xaxt="n")

axis(1, at=1:length(models), labels=models)

abline(v=best_model_index_3, col="purple")
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