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RESEARCH ARTICLE Open Access

Deep sequencing of the Mexican avocado
transcriptome, an ancient angiosperm with
a high content of fatty acids
Enrique Ibarra-Laclette1,2, Alfonso Méndez-Bravo1,2, Claudia Anahí Pérez-Torres1,2,3, Victor A. Albert4,
Keithanne Mockaitis5, Aruna Kilaru6,7, Rodolfo López-Gómez8, Jacob Israel Cervantes-Luevano1

and Luis Herrera-Estrella1*

Abstract

Background: Avocado (Persea americana) is an economically important tropical fruit considered to be a good
source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and
developmental processes in avocado is limited due to the lack of transcriptome and genomic information.

Results: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different
sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric,
climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong
differences in gene expression patterns between different organs, especially between root and flower, but also
reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds
(vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially
expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the
avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid
metabolism and fruit ripening.

Conclusions: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican
avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and
the fruit ripening process.

Background
Avocado (Persea americana Mill.) is a crop plant with
oleaginous fruits belonging to the Magnoliidae clade, a
basal lineage of flowering plants. It is a member of
Lauraceae, a large family of about 50 genera and ap-
proximately 2500–3000 species, mostly trees [1, 2]. Des-
pite its recent introduction to international commerce,
the avocado is no longer just an exotic fruit; it has been
rapidly incorporated as a key component in the diet of
many countries [3]. Although Mexico is the world’s lar-
gest producer and consumer of avocados (about 28 % of
total world production), there are at least ten other

countries with annual production of over 100,000 t of
avocado fruit (FAOSTAT, 2011;http://faostat.fao.org/
DesktopDefault.aspx?PageID=339&lang=es).
P. americana comprises no fewer than three well-

recognized varieties, geographical ecotypes, or botanical
races, also known as horticultural races. The Mexican
race, P. americana var. drymifolia (Mexican avocado), is
adapted to the tropical highlands and constitutes the
most commonly used rootstock in Mexican orchards; P.
americana var. guatemalensis (L.O. Williams), the
Guatemalan race, which grows preferentially at medium
elevations in the tropics, and the West-Indian race, P.
americana var. americana, which is typically cultivated
in the lowland humid tropics [2]. Commercial avocado
production is based on grafting cultivars onto rootstocks
of Mexican and Guatemalan races; the cultivars grown
in subtropical climates are selections from these races or
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hybrids of them, with the Guatemalan genotypes being
the dominant horticultural race among subtropical avo-
cado cultivars [4]. However, the Mexican genetic back-
ground contributes to avocado diversity with a plethora of
desirable, selected characteristics in commercial varieties,
such as cold tolerance, smaller tree size, high oil content,
early maturity, and smooth fruit skin. It is imperative to
identify key genes and the signaling pathways associated
with these traits, as well as to study the allelic diversity
present among botanical races for these desirable traits.
The avocado fruit accumulates oil instead of sugar unlike

most fruits, probably as a consequence of co-evolutionary
processes developed with ancient neotropical megafauna
that became extinct about 30,000–11,000 years ago [5]. Av-
ocado has been described as the most nutritious of all fruits
[3], as the mature fruit flesh of avocado contains about
20 % beneficial fatty acids, 6 % carbohydrates, 2 % protein,
and vitamin precursors and antioxidants such as caroten-
oids and vitamins E, C, B2, B12, B1, K and D [6]. The
mesocarp of the Mexican race avocado possesses up to 25–
30 % oil content, of which nearly 90 % is mono-unsaturated
oleic, palmitic and linoleic fatty acids. Although avocado is
a strongly climacteric fruit, its ripening or softening process
does not take place during maturation on the tree, but in-
stead it starts several days after the fruit has been picked. In
the avocado fruit oil content increases in the mesocarp a
few weeks after the fruit sets, and healthy fruits on trees
continue to grow and accumulate oil for several months
after maturation [7]. Once an avocado fruit has been de-
tached from the tree, an ethylene-dependent ripening
process is triggered, orchestrating flesh softening, skin color
change and lipid biosynthesis. Upon ripening completion,
concentrations of unsaturated fatty acids increase and those
of saturated fatty acids decrease [8].
The production of essential oils in avocado vegetative

organs is influenced by environmental and developmen-
tal conditions. However, the distinctive characteristics of
the avocado fruit, including secondary metabolite pro-
duction, are genotype-dependent. For example, the
chemical composition of the leaves of the Mexican race
is distinctive in its anise scent, which is absent from the
two other horticultural races. Estraole, which represents
60 % of the total essential oils in leaves of the Mexican
race, is responsible for this trait [9, 10]. Essential oils con-
tain a variety of volatile molecules such as terpenes and
terpenoids, phenol-derived aromatic components, and ali-
phatic compounds; these are widely used for various
pharmaceutical, sanitary, cosmetic, agricultural and food
purposes, and in nature, they function as herbivore repel-
lants and pollinator attractants [10, 11]. Understanding the
biosynthetic pathways of such bioactive compounds by as-
sociating functional genomics information with the en-
zymes involved in the metabolic pathways is fundamental
for their commercial production.

Because to date there are only limited avocado genomic
resources, carrying out comprehensive gene expression
profiling is a challenge requiring large-scale analysis of tran-
scriptomic data. Breakthroughs in next generation sequen-
cing technology and data analysis during the last 10 years
have made it possible to generate reference transcriptomes
in the absence of a reference genome at a relatively low cost
[12]. Reference transcriptomes can be used to perform
comparative expression profiling by methods such as digital
gene expression profiling [13]. Here, we present the de novo
assembly of the Mexican avocado (Persea americana var.
drymifolia) transcriptome, based on hybrid sequencing
datasets derived from GS-FLX+ Roche and MiSeq Illumina
platforms. Additionally, using a high-throughput sequen-
cing platform, we develop a gene expression atlas of the av-
ocado transcriptome in which a total of six different
avocado organs and three fruit ripening stages (pre-climac-
teric, climacteric and post-climacteric) were included. To
confirm the utility of the avocado transcriptome atlas, we
specifically analyzed the expression of genes involved in
acyl-lipid metabolism, ripening processes, and organ-
specificity. Our approach generated over 67,000 unigenes
with high quality annotations, providing an unprecedented
coverage of the avocado transcriptome. The availability of
the avocado gene expression atlas should facilitate add-
itional studies on the basic biology of avocado, while also
supporting applied research to improve this increasingly
important crop.

Results and discussion
Sequencing and assembly of the Mexican race avocado
transcriptome
In order to obtain sequences for as many avocado (Per-
sea americana var. drymifolia) genes as possible, a
cDNA library from an RNA pool isolated from seeds,
roots, stems, leaves, aerial buds, flowers and pre-
climacteric, climacteric and post-climacteric fruits was
generated and sequenced using the GS-FLX+ (Roche)
and MiSeq (Illumina) sequencers. MiSeq produced
paired-end reads of length 250 bases while GS-FLX+
sequencer generated less reads (unpaired) but the aver-
age length was ~3× longer. It is well known that a mixed
platform approach (hybrid assembly) can improve the
number of full length genes through the inclusion of lon-
ger reads, while a higher paired-read coverage increases
the detection of low abundance transcripts [14]. Pre-
climacteric, climacteric and post-climacteric fruit stages
were determined according to their ethylene production
(see Methods). It should be noted that unlike other com-
mercial varieties such as ‘Fuerte’, which show the max-
imum ethylene production seven days after harvest [15],
the climacteric physiological stage (which marks the end
of fruit maturation and the beginning of fruit senescence)
is detected 3 day after harvest in Mexican avocado (Fig. 1).
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Reads generated by GS-FLX+ were masked using the
SeqClean software pipeline to eliminate sequence re-
gions that would cause incorrect assembly while the
MiSeq read pairs (2 × 150 bp) were trimmed and/or
merged together using the SeqPrep pipeline (see
Methods for more details). To carry out the assembly
process, 4,530,278 high quality reads (931,834 generated
by GS-FLX+ and 3,598,444 paired-reads generated by
MiSeq) were considered (Additional file 1: Table S1).
Many assemblers have been developed to assemble

reads generated by Next Generation Sequencing platforms
(NGS). The overlap layout algorithm is able to handle the
longer reads of GS-FLX+, and programs such as MIRA
[16] incorporate it. Trinity [12] in contrast is a de-Bruijn
graph-based assembler developed for short reads. We
compared the performance of the MIRA v3.4.1 and Trin-
ity assemblers, both previously used in several analyses of
plant transcriptomes [17, 18]. For each assembler, we used
the default parameters recommended for transcriptome
assembly. Standard metrics describing the assembly

process, such as number of contigs ≥1 Kb, average contig
lengths and maximum contig size were used to compare
the assembly programs (Additional file 1: Table S2). Con-
sidering that many contigs representative of unique genes
are often produced in de novo assemblies due to the pres-
ence of variant alleles, sequencing errors, and alternative
splicing of transcripts, the resulting contigs (derived from
both assemblies) were filtered to eliminate redundant se-
quences and then passed through a second assembly step
using the CAP3 assembler [19] (see Methods for more de-
tails). A unigene set (83,650 sequences) from P. americana
was generated including resulting contigs (25,665) and “sin-
glets” (57,985; 64.2 % from MIRA and 33.8 % from Trinity)
derived from the CAP3 run with a minimum size of 200 bp
(Additional file 2). It should be noted that “singlets” are the
contigs generated from the first steps of MIRA or Trinity
assemblies that were not reassembled by CAP3. The aver-
age length of unigenes was 816.21 bp (ranging from 0.2 to
8.6 kb) (Additional file 1: Table S2). Considering the mean
size of coding sequences (≈942.16 bp) in Amborella tricho-
poda, a basal angiosperm species [20, 21], it was expected
that a large percentage of these avocado unigene transcripts
may represent full-length cDNAs. A comparison of P.
americana unigenes against the unpublished ca. 800 Mbp
draft genome of P. americana var. drymifolia (unpublished
data) using BLASTN (e-value 10−3) shows that 94.65 % of
the transcripts had a significant hit against the genome
(98 % of alignment length and minimal sequence identity
of 90 % over the complete alignment).
To annotate the avocado transcriptome, we performed

BLASTX alignments (e-value of ≤10−03 and a bit score ≥25)
between the unigene set and several protein databases,
including Arabidopsis thaliana, Amborella trichopoda and
plant proteins available in the Reference Sequences
(RefSeq) collection of NCBI. We found that 67,709
(80.94 %) unigenes of P. americana show high identity to at
least one plant protein; the remaining (15,941 uni-
genes) had no function assigned (Additional file 1:
Table S3). In a total of 14,845 avocado unigenes, an
individual high-scoring segment pair (HSP) produced
by BLASTX covered at least 80 % of the target protein.
Results indicated that 34,218 distinct plant proteins
could be identified among the 63,459 unigenes that
showed significant similarities against RefSeq database
(Additional file 1: Table S3). We further compared P.
americana unigenes against the Pfam (Protein families)
domain database (Additional file 1: Table S3; see
Methods for more details) [22].

Functional annotation
The results of BLASTX searches against the Arabidopsis
thaliana protein database were used for gene ontology
(GO) mapping and annotation. Based on the Arabidopsis
top hits, we obtained the GO annotations for the avocado

Fig. 1 Ethylene production rises during avocado ripening. Ethylene
was measured by gas chromatography during the subsequent
4 days after harvest. Maximum ethylene production was adjusted to
be 100 %. Three independent biological replicates were analyzed
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unigenes, and WEGO software [23] was used to perform
GO functional classification into the three major classes
(Fig. 2; Additional file 1: Table S3). Among the unigenes
with Arabidopsis hits, 63,430 (75.82 %) were assigned to
gene ontology classes with 547,032 functional terms.
Biological processes comprised the majority of the func-
tional terms (259,327; 47.40 %), followed by cellular compo-
nent (151,379; 27.67 %) and molecular functions (136,326;
24.92 %). Within the biological processes category, cellular
(39,365 unigenes) and metabolic (37,208 unigenes) pro-
cesses were prominently represented. To further predict
the metabolic pathway in P. americana, the assembled uni-
genes were annotated with corresponding enzyme commis-
sion (EC) numbers in the KEGG automatic annotation
server (KAAS; [24]) using Arabidopsis thaliana and Oryza
sativa as references (Additional file 1: Table S3). A total of
2559 unigenes were mapped to 202 pathways correspond-
ing to five KEGG modules: energy metabolism, carbohy-
drate and lipid metabolism, nucleotide and amino acid
metabolism, genetic information processing, and environ-
mental information processing. Additionally, the modules
energy metabolism (structural complex) and metabolism
(functional set) were also identified (Additional file 3:
Figure S1 and Additional file 4: Table S4). Ribosome had
the largest number of unigenes (78 members, M00177),
followed by glycolysis (Embden-Meyerhof pathway; 62

members, M00001), reductive pentose phosphate cycle
(Calvin cycle; 47 members, M00165), gluconeogenesis (40
members, M00003), and spliceosome (30 members,
M00354) (Fig. 3; Additional file 4: Table S4).

Expression map of the P. americana unigenes
(the transcriptome atlas)
In the past, gene expression atlases from different plant
species have been established by using massive parallel-
signature sequencing and array-hybridization technolo-
gies [25–30]. Plant transcriptomes strongly vary from
one tissue to another [25, 29], and it has been suggested
that these variations are responsible, at least in part, for
the identities of different plant organs [26]. We used the
SOLiD v4.0-sequencing platform to quantify the expres-
sion of P. americana unigenes in seven different organs:
seeds, roots, stem, leaves, aerial buds, flowers and fruits.
Fruit was considered as the total of reads generated from
pre-climacteric, climacteric and post-climacteric librar-
ies. The resulting reads from these three libraries were
also independently mapped. Between 4.18 and 6.84 mil-
lion SOLiD reads were generated for each of the seven
organ libraries; among them, 51.13 % were mapped to
the avocado transcriptome (Additional file 4: Table S5).
An expression profile matrix containing the unigenes
(rows) and the number of mapped reads in each

Fig. 2 Gene ontology classification of P. americana transcriptome. Unigenes with BLASTX matches against the Arabidopsis proteins were classified
into three main GO categories (cellular components, molecular functions and biological processes). The left-hand scale on the y-axis shows the
percentage of unigenes belonged to each category. The right-hand scale on the y-axis indicates the number of unigenes in the same category
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normalized organ-specific transcriptome (columns), was
created. To allow for data comparison among samples, a
normalization of the reads per Kb per million (RPKM)
was performed. A threshold of RPKM ≥5 was used to
distinguish expressed genes in at least one of the organs
sampled from background [31] (Additional file 4: Table S6).

We further investigated how the organs can be classified
according to transcript levels using a principal component
analysis (PCA) and hierarchical clustering (HC), by employ-
ing the Pearson metric on average expression levels for
each organ (Fig. 3a and b).
For many of the organ types, the hierarchical plot and

the PCA reflect the known similarity of biological func-
tions among organs. For example, transcripts from leaves
and stems clustered as a neighboring group, reflecting
their physiological similarity (vegetative organs). Likewise,
the storage organ transcriptomes (fruit and seed) were
grouped together, whereas gene products from roots clus-
tered separately from the rest (Fig. 3b). To assess the rela-
tive abundance of gene transcripts among the organ-
specific transcriptomes, we used the log-likelihood ratio
statistic, R [32], which scores reads by departures from the
null hypothesis of equal counts in each library given the
total number of reads sampled from each library. Higher
R-values indicate a greater probability of differential ex-
pression, whereas R-values near zero represent constitu-
tive expression (ubiquitous unigenes; see Methods). By
considering as preferentially expressed genes the unigenes
with R-values ≥15 (true positive rate of ~98 %), a total of
9357 P. americana unigenes were selected as preferentially
expressed in at least one of the organ analyzed (Additional
file 4: Table S7). Of these, 1968 unigenes (224 from seed,
192 from leaves, 22 from stem, 503 from roots, 56 from
aerial buds, 654 from flowers and 313 from fruit) could be
considered as organ-specific genes because the reads were
derived from a single library (Additional file 4: Table S8).
Although 33.63 % of organ-specific unigenes corre-
sponded to sequences that could not be annotated, in the
remaining unigenes, these organ-specific expression data
are consistent with previously documented expression
patterns of known genes. For example, the avocado uni-
gene UN06501, a homolog of the Arabidopsis high-affinity
phosphate transporter PHT1-3 gene (AT5G43360), is
expressed in roots [33]. Four well-characterized floral pat-
tern determination genes, AGL2 (AT5G15800; homolo-
gous to UN50397), AGL6 (AT2G45650; homologous to
UN22054), AP3 (AT3G54340; homologous to UN19620)
and PI (AT5G20240; homologous to UN19579), exhibited
specific expression patterns among floral organs [34–37].
Likewise, in leaves, several avocado unigenes homologous
to Arabidopsis light-harvesting chlorophyll a/b (LHCB)
proteins were expressed in an organ-specific manner. This
was expected, since in higher plants and algae, LHCB
proteins are major components of the light-harvesting
complex of photosystem II (PSII) in chloroplasts, which is
responsible for light harvesting and energy transfer to reac-
tion centers [38, 39]. Moreover, the fruit-specific avocado
unigene UN44288 is homologous to AGL4 (AT3G02310), a
transcription factor that has been recently characterized for
its main role in apple fruit development and ripening [40].

Fig. 3 Profiling expression of P. americana transcriptome. a
Hierarchical clustering shows expression levels of unigenes across
different avocado organs. b Principal component analysis [seed (red),
fruit (orange), leaves (cyan), stem (blue), aerial buds (green), roots
(pink) and flower (purple)]
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Interestingly, an oleosin-encoding gene (UN35609) hom-
ologous to AT3G18570 showed a higher expression level in
fruits than in seeds (Additional file 4: Table S7). Oleosins
have been described as key structural and signaling compo-
nents of seed oil bodies that form during the desiccation
process and prevent coalescence of the oil [41]. This sug-
gests that oleosins could be involved in avocado fruit devel-
opment, beyond their known functions in seeds. In
addition to its high lipid content, the avocado fruit contain
several bioactive phytochemicals, including carotenoids
[42]. The homolog of carotenoid biosynthesis-associated
epoxycarotenoid dioxygenase NCED3 (AT3G14440), uni-
gene UN43474, was highly expressed in the fruit transcrip-
tome (Additional file 4: Table S7). Seven different avocado
unigenes (UN26753, UN45556, UN14598, UN31059,
UN39923, UN51437 and UN56049), among the highest ex-
pression levels from seed-specific genes, are homologs of
PAP85 (AT3G22640), a member of the large superfamily of
cupins, which are expressed during seed development and
act as a nutrient reservoir [43]. The homolog to fasciclin-
like arabinogalactan protein FLA12 (AT5G60490; unigene
UN17820) exhibited one of the highest expression levels of
stem-specific genes, which is consistent with previous re-
ports showing that expression of some members of the FLA
gene family is correlated with the onset of secondary-wall
cellulose synthesis in Arabidopsis stems and with wood for-
mation in the stems and branches of trees, suggesting a bio-
logical role in avocado stem development [44]. Together,
these results indicate that the transcriptome atlas of P.
americana presented here provides an accurate estimation
of organ-specific gene expression patterns that may assist
functional interpretations.

Transcriptome changes during avocado fruit
development and ripening
We identified unigenes that are differentially expressed
during fruit development and ripening using a similar ap-
proach to that described above (RPKM values derived
from mapped reads and a threshold of R ≥15 to select dif-
ferentially expressed genes; see Methods). First, the
RPKM values between flower and fruit were compared in
order to identify some genes that may play important
roles during fruit development. A total of 382 unigenes
were selected due to the significant increase of their tran-
scripts in the fruit/flower comparison. We surveyed some
of these genes in order to determine their potential roles
during fruit development (Additional file 4: Table S9). A
total of 10 avocado unigenes (UN54812, UN37501,
UN61103, UN59855, UN53293, UN48116, UN58333,
UN64333, UN64163 and UN68295), homologs of Arabi-
dopsis metallothionein MT2A (AT3G09390), were identi-
fied. Metallothioneins are small cysteine-rich proteins
required for heavy metal tolerance in animals and fungi.
In plants, metallothionein genes are up-regulated in

response to heavy metal stress [45] but also participate
in natural and induced leaf senescence [46, 47],
ethylene-induced abscission [48] and biotic and abiotic
stress responses [49–51]. However, metallothioneins have
been also identified as up-regulated genes during climac-
teric fruit development in banana [52], apple [53], and ki-
wifruit [54] and in non-climacteric fruit such as grape
[55], Citrus unshiu [56], strawberry [57] and pineapple
[58]. Despite their abundance, the function of metallothio-
neins during fruit development still remains largely un-
known. Chitinases were also found to be a well-
represented group of fruit specific unigenes (18 in total),
most of them homologs of the basic chitinase CHIB/PR-3
(AT3G12500). Consistently, besides the role of chitinases
in plant defense [59], these proteins have also been associ-
ated with fruit development in both climacteric [60] and
non-climacteric fruits [61]. Pectate lyases constitute an
additional protein family that has been suggested to play
an important role in fruit ripening and softening [62]. This
is consistent with the fact that eight avocado unigenes,
homologous to four different members of the Arabidopsis
pectin lyase-like superfamily (AT1G80170, AT3G07850,
AT3G07970 and AT5G18990), showed significant increase
in the frequency of transcriptional units in the flower/fruit
comparison.
One-thousand-two-hundred-thirty unigenes out of

16,025 (RPKM values ≥5) were identified as differentially
expressed during the ripening process of the avocado fruit
(Additional file 4: Table S10). In order to find over-
representation of a given function, GO categories were
assigned to the unigenes differentially expressed in each
ripening stage (pre-climacteric: 756 unigenes, climacteric:
841 unigenes, and post-climacteric: 812 unigenes). Only
GO sub-categories that showed significant differences in
the ‘molecular function’ and ‘biological process’ categories
were analyzed. Figure 4a shows the differentially expressed
unigenes within the ‘molecular function’ category. Sub-
categories ‘Hydrolase activity, acting on glycosyl bonds’,
‘polysaccharide binding’ and ‘peptidase inhibitor activ-
ity’ showed a significant increase in the number of genes
while ‘oxidoreductase activity, acting on the aldehyde or
oxo group of donors’, ‘passive transmembrane transporter
activity’, ‘water transporter activity’ and ‘chlorophyll bind-
ing’ showed a decrease. Regarding ‘biological process’ GO
terms, the majority of differentially expressed unigenes ap-
peared to be related to some major biological changes, in-
cluding ‘monosaccharide metabolic process’, ‘carbohydrate
catabolic process’, ‘cell wall macromolecule catabolic
process’, ‘gene expression’, ‘cellular aldehyde metabolic
process’, ‘organic acid metabolic process’, ‘vitamin meta-
bolic process’, ‘photosynthesis’, ‘cellular lipid metabolic
process’, ‘reproductive process in a multicellular organism’,
‘aging’, ‘defense response’, ‘cellular response to hormone
stimulus’, ‘fluid transport’, and ‘secondary metabolic
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process’ (Fig. 4b). The complete list of GO categories is
provided in Additional file 4: Table S11. These results are
consistent with the notion that the principal changes asso-
ciated with ripening include color (loss of green color and
increase in non-photosynthetic pigments that vary de-
pending on species), firmness (softening by cell wall de-
grading activities and alterations in cuticle properties),
taste (increase in sugar and decline in organic acids), and
flavor (production of volatile compounds providing char-
acteristic aromas) [63].

Differentially expressed unigenes during fruit ripen-
ing were also examined by cluster analysis of gene ex-
pression patterns, which arranged the gene products
into 5 major groups named as classes I-V (Fig. 5a and b;
Additional file 4: Table S10). The most represented classes
comprised the unigenes whose expression increased (class
III) or decreased (class IV) during fruit ripening. Both classes
were subdivided into two sub-classes (A and B, respectively).
Classes III-A and IV-A comprised the unigenes whose ex-
pression increased or decreased continuously during fruit

Fig. 4 Functional categorization of differentially expressed genes during avocado fruit ripening. Genes were categorized based on GO annotation,
and the number for each category is displayed based on molecular function (a), or biological process (b). Data presented represent GO terms at
level 4
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Fig. 5 (See legend on next page.)
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ripening, while classes III-B and IV-B showed increase or
decrease at the climacteric stage, with similar expres-
sion levels maintained at post-climacteric stages. Clas-
ses I and II represent the unigenes in which the highest
or lowest expression levels were detected at the climac-
teric stage. Finally, class V represents the remaining
unigenes that were not grouped into none of the classes
mentioned above. Differential gene expression patterns
observed in the RNA-seq experiments were validated
by real-time PCR for eight avocado unigenes differen-
tially expressed during fruit ripening (Additional file 3:
Figure S2). These genes showed the same expression
pattern in both RNA-seq (measured as RPKM values)
and in the real-time PCR analyses.

Genes relevant to avocado fruit ripening
In ripening of climacteric fruits, the expression of some
members of the gene families encoding ACC synthase and
ACC oxidase is induced, regulating the biosynthesis
of ethylene [64]. Two differentially expressed unigenes
(UN03798 and UN39755) were found to be homologs of
Arabidopsis ACC synthase (AT3G61510), and one,
UN38306, a homolog of ACC oxidase (AT1G62380). In re-
lation to their expression profiles, the unigenes homologous
to the ACC synthase were classified into class III-A, while
the homolog of ACC oxidase was classified into class II
(Fig. 5b). Therefore, during avocado fruit ripening, the
ethylene burst seems to be regulated mainly by ACC oxi-
dase. This is consistent with the notion that in climacteric
fruits the rate of ethylene production is well correlated with
the pattern of accumulation of ACC synthase and ACC oxi-
dase gene transcripts [65]. Avocado unigenes homologous
to ethylene response factor ERF110 (AT5G50080;
UN29560 and UN42714) and ethylene receptor EIN4
(AT3G04580; UN01530 and UN24061), which play key
roles in the signaling of ethylene responses [66], were also
identified as members of class III-A (Fig. 5b).
The genetic and physiological characterization of to-

mato ripening mutants, ripening-inhibitor (rin; [67]),
non-ripening (nor; [68]) and colorless non-ripening (cnr;
[69]), together with the molecular characterization of the
mutated genes, have demonstrated that several import-
ant regulatory factors must be properly coordinated with
the ethylene signal to properly activate and orchestrate
the ripening program. RIN [70], NOR [71] and CNR
[72] genes encode transcription factors belonging to the
MADS-box, NAC-domain, and SBP-box families,

respectively, that act upstream of ethylene biosynthesis
and perform key functions in the control of fruit ripening
[73]. RIN [74] and two regulatory proteins more recently
identify as involved in fruit ripening, the TAGL1 MADS-
box factor [75] and the HB-1 homeobox protein [76], are
able to bind to the promoter region of ACS2 [74] and
ACO1 [76] genes, respectively, demonstrating that tran-
scription factors directly regulate the activity of ethylene
biosynthesis genes in tomato. A bi-directional best BLAST
hit approach was used to identify the avocado orthologs of
tomato genes involved in ripening (see above). Using the
SeaView program [77] the protein-coding nucleotide se-
quences were then aligned based on their corresponding
amino acid translations to calculate the percent identity at
nucleotide and amino acid levels (Additional file 5). The
identities of avocado/tomato genes ranged from 48.82 to
63.53 % (Additional file 4: Table S12) and with only one ex-
ception (HB-1; UN22151), their expression levels were con-
siderably higher in flowers than in the remaining organs
sampled. Meanwhile, NOR and HB-1 avocado transcripts
increased during fruit ripening while CNR decreased. RIN
and TAGL1 showed very low transcript levels (RPKM <5)
only at the preclimacteric stage (Additional file 3: Figure S3).
Avocado is considered a basal angiosperms with origin near
the split between monocot and eudicot plant species. The
finding that some but not all transcription factors involved
in tomato fruit ripening are up-regulated or even expressed
during avocado fruit ripening suggests that part but not all
of the transcription factor wiring was ancestrally present
and that substantial rewiring occurred during the evolution
of modern eudicots.
It has been reported that a thaumatin-like protein and a

class I chitinase are some of the most abundant ripening-
associated proteins in banana fruit [60]. Genes encoding
these proteins were also found to have differential expres-
sion during ripening in avocado. Avocado unigene
UN10274, a homolog of a pathogenesis-related thaumatin
(AT1G20030), clustered into class III-A (transcripts con-
tinuously rising; Fig. 5b), the same as several unigenes (16
in total; see Additional file 4: Table S10) homologous to
PR-3 (AT3G12500), a well-known class I chitinase strongly
induced when plants respond to wounding or infection by
fungal, bacterial, or viral pathogens [78]. Additional uni-
genes (UN43717 and UN45051) with different expression
profiles (class I) were identified as homologs of AT4G01700
and AT2G43610, class II and IV chitinases, respectively.
Therefore, comparisons with data reported for other

(See figure on previous page.)
Fig. 5 RNA-seq based transcriptome dynamics of avocado during fruit ripening. a The log2 of RPKM values for each gene was used for the
hierarchical clustering analysis at each of the three selected ripening stages (pre-climacteric, climacteric and post-climacteric). b The 1235
differentially expressed unigenes were classified into 5 regulation patterns (classes I-V, respectively). Classes III and IV were subdivided into two
sub-classes each. The graph shows the expression profile of unigenes for each class. Gray lines, expression profiles for individual unigenes. Brown
lines represent the average intensities of unigene members of the clusters. For additional information, see Additional file 4: Table S10
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climacteric fruits (including ethylene responsive genes) fa-
cilitated identification of putative conserved orthologous
ripening-related genes, which serve as an initial set of can-
didates for assessing the conservation of gene activity dur-
ing the evolution of fleshy-fruited plant species.

Acyl lipid metabolism of Persea americana fruits
Previously, an acyl lipid metabolism gene database was de-
veloped for Arabidopsis [79], and this was recently ex-
panded by deep transcriptional profiling of developing
seeds from four different oilseed species [80]. This signifi-
cant effort resulted in detailed sequence information for
over 740 genes encoding proteins involved in lipid metab-
olism, providing a useful resource for construction of add-
itional databases of genes related to lipid biosynthesis
from other oilseed or plant species with lipid-rich fruits
(http://aralip.plantbiology.msu.edu/). After comparing our
assembled transcriptome against the aforementioned data-
base, we found that 1177 avocado unigenes had been an-
notated as homologous to lipid metabolism genes with
transcriptional evidence for their expression (RPKM
values ≥5) in at least one of the organ sampled (flower,
leaves, roots, stem, aerial buds, seed and fruit) (Fig. 6;
Additional file 6). A similar number of unigenes related to
the ‘fatty acid synthesis’ category were detected in fruit,

seed, flower and aerial bud organs, whereas stem, leaves,
and root organs had a lower number of expressed uni-
genes annotated in the same category. The category ‘fatty
acid elongation, desaturation & export from plastid’ shares
a similar pattern (Fig. 6a). Interestingly, the number of
genes detected in both categories decreases during fruit
ripening (Fig. 6b). This was expected since after flowering
and during avocado fruit development, the moisture con-
tent decreases while the lipid content steadily increases
[81], and after the picking, and during the post-harvest
ripening period, the avocado fruit does not show signifi-
cant changes in the fatty acid composition [82]. Our data
suggests that the initiation of fruit ripening marks the end
of oil accumulation and fatty acid composition.
The average RPKM values of unigenes annotated as

homologous to fatty acid biosynthesis genes were calcu-
lated in order to estimate expression profiles of their cor-
responding avocado genes (Additional file 4: Table S13).
The transcription levels of the majority of genes involved
in fatty acid biosynthesis are significantly higher in fruit
than in all the other organs analyzed (Fig. 7); nonetheless,
they decrease during fruit ripening (Fig. 8). In addition, ac-
cording to their expression profiles, three homologs
(UN06747, UN21149 and UN33083) of FAB2/SSI2
(AT2G43710) were identified as class IV-A differentially

Fig. 6 Totals of P. americana unigenes suspected to be involved in acyl-lipid metabolism. Unigenes were annotated with a translated BLAST
(e-value ≤10−03 and a bit score ≥25) against Arabidopsis proteins and further annotated based on information at the Arabidopsis Lipid Gene
Database (http://aralip.plantbiology.msu.edu/). For additional information, see Additional file 4: Table S11. a Percent of the genes detected in each
of the organs sampled and (b) during fruit ripening
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Fig. 7 Expression profile of P. americana unigenes involved in the fatty acid biosynthetic pathway. The bar graphs show the frequency of
transcriptional units as the average of RPKM values of all unigenes annotated as homologous to each Arabidopsis gene (represented by red letters
in the figure). Each avocado organ analyzed is represented by different color: fruit (yellow), seed (red), flower (purple), aerial buds (green), leaves
(cyan), stem (blue) and roots (pink). This figure was modified from the Arabidopsis Lipid Gene Database (http://aralip.plantbiology.msu.edu/)
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Fig. 8 Expression profile of genes coding for fatty acid biosynthesis during avocado fruit-ripening. The bar graphs show the frequency of transcriptional
units as the average of RPKM values of all unigenes annotated as homologous to each Arabidopsis gene (represented by red letters in the
figure). Each avocado fruit ripening stage is represented by different color: pre-climacteric (light green), climacteric (green) and post-climacteric
(dark green). This figure was modified from the Arabidopsis Lipid Gene Database (http://aralip.plantbiology.msu.edu/)
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expressed unigenes. FAB2/SSI2, a soluble stearoyl-acyl
carrier protein desaturase, is a major enzyme responsible
for converting saturated stearic acid (C18:0) to monoun-
saturated oleic acid (C18:1) in chloroplasts [83]. Our data
are also in agreement with the transcriptome of develop-
ing mesocarp of ‘Hass’ avocado that was generated in par-
allel to these studies where genes involved in acyl lipid
metabolism were exclusively investigated [84]. Together,
these results suggest that lipid accumulation and changes
in fatty acid composition (for example, some fatty acid
desaturations) occur during avocado fruit development,
and probably both processes stop a few days after the fruit
has been harvested (at the pre-climacteric stage). The no-
ticeable decrease of the FAB2/SSI2 transcripts, as well as
genes involved in fatty acid biosynthesis during fruit ripen-
ing, could explain the fact that no significant changes have
been detected in avocado fatty acid composition during
the post-harvest ripening period [7]. Considering that
ethylene production starts at the pre-climacteric stage and
quickly increases towards the climacteric state, it is tempt-
ing to hypothesize that in avocado fruit, ethylene is per-
haps a signaling molecule that once perceived, halts lipid
biosynthesis and programs future changes in fatty acid
composition.
Although in most avocado varieties over half of the

total fat present is in the form of oleic acid (C18:1), re-
cent studies have shown that at least 22 different fatty
acids can be detected in pulp and seed avocado oils [85].
Palmitic (C16:0) and linoleic (C18:2) fatty acids are the
second major constituents of fruit oils while some others
like stearic acid (C18:0) are present in trace amounts [85].
The benefits to nutrition and health of avocado fatty
acids have been recently reviewed [86]). In addition, avo-
cado acetogenins, such as persin [(+)-(Z,Z)-1-(acety-
loxy)-2-hydroxy-12,15-heneicosadien-4-one], a deoxy-
derivative of glyceride with close structural homology to
the monoglyceride of linoleic acid, has been proposed as
an alternative therapy against breast cancer due its nec-
rotic effect in the mammary gland [87]. Considering the
importance of avocado to nutrition and health, tran-
scripts encoding enzymes of the biosynthetic pathway
from palmitic to linoleic acid, passing through stearic
and oleic acids, were reconstructed similarly to de-
scribed above (Additional file 4: Table S13; Additional
file 3: Figure S4). It is worth noting that genes involved
in the biosynthesis of linoleic acid (downstream of oleic
acid) showed lower expression levels in fruit than in
seed. This is consistent with previous reports in which
linoleic acid seems to accumulate in greater amounts
(around 4-fold, [85]) in seeds than in fruits.

Conclusion
The avocado transcriptome reported in this study pro-
vides a foundation for the molecular genetics and

functional genomics required to study the basis of the
genetic diversity that determines the different levels and
quality of oil accumulation in the fruit of different avo-
cado cultivars, as well as other important agronomic
traits for this increasingly important crop. Transcrip-
tomic data will also facilitate the identification of the
pathways involved in production of a wide variety of es-
sential nutrients and phytochemicals beneficial for hu-
man health that are produced by the avocado. This data
will also facilitate the study of early plant evolution since
avocado is phylogenetically placed near the separation
between monocot and eudicot plants.

Methods
Plant material
Avocado (Persea americana var. drymifolia) samples were
obtained from the germplasm bank of the “Instituto
Nacional de Investigaciones Forestales y Agropecuarias
(INIFAP)” in Uruapan, Michoacán, México. Organs sam-
pled [Leaves: mixed development stages of expanded
leaves; Stem: segments from young branches, Aerial buds:
developing buds emerging from shoot apical meristem;
Flower: whole inflorescences with flowers at multiple
stages of development (young, immature, and mature);
Seed: isolated from harvested fruits at the mature-green
state (approximately 8 months-old); roots: whole root sys-
tem recovered from in vitro-propagated seedlings [88], or
from cuttings grown in pots in a greenhouse]. Fruits in
the mature-green state were also harvested for the ripen-
ing experiments. Seeds were removed once the fruit was
frozen at each rippening stage. All organs/tissues sampled
were obtained from a single reference tree (accession 001-
01, which has been sequenced as part of the avocado
whole-genome sequencing project).

Characterization of the climacteric behavior of avocado
fruit
In avocado and other climacteric fruits such as apple,
melon and banana, an ethylene burst is required for nor-
mal fruit ripening (reviewed in [89]). According to the
method described by Hoffman and Yang [15], ethylene
production of each fruit was monitored individually by gas
chromatography during the course of ripening until they
were sacrificed for RNA extraction.

RNA sequencing
Total RNA was isolated using the Trizol reagment (Invi-
trogen) and re-purified with the RNeasy kit (Qiagen) fol-
lowing the manufacturer’s instructions. Five micrograms
of total RNA from each sample were pooled to produce
sequencing libraries. Additionally, according to ethylene
quantification (Additional file 3: Figure S1), three inde-
pendent extractions were prepared from 8 months-old
fruits (pericarp), at the second, third and fourth day
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after harvest (pre-climacteric, climacteric and post-
climacteric stages respectively), allowing us to contrast
changes in the transcriptome profile of the avocado
fruit at different ripening stages. cDNA preparation, li-
brary construction, and sequencing were performed
according to Illumina and Roche manufacturer instruc-
tions. From the RNA pool, two sequencing libraries
were prepared and a single sequencing run was carried
out on the GS-FLX+ (Roche) sequencer, and another
on the Illumina MiSeq platform. A total of 4,674,756
reads were generated (1,055,903 reads from GS-FLX+
with an estimated average size of 462.27 bp and
3,618,853 paired reads, 2 × 150 bp, from MiSeq). Add-
itionally, using the SOLiD system and the SOLiD RNA
Barcoding Kit (v4 chemistry), 1/4 run, in which all
RNA samples were independently represented using
barcodes, was performed. A total of 70,650,328 short
reads (up to 50 pb) were generated (Additional file 1:
Table S1). Files containing sequence reads and quality
scores were deposited in the Short Read Archive of the
National Center for Biotechnology Information (NCBI)
[Accession number SRS923862].

Assembly and sequence analysis
To carry out the assembly process only the reads gener-
ated with GS-FLX+ and Illumina-MiSeq sequencer were
considered. Using the CDHIT program [90], natural and
artificial duplicate reads were removed from the data set
generated by the GS-FLX+ sequencer. Additionally, reads
with an average quality less than 20 (phred score), were
also removed. On the other hand, forward and reverse
read pairs (generated by Illumina-MiSeq) were merged to
form single “longer-reads” using the SeqPrep pipeline
(https://github.com/jstjohn/SeqPrep), with default param-
eters (a quality score cutoff of phred 33, a minimum
merged read length of 15 bp and no mismatches in the
overlapping region). Paired-end reads that did not overlap
were trimmed using a sliding window approach (window
size 10 bases, shift 1 base). Reads were discarded if they
were smaller than 30 bases after trimming, and orphan
reads were also removed in order to keep pairs only.
MIRA v3.4.1 [16] and Trinity [12] assemblers were used
independently. Standard assembly metrics, such as number
of contigs ≥1 Kb, average contig lengths, and maximum
contig size were estimated (Additional file 1: Table S2).
Resulting contigs (with a minimum length of 100 bp) de-
rived from both assembly processes were merged into a sin-
gle file, and those that were redundant were eliminated
using the BlastClust program. Redundant contigs were
defined as those having greater than 95 % identity over an
area covering 95 % of the length of the sequence. Unique
contigs were trimmed of low quality, low complexity and
poly(A/T) tails using the SeqClean software (http://
compbio.dfci.harvard.edu/tgi/), then, they were passed

through a second assembly step using the CAP3 assem-
bler [19]. CAP3 was run with default parameters (mini-
mum overlap length of 40 bp and 95 % minimum
sequence identity). A set of unigenes from P. americana
were generated considering only resulting contigs with a
minimum size of 200 bp (Additional file 1: Table S2).
SOLiD sequence reads were only used for differential ex-
pression analysis and they were excluded from the assem-
bly because direct conversion of sequencing reads is
possible but not recommended because all bases that fol-
low a single error in colorspace will create errors in all
subsequent bases of a read. Additionally, it has been re-
cently reported that a hybrid strategy generated high qual-
ity assemblies following three simple recommendations:
(1) using a single individual with large representation of
biological tissues, (2) merging both long reads and paired-
end reads (derived from GS-FLX+ and Illumina platforms,
respectively) and (3), using several assemblers in order to
combine specific advantage of each [91].

Annotation of Persea americana var. drymifolia unigenes
To annotate sequences obtained by de novo assembly, we
performed sequence similarity searches using the BLASTX
algorithm (e-value 10−3, bit score ≥25) on Arabidopsis thali-
ana (TAIR v11; http://www.arabidopsis.org/) and Ambor-
ella trichopoda (http://www.amborella.org/) proteins, and
plant proteins from other species available in the Reference
Sequence (RefSeq) collection (NCBI; ftp://ftp.ncbi.nlm.nih.
gov/refseq/release/plant/). Top protein matches from Ara-
bidopsis, Amborella or other plant species were assigned to
each of the avocado unigenes (Additional file 1: Table S3).
The putative protein domains contained within the trans-
lated unigenes were identified using Hidden Markov Model
(HMM)-based searches against Pfam database (e-value 10
−3) [22]. The gene ontology (GO) functional classes and
pathways for each avocado unigene were assigned based on
Arabidopsis GO SLIM and pathway annotation (Additional
file 1: Table S3). Association of unigenes with KEGG path-
ways was determined using a directional best hit (BBH)
method (that is, top reciprocal BLAST hits) against the
Kyoto Encyclopedia of Genes and Genomes database [92].
The KEGG pathways annotation (Additional file 3) was
performed in the KEGG Automatic Annotation Server
(KAAS) (http:/www.genome.jp/tools/kaas/) [24].

Expression profile analysis of the P. americana
transcriptome
After assembling the P. americana transcriptome,
reads generated by the SOLiD system were separated
according to the barcode used, and then were separately
aligned to the avocado unigene set using BioScope (Life
Technologies). To run whole transcriptome analysis with
BioScope, a reference genome is required. Using a cus-
tom Perl script, a reference genome proxy was created
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linking all unigenes derived from the assembly process
(in which unigenes were separated by 50 N’s); at the same
time, a GTF/GFF file was also created. The libraries were
relatively uniform with respect to mapping efficiency
(Additional file 4: Table S5). Gene expression levels were
calculated by the RPKM (reads per kb per million reads)
method, and preferentially expressed genes were selected
according to the method described by Stekel [32]. Briefly,
all unigenes were submitted to a log-likelihood ratio
statistic that trends asymptotically to a χ2 distribution, as
described by Stekel et al. [32]. We considered as preferen-
tially expressed those unigenes with a value of R ≥15
among organs sampled (Additional file 3: Figure S5). This
provides a single statistical test to describe the extent to
which a gene is differentially expressed between librar-
ies. This method permits identification of differentially
expressed genes among any number of libraries. Hier-
archical clustering was performed using the Pearson
correlation coefficient and average linkage clustering
[93]. Results were visualized using GeneSpring GX
7.3.1 software (Agilent Technologies).

Real-time quantitative PCR verification
Eight avocado unigenes identified as differentially expressed
genes were aligned against their Arabidopsis homologues in
order to identify the coding sequences in their correct open
reading frame. Protein-coding nucleotide sequences were
aligned based on their corresponding amino acid trans-
lations using the SeaView program (Additional file 4:
Table S14). Gene-specific primer pairs (Additional file 4:
Table S15), which were designed using the Primer3
v.0.4.0 web tool (http://bioinfo.ut.ee/primer3-0.4.0/pri-
mer3/), were used for real-time PCR.
A total of 10 μg of RNA was reverse transcribed for

first-strand cDNA synthesis using SuperScript® III
Reverse Transcriptase (Life Technologies) according to
the manufacturer’s instructions. Reactions were per-
formed with the SYBR Green PCR Master Mix in an
ABI 7500 Fast Real-time system. Actin was used as the
standard to normalize the content of cDNA, as de-
scribed previously [94]. The thermal cycling program
was set to 95 °C for 5 min, 40 cycles of 95 °C for 30 s,
60 °C for 30 s, and 72 °C for 1 min. Results were ana-
lyzed using the ABI 7500 on-board software, version
2.0.5 (Applied Biosystems). The real-time PCR was con-
ducted with at least three experimental replicates for
each biological sample.

Availability of supporting data
All the supporting data are included as additional files,
including the sequences of all assembled transcripts.
The raw sequencing data was deposited in the NCBI
and can be accesed under the following identifier:
BioProject PRJNA282441.

Additional files

Additional file 1: Table S1. Summary of sequencing data generated
from P. americana transcriptome. Table S2. Basic P. americana assembly
metrics. Table S3. Annotation of P. americana unigenes. (ZIP 16319 kb)

Additional file 2: P. americana unigenes (ZIP 20363 kb)

Additional file 3: Figure S1. Complete metabolic network represented
in the P. americana unigenes. Nodes in this figure are metabolic
compounds. Edges are enzymatic transformations. The edges have been
highlighted to indicate the modules: energy, carbohydrate and lipid
metabolism (green), nucleotide and amino acid metabolism (orange) and
genetic information processing (reed). The metabolic network was re-
constructed using “Search & Color Pathway” tool from KEGG database
(http://www.genome.jp/kegg/). Figure S2. Real-time PCR validation of
differentially expressed genes. (A) RNA-Seq expression levels measured as
reads per kb per million of reads (RPKM). (B) Real-time PCR expression
levels given as 40-ΔCT, where ΔCT is the difference in
threshold cycle number of the respective gene and the reference ACTIN;
the number 40 was chosen because the PCR run stops after 40 cycles
and a constant value was required (as calibrator) in order to see the
differences existing in three ripening stages (see as example [95]). The
results are shown as the averages ± SE of three biological replicates.
Figure S3. Expression profiles of avocado orthologs to well
characterized tomato ripening-associated genes. RNA-Seq expression for
5 different unigenes, measured as RPKM values (y axis) at specific-organs
(A) and during fruit ripening (B) are shown. Figure S4. Metabolic
pathway from palmitic to linoleic acids. The bar graphs show the
frequency of transcriptional units as the average of RPKM values of all
unigenes annotated as homologs to each of the Arabidopsis genes
(represented by red letters in the figure). Avocado organs (to the left) are
represented by different colors: fruit (yellow), seed (red), flower (purple),
aerial buds (green), leaves (cyan), stem (blue) and roots (pink). Ripening
stages (to the right) are shown in green scale (from light to dark;
pre-climacteric, climacteric and post-climacteric respectively). This
biosynthetic pathway was reconstructed based on information
available for A. thaliana in BioCyc Database Collection (http://biocyc.org/).
Figure S5. The number of unigenes for a given value of the test statistic R
is plotted as a function of R. The data falling within 5≤ R≤ 15 decrease
exponentially with R. When R ≥15, the number of genes is above this
exponential curve. (PPTX 896 kb)

Additional file 4: Table S4. Detailed information for unigenes mapping
to KEGG pathways in P. americana. Table S5. Total number of reads mapped
by BioScopeTM software (LifeTechnologies) against the P. americana unigene
set. Table S6. Expression profile matrix of P. americana unigenes. Table S7.
Preferentially expressed unigenes in P. americana by organ. Table S8. P.
americana unigenes selected as organ-specifc. Table S9. P. americana
unigenes selected as preferentially expresed in the fruit/flower comparison.
Table S10. Differentially expressed genes during avocado fruit ripening.
Table S11. Association of specific GO terms to preferentially expressed genes
involved in the avocado ripening process. Table S12. Identity percent
between avocado (Persea americana var. drymifolia) and tomato (Solanum
lycopersicum) genes involved in the ripening process. Table S13. List of
avocado unigenes annotated as homologous to Arabidopsis genes known or
suspected to be involved in acyl-lipid metabolism. Table S14. P. americana
unigenes annotated as homologous to Arabidopsis genes involved in
the fatty acid biosynthetic pathway. Table S15. Primers employed in
real-time PCR assay. (XLSX 15767 kb)

Additional file 5: Pairwise sequence alignment (Rippening-like genes)
(ZIP 7 kb)

Additional file 6: Pairwise sequence alignment (qRT-PCR validation) (ZIP 8 kb)
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