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FIGURE 3 | Fatty acid composition during seed development in three wild species. Changes in the (A) proportion of various FAs, and (B) content of three major
unsaturated FAs during seed development (mean ± SD, n = 3).

FIGURE 4 | An overview of (A) major genes involved in fatty acid synthesis and triacylglycerol assembly. Substrates are in bold: ACP, acyl carrier protein; DAG,
diacylglycerol; G3P, glycerol-3-phosphate; LPA, lyso-phosphatidic acid; LPC, lyso-phosphatidylcholine; PA, phosphatidic acid; PC, phosphatidylcholine; PUFA,
polyunsaturated fatty acids; TAG, triacylglycerol. Enzymatic reactions are in bold italics: β-PDHC, pyruvate dehydrogenase beta subunit; MCAAT, malonyl-CoA:ACP
transacylase; EAR, enoyl-ACP reductase; KAS II, ketoacyl-ACP synthase II; SAD, stearoyl-ACP desaturase; FAD3, 115 (ω-3) linoleic acid desaturase; FATA,
acyl-ACP thioesterase A; FAD2, 112 oleic acid desaturase; LPAAT, 1-acylglycerol-3-phosphateacyltransferase; OBO, oil-body oleosin.

expression levels at S3 in P. rockii, relative to its S1 were 25-fold
higher for β-PDHC and 5-fold higher for MCAT (Supplementary
Figure S1 and Supplementary Table S4), genes that encode for
crucial precursors acetyl-CoA and malonyl-ACP, respectively, for

FA synthesis. In P. rockii, expression levels for KAS II and SAD
were also more than ninefold higher in their peak stage, S2 and
S3, respectively, relative to S1, which correlates with abundance
of 16:0 in early developmental stage followed by increase in
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FIGURE 5 | Quantitative real-time polymerase chain reaction analysis of genes
involved in seed oil synthesis in three wild species at different developmental
stages. Relative expression values, normalized to 26S-18S ITS gene, were
shown as 2−11Ct relative to 20 DAP of P. rockii. Error bars represent the SD
of three biological replicates with three technical replicates each.

18:1 at later stages (Figure 3A). Such increase remained below
twofold in P. potaninii and P. lutea (Supplementary Figure S1
and Supplementary Table S4), suggesting a correlation between
the plastidial FA gene expression levels and oil accumulation.
Furthermore, expression levels for most plastidial FA genes
remained higher or similar to the levels at S-1 during the entire
seed development period in P. rockii but reduced below S1
levels by 80 DAP in P. potaninii and even earlier in P. lutea
(Supplementary Figure S1 and Figure 5), suggesting that
the duration of transcriptional activity might affect overall oil
accumulation and thus contribute to differential oil content in
matured tree peony seeds (Kanai et al., 2016).

Triacylglycerol assembly via DGAT catalyzed acyl-CoA-
dependent or a PC-derived pathway (Figure 4) utilizes PC as a

central intermediate in maintaining the flux of FAs and/or DAG
(Ohlrogge and Browse, 1995; Bates and Browse, 2012). Since
the sn-2 position of PC is the major site for ER localized FA
modification such as desaturation, and hydroxylation (Sperling
et al., 1993; van de Loo et al., 1995), understanding the acyl flux
into and out of PC is crucial for improving the production of
PUFA (18:3)-enriched TAG (Wallis et al., 2002). The expression
of FAD3 in P. rockii was characterized by a bell-shaped curve,
with low levels of expression at the initial stage followed by a
substantial increase during the rapid phase of oil accumulation
and a subsequent decline toward seed maturation (Figure 5
and Supplementary Figure S1), a conserved pattern that was
previously observed in oil-rich Arabidopsis, Brassica napus and
sea buckthorn seeds (Hu et al., 2009; Peng and Weselake,
2011; Fatima et al., 2012). Together, the expression pattern and
transcript abundance of FAD3 and FAD2, with FAD3 being
much higher than FAD2 in P. rockii suggest that its high 18:3
content might be the result of FAD3-dependent active PC-derived
pathway (Bates et al., 2013). Expression of FAD3 in perilla and
sacha inchi seeds also coincided with the accumulation of 45–
53% of total FA as ALA (Chung et al., 1999; Wang et al.,
2012), further suggesting FAD3 as a valuable target for genetic
engineering and improving ALA content in oil crops. On the
other hand, relatively low expression levels of FAD2 and FAD3
in seeds of P. lutea (Figure 5) might account for its lower
proportion of LA and ALA content (Figure 3). Transcript levels
for LPAAT, which with its high substrate specificity determines
acyl composition of TAG at the sn-2 position (Baud and
Lepiniec, 2010), were fivefold higher in P. rockii at 60 DAP
relative to 20 DAP (Supplementary Table S4). In P. rockii
seeds, transcripts for OBO, as expected, peaked in S4, toward
the end of FA synthesis phase as needed for packaging TAG
(Figure 5 and Supplementary Figure S1). Interestingly OBO
expression levels for P. potaninii peaked by 60 DAP and were
higher than that of P. rockii. Oleosins typically determine the
size of the oil bodies (Siloto et al., 2006) and it remains to be
determined if there is variation in oil body size in tree peony
seeds.

Temporal changes in the expression pattern of these 10
genes during seed development, relative to the transcript levels
in S1 of P. rockii also revealed highest expression levels
mostly during S2–S3 stages in P. rockii and P. lutea, and
S3 stage of P. potaninii (Figure 5). These stages with higher
transcript abundance also correlated with the stages during
which higher rate of FA accumulation (Figure 2C). Conversely,
reduced transcript abundance was observed during initial (S1)
and late (S4 and S5) developmental stages, coinciding with
the periods of low rate of FA accumulation (Figure 2C).
Specifically, a three–fourfold higher expression level for β-
PDHC, FAD2, FAD3, LPAAT, and OBO in P. rockii were
noted relative to P. lutea (Figure 5), which was in agreement
with its higher total FA and ALA content (Figures 2, 3).
Transcript abundance for MCAT, EAR, KAS II, SAD, and
FATA differed by less than twofold between the species
suggesting these genes might not play a significant role in
differential FA accumulation in developing seeds of peonies
(Figure 5).
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CONCLUSION

Alpha-linolenic acid cannot be synthesized by the human
body (Sinclair et al., 2002; Liu et al., 2012), and yet is
an essential precursor for the synthesis of eicosapentaenoic
acid and docosahexaenoic acid, which exert a wide range
of biological activities and prophylactic effects (Shahidi and
Miraliakbari, 2004; Shahidi and Miraliakbari, 2005). Considering
the increasing population (Chapman and Ohlrogge, 2012) there
is a need for the development of oil crops with beneficial
proportions of ω-3 and ω-6 FAs. In this study, we conducted
comparative FA and gene expression analyses of developing seeds
of three peony species with differences in the rate, content and
composition of FAs to identify fundamental determinants of FA
content and composition. Our results indicate that a higher and
sustained lipid gene expression levels in P. rockii might contribute
to its increased rate and duration of TAG accumulation and thus
to an overall increase in seed oil content. Furthermore, although
the expression pattern of all the ten genes do not correlate with
the pattern of oil accumulation, the data together suggest that
P. rockii has a more efficient metabolic pathway to synthesize
ALA compared with P. potaninii and P. lutea, which is likely
due to the abundance of FAD3 transcripts in the PC-derived
pathway. Although transcript levels do not necessarily reflect
protein or its activity, the temporal expression patterns for FAD2
and FAD3 associated with PUFA-enriched FA profile suggests
an important role for them in determining the FA composition
in peony seeds. These results also revealed a significant role
for β-PDHC, LPAAT, and oleosin since their high expression
level was in agreement with the highest total FA content in
P. rockii. An increase in oil content even after the decline in
transcript levels might suggest involvement of additional genes
that might also play an important role in PUFA synthesis. In
conclusion, however, FAD3, FAD2, β-PDHC, LPAAT, and oleosin
were identified as potential targets for molecular cloning and
functional characterization and to further improve oil content
and composition in tree peonies as well as other crops. Among
the tree peonies, P. rockii is an excellent germplasm resource for
cultivating high yielding and high quality peony oil and could be
of further improved with identification of molecular markers and
using transgenic approaches.
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FIGURE S1 | Gene expression profiles for developing seeds, relative to their S1
for the three tree peony species.

TABLE S1 | Content of the five major FAs in matured seeds (stage S5) of nine tree
peony species (mg g−1 DW, mean ± SD, n = 3).

TABLE S2 | Fatty acid composition in three wild relatives of tree peony during
seed development (mg g−1 DW, mean ± SD, n = 3).

TABLE S3 | Gene-specific primer sequences for detection by qRT-PCR.

TABLE S4 | Transcript levels of 10 genes in developing seeds of three tree
peonies, relative to their S1 (A) and S1 of P. rockii (B). Data with conditional
formatting reveal the highest expression for each gene in red and lowest in green.
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