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ABSTRACT

Implementation of Hierarchical and K-Means Clustering Techniques on the Trend

and Seasonality Components of Temperature Profile Data

by

Emmanuel Aigbokhavbo Ogedegbe

In this study, time series decomposition techniques are used in conjunction with K-

means clustering and Hierarchical clustering, two well-known clustering algorithms,

to climate data. Their implementation and comparisons are then examined. The

main objective is to identify similar climate trends and group geographical areas with

similar environmental conditions. Climate data from specific places are collected and

analyzed as part of the project. The time series is then split into trend, seasonality,

and residual components. In order to categorize growing regions according to their

climatic inclinations, the deconstructed time series are then submitted to K-means

clustering and Hierarchical clustering with dynamic time warping. In order to un-

derstand how different regions’ climates compare to one another and how regions

cluster based on the general trend of the temperature profile over the course of the

full growing season as opposed to the seasonality component for the various locations,

the created clusters are evaluated.
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1 INTRODUCTION

In recent years, understanding the intricate dynamics of climate trends has be-

come more and more important recently, particularly in the context of agriculture

and food security [4]. In order to optimize agricultural practices, forecast crop yields,

and create efficient climate change mitigation plans, it is essential to be able to rec-

ognize and assess climate patterns and seasonality across a variety of growing regions

[15, 20]. To achieve these goals, clustering algorithms have become important re-

sources for examining patterns in massive data sets in order to accomplish these

objectives. In this work, we’ll concentrate on putting two popular clustering algo-

rithms, hierarchical clustering and K-means clustering, into practice and contrasting

them in order to analyze climatic data across various growth regions utilizing time

series decomposition.

Time series, which include various climatic parameters including temperature,

precipitation, humidity, and wind patterns throughout time, are widely used to de-

scribe climate data. Time series decomposition techniques are necessary in order to

study such data properly. We can obtain better insights into long-term climatic trends

and recurring patterns that happen throughout particular time periods by untangling

essential elements like trends and seasonality.

Unsupervised learning methods that are frequently employed in exploratory data

analysis and pattern recognition tasks include hierarchical clustering and K-means

clustering [10]. By iterative merging or dividing data points depending on their

similarity, hierarchical clustering creates a hierarchy of clusters that eventually forms

a dendrogram, which resembles a tree [23]. On the other hand, K-means clustering
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partitions data points into k distinct clusters, aiming to minimize the within-cluster

variance [12]. Both algorithms offer unique advantages and have been extensively

used in various domains, including climate analysis.

In this research endeavor, our primary objective is to evaluate the differences in

using Hierarchical and K-means Clustering in conjunction with the dynamic time

warping distance metric on trend or seasonal data found through time series decom-

position. By applying time series decomposition techniques, we extract the underlying

trends and seasonality from the climate data collected at multiple locations in the

United States and Canada. Subsequently, we employ Hierarchical and K-means Clus-

tering algorithms to group these locations based on their climate patterns, aiming to

identify clusters with similar trends and seasonality.

Past projects have explored the application of clustering techniques to climate

data, highlighting their potential in identifying distinct climate patterns across differ-

ent geographical regions. For example, Taylor et al [36] utilized cubic spline interpola-

tion and K-means clustering to identify which geographic growing locations are most

comparable based on their climates throughout the growing season for maize. They

utilized cubic spline interpolation to smooth the data and create data at the same

time point for comparison. In section 3 we address some of the limitations inherent

in using the cubic spline interpolation which we hope to improve upon using time

series decomposition. Additionally in section 4 we discuss the dynamic time warping

distance metric which relieves the restrictions of comparing time series at the same

time points. In summary, in this thesis, we intend to seek the underlying trend or

seasonality within the data and use dynamic time warping to obtain the ‘best match’
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between the growing locations, allowing for groupings based on the growing pattern

even if similar growing pattern occur during offset periods of the growing season.

Taylor et al [35] sought to cluster maize growing locations to control for climate

prior to implementing machine learning techniques to predict over-performing hybrid

maize plants based on the genetic composition of the plants in these climate-controlled

locations. This thesis seek to address the initial clustering portion to more effectively

control for climate prior to the implementation of machine learning to predict crop

yield based on genetic factors. While these previous studies have provided valuable

insights, there is a need for more in-depth exploration of clustering algorithms for

climate pattern analysis. The implementation and comparison of Hierarchical clus-

tering and K-means clustering techniques using dynamic time warping and time series

decomposition, specifically in the context of climate data across growing locations,

can provide the proof of concept for combining these techniques for clustering climate

data. By leveraging time series decomposition methods to extract trends and season-

ality, these clustering approaches can provide a deeper understanding of long-term

climate patterns and recurring trends, which are crucial for optimizing agricultural

practices and developing climate change adaptation strategies. Moreover, the explo-

ration of advanced clustering techniques for climate data can greatly benefit machine

learning models used in previous projects. By clustering climate data based on sim-

ilar patterns, the resulting clusters can serve as informative features or inputs for

machine learning algorithms. This strategy may improve the effectiveness of predic-

tive models, allowing for more precise forecasts of crop yields, ideal planting periods,

and dangers associated to the environment. The resulting clusters can also be used
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to direct the creation of regional models and focused interventions, because various

clusters may call for different agricultural approaches and adaptation techniques.

Finally, the motivation for exploring and comparing hierarchical and K-means is

to better comprehend complicated climatic dynamics and their implications for agri-

culture. Clustering techniques for studying climate trends across growing locations

employing dynamic time warping and time series decomposition were developed. We

can extract critical elements from time series data, uncover related climatic patterns,

and help machine learning models become more precise and localized by utilizing

clustering methods. A detailed description of the project will be given in the parts

that follow. We’ll start by giving a summary of data processing techniques in section

2. We give a general review of time series decomposition in section 3 before going

into great detail into dynamic time warping in section 4. The two different clustering

algorithms are the main topic of Section 5. Section 6 presents the findings, while

Section 7 provides a summary and suggestions for further work.
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2 DATA

2.1 Overview

The data set used in this study was obtained from the “Genomes to Fields” project

which is a research project that aims to improve plant breeding and crop productiv-

ity by using genomic data [26, 31]. It involves collaboration between researchers and

farmers to collect data on how different varieties of crops perform in different en-

vironments. This data is then used to develop better crop varieties that are more

resilient to various stressors, such as drought, disease, or pests. The project involves

sequencing the genomes of different crop varieties and using that information to de-

velop genetic markers that can be used to identify desirable traits. These markers

can then be used to breed crops with those traits more efficiently.

In this thesis we analyze the 2019 data as it was the most recent data prior

to the 2020 disruption due to the pandemic and thus most complete. The data

set consists of information on 26 different growing locations across the US, Canada

and Germany with locations including Colorado, Delaware, Georgia, Iowa, Illinois,

Indiana, Michigan, Minnesota, Missouri, North Carolina, Nebraska, New York, Ohio,

Ontario, South Carolina, Texas, and Wisconsin with a total of 227278 observations

(See Figure 1 for a map of locations included in this study). There are 23 variables in

the data set, including field locations, station ID, NWS Network, NWS Station, Date

key, Month, Day, Year, Time, Temperature, Dew Point, Relative Humidity, Solar

Radiation, Rainfall, Wind Speed, Wind Direction, Wind Gust, Soil Temperature,

Soil Moisture, Soil EC, UV Light, PAR, and CO2. The data set is in a comma-
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separated values (CSV) file format and is stored on a local computer. The data was

incomplete with missing values, so data cleaning was carried out on the data set prior

to analysis.

Figure 1: Map of Growing locations in North America

2.2 Pre-processing of Data

During the data cleaning process, several steps were undertaken to ensure the

accuracy and consistency of the dataset. Since the objective of clustering was to group

locations together to control for climate, we initially examined all of the climate data.

Unfortunately, most of the climate variables have more than half of the data missing

across all growing locations Therefore, although precipitation, humidity and a variety

of other factors should ideally be included in a climate study, in this thesis, we focus

on temperature data due to availability. Therefore, the objective was to analyze the

temperature measurements of the growing locations across the 2019 growing season.

To most effectively utilize time series decomposition techniques, we needed to

have uniform time measurements from one day to the next, i.e. the same number of

measurements for each day within one growing season, to determine the periodicity
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of the series. As such we took the following steps to create a uniform time series for

each of the temperature profiles for each of the growing locations.

• Identifying Missing Days: It was crucial to check for missing days in the dataset.

We extracted the unique dates in the data and sorted in ascending order. In this

particular dataset, no missing days were found, except for one dataset in which

there were only sporadic measurement during the start of the growing season.

For this dataset, we restricted the time period to when the measurements were

more consistent which no longer included any missing days.

• Handling Different Time Labels: Most datasets contained different time labels

for what we assume were similar ‘time-of-day’ measurements. For example,

in Figure 2, we see a variety of measurements (96 different labels in all). On

one day, temperature measurements were taken at 0:25, 0:54, 1:25, 1:54, etc;

whereas, on a different day the label might indicate the temperature was mea-

sured at times 0:30, 1:00, 1:30, 2:00 etc. These labels were believed to represent

either a half-hour or hourly interval. Inconsistent labeling would eventually

cause problems when filling in missing data and in determining periodicity. To

ensure consistency, the labels were renamed to be consistent from day to day.

We did not change the data, only the labels for the measurements. For example

we replace 0:25 with 0:30 and 0:54 with 1:00 to reflect the nearest time interval.

The corrected labels are given in Figure 3. Notice that when the labels were

modified to account for half-hour and hourly intervals, there were a total of only

48 different time steps for one daily period, as opposed to the 96 different times

indicated initially.
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Figure 2: All the timestamp labels for a daily period for the entire growing season at

one growing location (COH1)

Figure 3: The time step labels for one daily period after relabelling the ‘off’ time

stamps to the closest half-hour or hourly label for each day of the growing season for

location COH1

• Creating a New Data Range: A new date range was constructed with the new

labels for time, date, and temperature. Any missing temperature readings were

automatically filled in with N/A.

• Imputing Missing Values: Linear interpolation was used to fill in missing values

[16]. We first identify which specific times contain missing data. We then

determine the nearest known values before and after the missing time point for

each missing value. Based on the known values on each side of the missing

value, we estimated the missing values using a line connecting the two known

values. The assumption behind linear interpolation is that the known values are

related linearly. By calculating a weighted average of the nearby known values,
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where the weights depend on the relative placements of the missing point and

the unknown points, one may approximate the values that are missing.

Let’s say we have a missing value at point t and the nearest available data

points are (t1, T1) and (t2, T2),

t1 < t < t2

The linear interpolation formula estimates the value T at time t as

T = T1 + (t− t1)
(T2 − T1)

(t2 − t1)

where T represents the temperature at time t. We follow this procedure for

each missing point in the data. It can be easily implemented using the

df.interpolate() function in Python.

Figure 4: Plot showing data for location COH1 with and without missing values
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In Figure 4, we show the raw data on the same graph as the processed data.

Notice that we keep the integrity of the raw data while enabling us to create uniform

daily measurements with no missing values. The uniform data allows us to determine

potential periods to be used in the time series decomposition.
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3 Time Series Decomposition

Time series decomposition is a methodological approach to smooth out noise,

especially in datasetS like temperature data that exhibit clear seasonal patterns [8].

By decomposing a time series into trend, seasonality, and residual components, it

allows for a better understanding of the underlying patterns and provides a solid

foundation for forecasting and analysis. When applied to temperature data, time

series decomposition can effectively separate the seasonal variations, long-term trends,

and irregular fluctuations present in the dataset.

The process of time series decomposition can be performed using various meth-

ods, such as classical decomposition, moving averages, or exponential smoothing [17].

Classical decomposition methods, such as the additive or multiplicative decompo-

sition, involve separating the time series into its components using statistical tech-

niques. Comparing time series decomposition to smoothing splines, both techniques

aim to smooth out noise in the data. Smoothing splines are a non-parametric regres-

sion method that uses a flexible curve-fitting approach to estimate the underlying

trend [37]. By adjusting the degree of smoothing, splines can effectively remove

short-term fluctuations while preserving the overall shape of the data. However, time

series decomposition offers several advantages over smoothing splines in capturing

seasonal patterns and long-term trends.

Since time series decomposition explicitly separates the different components, it

provides a clear interpretation of the trend and seasonality effects. Additionally, de-

composed components can be easily modeled and forecasted individually, allowing

for more accurate predictions. In contrast, smoothing splines may struggle to cap-
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ture and separate seasonal variations as effectively as time series decomposition [12].

Splines tend to smooth the entire dataset as a whole, potentially averaging out the

seasonal patterns. While it is possible to incorporate seasonal terms in smoothing

splines, the explicit decomposition offered by time series techniques is often more

intuitive and tailored for capturing seasonality.

3.1 Overview of Algorithm

The time series decomposition algorithm typically follows the additive or mul-

tiplicative model [30]. The additive model assumes that the observed time series

can be decomposed into the sum of its components while the multiplicative model

assumes that the observed time series can be decomposed into the product of its com-

ponents. Additive models are models in which the variance of data doesn’t change

over different values of the time series. Multiplicative models are models in which

the variance of data increases as the data increases or the seasonal pattern becomes

more pronounced.

An additive model is linear in its components. The mathematical equation for an

additive model can be represented as

Y (t) = T (t) + S(t) +R(t)

where

• Y (t) represents the observed value of the time series at time t.

• T (t) represents the trend component at time t.

• S(t) represents the seasonality component at time t.
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• R(t) represents the residual (or error) component at time t [11].

In the multiplicative model, the trend and seasonal components are multiplied. It

is non-linear, such as quadratic or exponential, and the trend is represented by a

curved line, while the seasonality may have an increasing or decreasing frequency and

amplitude over time. The mathematical equation for a multiplicative model can be

represented as

Y (t) = T (t) · S(t) ·R(t)

where:

• Y (t) represents the observed value of the time series at time t.

• T (t) represents the trend component at time t.

• S(t) represents the seasonality component at time t.

• R(t) represents the residual (or error) component at time t [11].

Figure 5: A Colorado Location Temperature Data with Rolling Mean and STD
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In this study, we assume that the additive model is acceptable. Figure 5 shows one

growing location’s temperature profile as a function of time where the red line gives

the monthly rolling mean and the green line gives the rolling standard deviation using

the Python command df.mean() and df.std() respectively. For an additive model,

the amount of variation around the mean should remain fairly constant. Figure

5 indicates the standard deviation, and hence variation, over time doesn’t change

considerably. In other words, there is little rise or fall in standard deviation with

time. We note that all other growing locations display a similar pattern.

In Python, the statsmodels library provides the seasonal decompose() function

[9] which allows us to decompose a time series into its components. This function

requires specifying the model as either “Additive” or “Multiplicative” and specifying

the period of the seasonality. The output of the function includes the trend and

seasonal components stored in an array, as well as the residuals, which represent the

remaining variation after removing the trend and seasonal components. The original

observed data is also stored for reference.

3.2 Implementation

The time series decomposition process involves the following steps [30]:

• Trend Extraction: The trend component represents the long-term pattern or

direction of the time series. It captures the overall increasing or decreasing be-

havior of the data. Common techniques used for trend extraction include mov-

ing averages, polynomial regression, or exponential smoothing. The seasonal

decompose() python command uses a convolution filter. We refer the reader to
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[30] for more datails.

• Seasonality Detection: The seasonality component captures periodic patterns

that repeat over fixed intervals. It represents the systematic variations occurring

within a specific time frame. To determine the seasonality in the time series,

we utilize the autocorrelation function (ACF) and autocorrelation coefficient.

The ACF measures the correlation between a time series and its lagged versions

at various time lags [7]. A significant correlation at specific lags suggests the

presence of seasonality. In the ACF plot, if there is a sinusoidal-looking curve

with peaks occurring at regular intervals, it indicates the existence of season-

ality. The coefficient of correlation assumes a lag and measures the strength

of the correlation at that particular lag [8, 32]. By analyzing the ACF plot

and computing the autocorrelation coefficients, we can identify the seasonality

pattern and estimate the lag at which the seasonality occurs.

• Residual Calculation: The residual component represents the random or unex-

plained variation in the time series after trend and seasonality have been ac-

counted for. It contains the irregular or unpredictable fluctuations that cannot

be explained by the trend or seasonality. Residuals are calculated by subtracting

the trend and seasonality components from the original time series.

To illustrate the results of time series decomposition and the determination of

seasonality, let’s consider a specific growing location for maize crop yield as given in

Figure 6.
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Figure 6: Location COH1 Raw Data Plot

Figure 7: Autocorrelation plot for growing location COH1

We use the python command df.autocorrelation in the pandas package [27] to

produce the auto correlation plot for our growing locations given in Figure 7. We

first note that this figure has a sinusoidal like curve with peaks at uniform intervals.

Based on this figure we assume a possible daily as well as weekly seasonality:

• Daily Seasonality: The ACF plot in Figure 7 displays vertical lines every 48
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measurements at the peaks, which equates to a daily time period for this grow-

ing location. This indicates a seasonality of around 48 time measurements

or daily seasonality. Additionally using the df.autocorrelation python com-

mand with lag = 48 (number of daily time measurements), it is determined that

the auto-correlation value for this daily period is 0.88 (88%), demonstrating a

strong correlation between successive daily data.

• Weekly Seasonality: There is a distinct weekly trend in addition to the daily

seasonality. Although it is not as strong as the daily seasonality, the weekly

seasonality’s auto-correlation is determined to be 0.72 (72%), showing a strong

weekly auto-correlation.

The trends and patterns related to the daily seasonality may be obtained by

breaking down the data into its periodic components and analyzing them, especially

utilizing the given number of measurements for the daily period for each growing

location. The autocorrelation values for both daily and weekly seasonality for each

growing location is given in Table 1. Note that the autocorrelation ranges from

0.70 for location NEH1 to 0.88 for locations COH1, GAH1, IAH1, NEH2, NYH2,

SCH1, and TXH1 which indicates a fairly strong daily seasonal autocorrelation for

all growing locations. The weekly autocorrelation factors are slightly weaker with

a range of 0.42 for location ILH1 to 0.81 for location MIH1 but with most values

around 0.6 or higher. Nonetheless, we consider the trend and seasonality components

assuming both periods for smoothed data upon which we perform clustering.

Using the decomposition algorithm with a periodicity of 48 (daily seasonality),

we obtain the trend for this location in Figure 8, the seasonal component in Figure 9
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Table 1: Daily and Weekly lag for each location

Locations Daily Weekly
COH1 0.88 0.72
DEH1 0.80 0.61
GAH1 0.88 0.76
GEH1 0.85 0.63
IAH1 0.88 0.79
IAH2 0.80 0.63
IAH3 0.82 0.68
IAH4 0.79 0.61
ILH1 0.77 0.42
INH1 0.79 0.59
MIH1 0.87 0.81
MNH1 0.74 0.57
MOH1 0.78 0.55
NCH1 0.81 0.60
NEH1 0.70 0.52
NEH2 0.88 0.73
NYH2 0.88 0.80
NYH3 0.87 0.80
OHH1 0.81 0.67
ONH2 0.87 0.79
SCH1 0.88 0.70
TXH1 0.88 0.73
TXH2 0.87 0.73
TXH4 0.85 0.75
WIH1 0.79 0.60
WIH2 0.79 0.60

and the leftover residual component in Figure 10. We note that the residual plot does

still have some discernable pattern (i.e. not totally random) which might indicate the

need to consider multiple seasonality periods simultaneously in future studies

Figure 11-14 illustrate the trend and seasonality components of the time series

decomposition assuming a daily seasonality period (Figures 11 and 12) versus a weekly
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seasonality period (Figure 13 and 14) for all locations. By examining these plots we

can notice some similarities and differences between growing locations across the

growing season. One thing we can immediately notice in Figure 11 is that location

MNH1 has some extreme drops in temperature at several points in the growing season.

For this study we did not adjust for any potential outliers, but in the future, one might

consider whether there is a need to remove outliers. We also observe variability in the

length of the growing season across locations as well as the timing for the start and

end of the growing season. For example, the growing season for TXH2 has the earliest

start in March while ONH2 doesn’t begin until mid-June. Some locations such as

GAH1, TXH1 and TXH2 end the season in mid-August while the end of others don’t

happen until Novermber or December, like GEH1, MNH1, ONH2, and WIH1. There

is also much variation in the highs, lows, and average temperatures across the entire

season (Figure 11) but we all see a lot of different variation daily about this overall

trend (Figure 12). Some growing locations such as GAH1, the temperature does not

vary greatly across the day away from the trend (approximate 6◦C variation). This

is different from the daily variations in a location like TXH4 which has a much larger

variation of about 12◦C.
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Figure 8: Trend component for location COH1 assuming daily seasonality

Figure 9: Seasonality component for location COH1 assuming daily seasonality
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Figure 10: Residual component for location COH1 assuming daily seasonality

Figure 11: Plot of the trend component for all growing locations assuming daily

seasonality
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Figure 12: Seasonality component for all growing locations assuming daily seasonality

Figure 13: Trend component for all growing locations assuming weekly seasonality
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Figure 14: Seasonality component for all growing locations assuming weekly season-

ality

On the trend plot assuming a weekly seasonality, (Figure 13), we see a somewhat

smoother plot than that from Figure 11. When considering a longer periodicity, more

of the fluctuation is shifted to the seasonality component as shown in Figure 14. We

note that in future work we would like to consider times series decomposition in which

we consider the presence of two different seasonal components, i.e.

Y = T + S1 + S2 +R

Nonetheless, with the smoother trend in Figure 13 we make some additional obser-

vations.

In Figure 13, one can more readily notice that locations like GAH1 and TXH2

have similar patterns but they appear to be offset from each other by some couple of

days or weeks. GAH1 appears to have a phase shift to the right (i.e., offset to the
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right of TXH2), but, if shifted to the left, they might be more in line with the other.

But we need a way to numerically evaluate or measure how similar or dissimilar these

growing seasons and locations are from each other and this brings us to the need of

using dynamic time warping (DTW) to numerically evaluate the distance between

two time series.

DTW is preferred over Euclidean distance in this research because of the following

reasons. First, Euclidean distance is not used because the growing seasons are of

different lengths. If one were to only consider the portion of the growing season in

common between all growing locations, then we would only be able to consider the

months between June and August, and, for one or two locations, we would need to

disregard some daily measurements. Some have 48 measurements of temperature

during the day while others had 72 or 96 total daily measurements. There would be

equal lengths of growing seasons among locations with these restrictions but a lot

of information would be lost. Hence the need for a different distance metric that

will allow time series of different lengths. Another reason for not using Euclidean

distance is because Euclidean distance considers differences at the same time points.

Therefore, the value for the euclidean distance between GAH1 and TXH2 will be

greater than when using a distance metric such as DTW which accounts for the

fact that two time series might just be offset from each other. In the next section we

describe the dynamic time warping distance metric in detail, showing how it accounts

for both time series of different lengths as well as ones which might be more similar

if aligning the series in a more ‘optimal’ way.
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4 Dynamic Time Warping

As discussed, in order to cluster growing locations together, we need a way to sys-

tematically compare two temperature profiles such as that given in figure 11. Note

that the start, end and length of a growing season will vary greatly across the lo-

cations; therefore we need a method that can compare time series data of varying

lengths that might not sync up temporally. Dynamic Time Warping (DTW) is a way

to compare two -usually temporal- sequences that do not sync up perfectly. It is a

method to calculate the optimal matching between two sequences. DTW is useful in

many domains such as speech recognition, data mining, financial markets, etc. [1]

We illustrate dynamic time warping by considering two series with varying lengths,

A = [a1, . . . , an] with length n and B = [b1, . . . , bm] with length m. Let δ denote a

base distance measurement between elements or coordinates of the sequences [25].

In this thesis we consider a difference between components of a series defined by

δ(bi, aj) = |bi − aj|2. Other metrics can also be used such as δ(bi, aj) = |bi − aj|.

Note that if m = n, then the Euclidean distance between series A and B, which is

commonly accepted as the simplest distance between sequences, is defined as

∥B − A∥2 =
√

δ(b1, a1) + . . .+ δ(bi, ai) + . . .+ δ(bn, an)

where δ(bi, ai) = |bi − ai|2 and one only considers corresponding components in a

series. When two sequences don’t match exactly or m ̸= n, then an alternative

method can be used to find an optimal alignment between series A and B.

This optimal alignment can be determined by first considering an alternative

distance measurement (an accumulated distance) between elements of the sequences
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A and B computed by

D(bi, aj) = δ(bi, aj) + min{D(bi−1, aj−1), D(bi−1, aj), D(bi, aj−1)}[25] (1)

for 2 < i < m and 2 < j < n.

We then form an m-by-n grid of values, called an accumulated cost matrix, where

each point (i, j) in the grid is given by D(bi, aj) corresponding to elements bi, 1 ≤

i ≤ m and aj, 1 ≤ j ≤ n. Using the distance values in the grid, one forms a warping

path W which maps the elements of A to B to minimize the distance between them.

The warping path is found using a dynamic programming approach to align two

sequences. Going through all possible paths is “combinatorially explosive” [5]. There-

fore, for efficiency purposes, it’s important to limit the number of possible warping

paths, and hence the following constraints are outlined:

• Boundary Condition: This constraint ensures that the warping path begins

with the starting points of both signals and terminates with their endpoints.

In other words, W = {(b1, a1), . . . , (bm, an)} where a1 is always paired with b1

(first components of each sequence) and an is always paired with bm (last

components of each sequence).

• Monotonicity condition: This constraint preserves the time-order of points (not

going back in time).

• Continuity (step size) condition: This constraint limits the path transitions to

adjacent points in time (not jumping in time). An acceptable warping path has

combinations of the following acceptable moves (all forward in time)
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– Horizontal moves: (i, j) → (i, j + 1)

– Vertical moves: (i, j) → (i+ 1, j)

– Diagonal moves: (i, j) → (i+ 1, j + 1)

In addition to the above three constraints, there are other less frequent conditions

for an allowable warping path such as warping window conditions and slope condition.

We refer the reader to references [28, 31] for full details on all the possible constraints.

4.1 A toy example on DTW

We illustrate the concepts of dynamic time warping on a simple example, following

the example given in [2]. Let’s consider two sequences: A = [3, 1, 2, 2, 1] with length

n = 5 and B = [2, 0, 0, 3, 3, 1, 0] with length m = 7. Our aim is to find the best

possible alignment and to calculate the DTW distance between the two sequences

[24].

We start by meeting the demands of the boundary conditions, which state that

the first and last points must line up, implying that the warping path must start with

(a1, b1) and end with (an, bm). For this example, we start the warping path with the

pairing (a1, b1) = (3, 2). We then use an accumulated cost matrix (a 7x5 grid) to

determine the next move. Recall that the allowed moves along a path are

• horizontal moves, (i, j) → (i, j + 1),

• vertical moves, (j, i) → (i+ 1, j), and

• diagonal moves, (i, j) → (i+ 1, j + 1);
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therefore, for interior moves, the accumulated cost is given by Equation (1) from

before, i.e.

D(bi, aj) = δ(bi, aj) + min{D(bi−1, aj−1), D(bi−1, aj), D(bi, aj−1)}

where δ(bi, aj) = |bi − aj|2, and D(bi−1, aj−1) is the cost from having used a diago-

nal movement to get to current point, D(bi, aj−1) is the cost from using a vertical

movement, and D(bi−1, aj) is the cost from using a horizontal movement.

We can best illustrate this accumulated cost matrix where the components of B are

arranged in reversed order on the vertical axis and the components of A are arranged

on the horizontal axis as shown in Table 2. In this format, the initial alignment, i.e.

(a1, b1) = (3, 2) is in the bottom left-hand corner. Since this is the first alignment,

the accumulated cost is simply calculated as

D(2, 3) = δ(b1 = 2, a1 = 3) = |2− 3|2 = 1

.

Table 2: DTW distance matrix

0
1
3
3
0
0
2

3 1 2 2 1

Filling in this value to our accumulated cost matrix we have the grid in Table 3.
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Table 3: DTW distance matrix

0
1
3
3
0
0
2 1

3 1 2 2 1

Now consider the other entries on the bottom row starting with a2 = 1 and b1 = 2.

Since there is only a left component filled in, we could only have horizontal movement.

Therefore, the accumulated cost is given by

D(b1 = 2, a2 = 1) = δ(b1 = 2, a2 = 1) +D(b1, a1) = |2− 1|2 + 1 = 2

Similarly, for all entries on the bottom row, the only move allowed was a horizontal

movement thus

D(b1, aj) = δ(b1, aj) +D(b1, aj−1) for j = 3, 4, 5

Therefore, we have

D(b1 = 2, a3 = 2) = |2− 2|2 +D(b1, a2) = 0 + 2 = 2

D(b1 = 2, a4 = 2) = |2− 2|2 +D(b1, a3) = 0 + 2 = 2

D(b1 = 2, a5 = 1) = |2− 1|2 +D(b1, a4) = 1 + 2 = 3

obtaining the bottom row given in Table 4
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Table 4: DTW distance matrix

b1 = 2 1 2 2 2 3
a 3 1 2 2 1

We have a similar situation for the first column of the accumulated cost matrix.

The only movement is a vertical move, thus

D(bi, a1) = δ(bi, a1) +D(bi−1, a1)

for i = 2,...,7. For example, for D(b2 = 0, a1 = 3) we have:

D(0, 3) = δ(b2 = 0, a1 = 3) +D(b1, a1) = |0− 3|2 + 1 = 10

Continuing this formulation, the first column entries are calculated as

D(b2 = 0, a1 = 3) = |0− 3|2 +D(b2, a1) = 9 + 10 = 19

D(b4 = 3, a1 = 3) = |3− 3|2 +D(b3, a1) = 0 + 19 = 19

D(b5 = 3, a1 = 3) = |3− 3|2 +D(b4, a1) = 0 + 19 = 19

D(b6 = 1, a1 = 3) = |1− 3|2 +D(b5, a1) = 4 + 9 = 23

D(b7 = 0, a1 = 3) = |0− 3|2 +D(b6, a1) = 9 + 23 = 32

giving the accumulated matrix in Table 5.

Once the boundaries are filled, the interior points can be calculated using the

formula in equation (1). For example, for the interior point (b2, a2) we have all

possible moves thus

D(b2, a2) = δ(b2, a2) + min{D(b1, a1), D(b1, a2), D(b2, a1)}
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Table 5: DTW distance matrix

0 32
1 23
3 19
3 19
0 19
0 10
2 1 2 2 2 3

3 1 2 2 1

or

D(0, 1) = δ(0, 1) + min{D(b1, a1), D(b2, a1), D(b1, a2)}

= |0− 1|2 +min{10, 1, 2}

= 1 + 1

= 2

Similarly for the a2 = 1, b3 = 0 entry we have,

D(b3 = 0, a2 = 1) = δ(b3 = 0, a2 = 1) + min{D(b2, a1), D(b2, a1), D(b2, a2)}

= |0− 1|2 +min{10, 19, 2}

= 1 + 2

= 3

Repeating the same procedure we form the cost matrix given in Figure 15 which

is plotted as a heat map for illustrative purposes using the sbn.heatmap Python

command. We refer the reader to [24] for more details.
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Figure 15: Heat map of accumulated cost matrix for toy example [24]

To obtain the optimal alignment for the warped path we start in the lower left

corner and move according to lowest cost with the most effective movements as illus-

trated in Figure 16 which corresponds to an optimal alignment given as

X = [3, 1, 1, 2, 2, 1, 1]

Y = [2, 0, 0, 3, 3, 1, 0]

as plotted in Figure 17. Note that the path moves forward in time and maps high
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points in one sequence with high points in the other sequence and similarly for low

points. To calculate the final DTW distance, we use the Euclidean distance formula

on the best alignment, given by

√
(3− 2)2 + (1− 0)2 + (1− 0)2 + (2− 3)2 + (2− 3)2 + (1− 1)2 + (1− 0)2 = 2.45

Figure 16: Heat map of accumulated cost matrix for toy example [24]
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Figure 17: Alignment Graph for warped path on simple example

4.2 The advantages of DTW over Euclidean distance for time series data

For time series data, we again emphasize that Dynamic Time Warping (DTW)

has a number of important benefits over Euclidean distance [24]. First, by enabling

non-linear alignments between two time series, DTW offers flexibility in matching.

When comparing time series with various lengths or when patterns exhibit temporal

shifts, its ability to accept differences in speed or phase shifts is especially helpful.

The insensitivity of DTW to scale is another benefit [19]. DTW is resistant to

variations in the time series’ amplitude or magnitude, unlike Euclidean distance.

Instead of emphasizing absolute values, it concentrates on portraying how similar the

form or pattern is. Since the cumulative distance matrix is computed via the dynamic
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programming approach, the best alignment is chosen. Therefore it has the capacity

to detect comparable patterns despite shifts or distortions. Applying dynamic time

warping on the trend data assuming a daily seasonality period (as explained in section

3), we obtain the distance between successive growing points given in Table 6 and

Table 7 for daily trend component data (as plotted in Figure 11) and daily seasonality

component (as plotted in Figure 12) data respectively.

Table 6: Distance Matrix For Daily Trend With The Labels 1 Through 26 Represent-

ing The 26 Different Growing Locations Considered In This Study: 1:COH1, 2:DEH1,

3:GAH1, 4:GEH1, 5:IAH1, 6:IAH2, 7:IAH3, 8:IAH4, 9:ILH1, 10:INH1, 11:MIH1,

12:MNH1, 13:MOH1, 14:NCH1, 15:NEH1, 16:NEH2, 17:NYH2, 18:NYH3, 19:OHH1,

20:ONH2, 21:SCH1, 22:TXH1, 23:TXH2, 24:TXH4, 25:WIH1, 26:WIH2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 0
2 608 0
3 982 139 0
4 201 547 989 0
5 185 468 796 270 0
6 268 401 562 189 324 0
7 238 383 662 158 238 118 0
8 289 240 442 303 151 336 260 0
9 266 273 459 265 131 327 231 167 0
10 447 131 315 394 282 355 294 136 137 0
11 131 656 1038 198 172 246 218 308 285 464 0
12 359 885 1269 417 400 444 437 473 480 711 367 0
13 470 137 251 394 319 311 261 188 153 88 498 745 0
14 604 109 178 550 445 403 372 249 209 117 639 906 106 0
15 213 724 1138 305 199 313 268 337 321 511 178 382 539 721 0
16 184 582 923 253 180 260 218 313 254 411 165 366 423 567 60 0
17 149 803 1259 208 202 267 234 284 287 578 136 351 627 812 184 187 0
18 153 791 1242 280 197 265 228 280 281 569 139 353 616 800 181 187 11 0
19 292 258 525 272 143 294 204 135 95 114 298 507 152 232 318 264 324 317 0
20 143 639 1027 214 136 298 248 251 243 445 108 370 486 628 188 179 151 152 271 0
21 784 110 133 780 617 561 545 336 342 191 836 1085 192 109 934 748 1036 1021 376 824 0
22 1119 197 77 1108 920 651 790 505 554 389 1174 1392 320 215 1274 1055 1399 1383 633 1163 180 0
23 1071 168 79 1066 889 621 754 465 528 364 1126 1347 297 198 1228 1016 1342 1327 597 1119 158 20 0
24 731 83 104 698 571 421 453 305 296 187 779 1022 149 115 883 693 985 971 320 773 104 161 154 0
25 344 296 526 298 278 214 224 172 252 234 429 520 254 330 452 379 322 313 208 368 449 602 561 351 0
26 598 101 243 531 452 370 344 246 207 132 635 895 128 120 730 574 813 802 221 631 129 344 312 101 275 0
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Table 7: Distance Matrix For Daily Seasonality With The Labels 1 Through 26 Rep-

resenting The 26 Different Growing Locations Considered In This Study: 1:COH1,

2:DEH1, 3:GAH1, 4:GEH1, 5:IAH1, 6:IAH2, 7:IAH3, 8:IAH4, 9:ILH1, 10:INH1,

11:MIH1, 12:MNH1, 13:MOH1, 14:NCH1, 15:NEH1, 16:NEH2, 17:NYH2, 18:NYH3,

19:OHH1, 20:ONH2, 21:SCH1, 22:TXH1, 23:TXH2, 24:TXH4, 25:WIH1, 26:WIH2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 0
2 10 0
3 14 6 0
4 8 9 12 0
5 12 5 7 10 0
6 13 12 16 9 11 0
7 8 6 9 7 7 8 0
8 12 8 12 8 7 5 5 0
9 13 6 6 12 6 15 8 11 0
10 10 5 6 10 5 13 7 9 6 0
11 12 13 17 8 12 4 7 7 16 14 0
12 17 21 26 14 20 8 15 13 25 22 7 0
13 10 7 10 7 5 6 5 5 9 7 7 14 0
14 9 12 15 7 12 5 8 8 14 12 5 8 7 0
15 22 30 33 21 30 17 25 23 33 30 17 10 22 14 0
16 17 23 27 14 22 10 17 15 26 23 9 4 15 9 7 0
17 21 26 31 18 24 11 19 17 249 27 10 4 17 13 13 6 0
18 23 28 33 20 26 13 21 18 31 29 12 5 19 14 12 6 3 0
19 24 11 8 22 11 29 17 21 7 9 30 44 19 27 54 46 52 55 0
20 12 9 13 9 8 4 6 4 12 10 6 12 5 7 21 13 15 17 23 0
21 15 8 6 15 10 20 12 15 6 7 20 30 13 18 37 31 35 37 7 16 0
22 10 10 14 6 9 6 6 6 13 11 4 9 6 5 18 11 13 15 26 6 17 0
23 10 7 10 7 5 7 5 5 9 7 7 15 3 7 23 16 19 21 18 6 12 5 0
24 19 15 12 19 15 23 18 20 12 14 23 30 18 22 36 30 33 33 15 20 11 21 18 0
25 16 20 25 13 19 8 14 12 23 21 6 4 13 8 13 5 4 5 43 11 29 8 14 29 0
26 7 13 16 6 13 7 8 9 15 13 6 10 9 5 16 10 14 15 29 8 19 5 9 22 9 0

Notice that the distance matrix table for the daily trend data (Table 6) ranges

from 20 to 1399 where the smallest value in the matrix indicates the most similarity

between growing location TXH1 and growing location TXH2. The most dissimilar

locations are NYH2 and TXH1 with a distance value of 1399. For the daily seasonality

component (Table 7), the most similar locations are MOH1 and TXH2 and also NYH2

and NYH3 with a distance value of 3. While the most dissimilar growing locations

are NYH3 and OHH1 with a distance value of 55. Assuming a daily seasonality
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component, the most similar growing locations are still NYH2 and NYH3; whereas

the most dissimilar (greatest distance) is no longer NYH2 and TXH1. Therefore,

when performing clustering based on the dynamic time warping distance, we expect

that clusters formed using the trend component might differ from those formed when

considering the seasonal component.
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5 Clustering

Clustering is a type of unsupervised machine learning [12]. It is referred to as “un-

supervised”, because we are not guided by a prior idea of which features or samples

belong in which clusters. It is a type of “learning”, because the machine algorithm

“learns” how to cluster the data. Another name for this set of techniques is “pat-

tern recognition”[6]. Clustering is used for many different purposes such as pattern

recognition, image processing and information retrieval [18]. For the purpose of this

thesis, we want to cluster growing locations according to their climate (as evidenced

by temperature profiles across time), so one might be able to better predict which un-

derlying genomic features most relate to crop yield given a similar climate profile. We

used two types of clustering technique, hierarchical clustering and Kmeans clustering

together with the dynamic time warping metric for comparing time series trend and

seasonality profiles (as discussed in section 3) across various growing locations.

5.1 Hierarchical Clustering

Hierarchical clustering is a methods that recursively clusters two items at a time

[22]. There are two different types of hierarchical clustering, agglomerative and par-

titioning. In partitioning algorithms, the entire set of items start in a single cluster

which is partitioned into two more homogeneous clusters. The algorithm then restarts

with each of the new clusters, partitioning each into more homogeneous clusters until

each cluster contains only identical items (possibly only 1 item).

In agglomerative algorithms, each item starts in its own cluster and the two most

similar items are then clustered. It continues accumulating the most similar items or
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clusters together two at a time until there is one cluster. For both types of algorithms,

the clusters at each step can be displayed in a dendrogram. In this thesis we consider

an agglomerative hierarchical method. According to [12], the agglomerative process

can be summarized by the following steps when clustering N items.

1. Choose a distance function

2. Start with N clusters, each containing one item. Then, at each iteration:

• using the current matrix of cluster distances, find the two closest clusters.

• update the list of clusters by merging the two closest.

• update the matrix of cluster distances accordingly

3. Repeat until all items are joined in a single cluster.

We illustrate this process assuming a simple example [2] with five series labeled 1

through 8. We assume each series is a time series with a dynamic time warping(DTW)

distance between series i and j given as the (i , j) entry of the distance matrix given

in Table 8. We note this is a symmetric matrix with diagonal entries equal to 0 (the

distance between a series and itself is 0); therefore only the lower triangle is displayed.

Table 8: Original DTW Distance Matrix for Example

1 2 3 4 5
1 0
2 9 0

D1 = 3 3 7 0
4 6 5 9 0
5 11 10 2 8 0
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Given the distance matrix, we locate the smallest entry which has the value 2 in

the (5,3) entry, indicating the distance between series 3 and series 5. Therefore series

3 and series 5 are clustered together first. Then a new distance matrix D2 is created

(see Table 9) where the separate series 3 and 5 are replaced with the 3-5 cluster.

The distance between the 3-5 cluster and the remaining series is found by finding

the maximum distance between series 3 or 5 and the other series. That means the

distance between 1 and [3-5] is the maximum distance between series 1 and series 3

and series 1 and series 5 which can be expressed as

D2(1, [3–5]) = max{D1(1, 3), D1(1, 5)}

= max{3, 11}

= 11

as shown in Table 9.

Table 9: Updated DTW Distance Matrix for Example

[3-5] 1 2 4
[3-5] 0

D2 = 1 11 0
2 10 9 0
4 9 6 5 0

Likewise,
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D2(2, [3–5]) = max{D1(2, 3), D1(2, 5)}

= max{7, 10}

= 10

and

D2(4, [3–5]) = max{D1(4, 3), D1(4, 5)}

= max{9, 8}

= 9

Clustering continues with the new matrix D2 by determining the least entry in D2

which is 5, the distance between series 2 and series 4. Therefore series 2 and series 4

are now clustered together and an updated matrix D3 is given by

Table 10: Second Updated DTW Distance Matrix for Example

[3-5] [2-4] 1
D3 [3-5] 0

[2-4] 10 0
1 11 9 0

Clustering continues and then can be visualized in a dendrogram as in Figure 18.
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Figure 18: Dendrogram of hierarchical clustering of simple example

5.2 K-means Clustering

An alternative clustering technique is K-means clustering [21]. K-means clustering

is an iterative algorithm that aims to partition data points into K clusters, where K

is a pre-defined number. We describe K-means clustering assuming spatial points and

then will explain the difference when considering time series. For spatial points, the

algorithm starts by randomly selecting K initial cluster centroids and assigns each

data point to the nearest centroid based on a distance metric, typically Euclidean

distance when considering spatial points. It then updates the centroids by computing

the mean of the data points assigned to each cluster. This process iterates until

53



convergence, where the centroids no longer change significantly or a maximum number

of iterations is reached.

K-means clustering is a method that is frequently used to group geographic loca-

tions, but with minor modifications, it can also be used to group time series data.

The fundamental idea behind K-means is still to categorize data points according to

how far they are from centroids, but there are significant differences in how to apply

K-means for time series data.

For time series, instead of centroids, we consider barycenters. A barycenter is

similar to the centroid in spatial clustering; however calculating a barycenter also

involves an iterative procedure, as explained in [25]. The K-means procedure applied

to time series is given by the following process [25, 33]

1. Given a stated value ofK (such asK = 3), chooseK time series as the beginning

average or barycenter for each cluster.

2. Determine the DTW (dynamic time warping) distance between each time series

to be clustered and each of the K = 3 averages or barycenters.

3. Based on the DTW distance, assign each time series to the cluster with the

closest barycenter.

4. Calculate the new barycenter of each of the K clusters again using a dynamic

time-warping calculation of the new average. Referring to [25] we use the DTW

Barycenter Averaging procedure which is an iterative process where;

• It finds the DTW paths between series and the approximate center.
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• It finds the approximate center by taking the weighted average of all the

connected points.

• It repeats the process again until there is no change in that center or until

it gets below the tolerance level where it no longer have much movements

in the barycenter average.

5. Re-organize the new time series and update the dynamic time warping distances

between all of the time series and the revised centers.

6. Keep iterating steps 2-5 until a certain tolerance is attained.

In conclusion, geographical point clustering and K-means clustering for time series

data are both clustering techniques. Due to the lack of spatial points, centroids must

be chosen and updated differently. Instead, dynamic time warping and barycenter

concepts are used to calculate averages. This modification of the K-means clustering

technique, designed specifically for time series data, enables efficient clustering and

grouping of time series based on their similarities.

Both hierarchical clustering and K-means clustering have their strengths and

weaknesses, and their suitability for time series data depends on various factors,

such as data characteristics, clustering objectives, and interpretability requirements.

In the following section, we will implement and compare these clustering approaches

for time series data created by using time series decomposition techniques.
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6 Results

In this section we consider several different scenarios for clustering growing loca-

tions based on temperature profiles across the growing season. Since both daily and

weekly seasonality were present in the data (as shown in Table 1), we first cluster

based on the trend of the temperature in the different growing locations across the

entire growing season where the overall trend is determined as one component of the

time series decomposition. Recall from Section 3 that this trend is determined when

the appropriate seasonality (daily or weekly) is assumed and both the seasonal com-

ponent and residual error are subtracted from the data. As shown in [3, 13, 14], the

growth rate of crops is strongly dependent on temperature, as extreme temperatures

can greatly affect plant productivity. For example, the range at which maize can

grow is 10◦C to 38◦C with a maximum growth response around 26◦C to 30◦C [13].

Therefore, crops which have more growing days within the ideal range might result

in a greater yield.

On the other hand, Sunoj et. al. [34] showed that diurnal temperature amplitude

or variation, i.e. the temperature fluctuation in a single daily period, can also have

an important effect on crop yield. For example, they showed that lower diurnal tem-

perature amplitude negatively impacts maize growth. Therefore, when genetically

engineering crops, certain genetic factors may be more or less important based on the

daily fluctuation in temperature. As such, the daily seasonality component from the

time series decomposition may also play an important role in the growth response of

crops and might prove to be a better temperature profile on which to cluster growing

locations when trying to predict which genetic factors might lead to higher crop yield.
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Recall, the ultimate goal is to use the resulting clusters to control for climate and

then within each cluster, determine which genetic factors in the maize might lead

to the greatest crop yield. Therefore, clustering based on seasonality may provide a

better control for climate in some circumstances. As such, we compare the clusters

found when considering the trend across the entire growing season, i.e. the overall

growth and decline in temperature across several months, versus the daily seasonality

component in which we only consider the seasonal aspect of the temperature profile

as the main commonality between growing locations. We do this using both hierar-

chical and K-means clustering algorithms as discussed in Section 5 and then compare

whether the groups are similar or dissimilar when using the overall growing season

temperature profile or the daily seasonality profile to cluster.

6.1 Clustering Based on Trend Assuming a Daily Period

Recall with hierarchical clustering, we systematically update the distance matrix

in Table 6 to obtain the dendrogram in Figure 19. To determine the number of clusters

from the dendrogram, we follow a step-by-step process. First, we need to select a

threshold value on the vertical axis of the dendrogram. This threshold distance plays

a crucial role in defining the number of clusters. This value should be carefully chosen

to ensure that it cuts the dendrogram at an appropriate level, effectively separating

the distinct clusters. Essentially, the threshold value represents the maximum vertical

distance at which we are willing to merge clusters. Once the threshold distance is

determined, we proceed to plot a horizontal line at this chosen threshold distance on

the dendrogram plot (as shown in Figure 19). This line serves as a reference point
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for identifying the clusters. The next step involves counting the number of vertical

lines, or branches, that intersect this horizontal line. Each intersected line represents

a cluster. By counting the intersected lines, we can determine the number of clusters.

It is important to note that the choice of the threshold distance and the resulting

number of clusters can be subjective and may require careful consideration of the

specific problem domain or prior knowledge.

Figure 19: Denodogram using hierarchical clustering on the trend component of the

time series decomposition when assuming a daily seasonality period.

In Figure 19, we have plotted four horizontal lines which correspond to threshold

values of 3000, 2000, 1200, and 700 resulting in 2, 4, 6 and 10 clusters respectively.

We refer the reader back to the distance matrix given in Table 6, where we noted

that the most similar locations were TXH1 and TXH2 which you see grouped in the

dendrogram. Assuming a threshold of 1200 with 6 clusters, for each cluster, we plot
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the associated trends from the time series decomposition assuming a daily periodicity

in Figure 20. We first notice that the clusters appear to group based on the length

of the growing season; however, the total length does vary from location to location.

However, across all clusters, we can visually see why the various locations group

together, with similar trends across the growing season. Another important note

based on the dendrogram in Figure 19 is that different growing locations within

each state do not necessarily cluster together. For example, TXH1 and TXH2, two

different growing locations in Texas always cluster together; however, in Iowa, IAH1

only clusters with IAH2, IAH3 and IAH4 when considering a threshold level of about

1800 or higher. This is the same with the two growing locations in Nebraska, NEH1

and NEH2, which only cluster together at a threshold level of about 2500 or higher.

In general, we can make several other observations when analyzing the trend across

a growing season assuming daily seasonality. First, the locations TXH1 and TXH2

consistently appear together in the same cluster as does NYH2 and NYH3 and IAH2

and IAH3 except for extremely small threshold values. When considering a smaller

threshold of 700 or below, MNH1 and IAH1 form their own individual cluster without

being grouped with any other locations, indicating these two growing locations are

most dissimilar from other growing locations with MNH1 being the first growing

season to form its own cluster at a threshold value of slightly less than 1000. Finally,

growing seasons for maize are shortest in Texas, Georgia, and South Carolina, the

southern-most states in Figure 1, and split across two clusters in Figure 20.

59



Figure 20: Clusters based on a threshold level of 1200 in the hierarchical clustering

algorithm on the trend component of the time series decomposition assuming a daily

period for seasonality 60



6.2 K-Means Clustering

Recall that in the K-means clustering algorithm, it is necessary to start with the

total number of clusters (K) first, and then the locations are grouped in a systematic

manner by comparing the time series to the K barycenters. The time series are then

grouped in the cluster where the distance (dynamic time warping distance) between

the evaluated time series and the barycenter of the chosen cluster is smallest. A

new barycenter is then determined for each of the K clusters and the procedure is

repeated again. This continues until the maximum number of iterations are reached

or the change in the clusters is below a given tolerance level. To implement, we used

the python command sklearn.cluster.K-means in the scikit learn library [29]

with the default number of iterations of 50 and default tolerance of 1e–6. In Figure

21, we illustrate the clusters when assuming K=6 clusters.

In comparing the results to the hierarchical clustering when choosing a threshold

level resulting in 6 groups (Figure 20), we notice some similarities in the clusters and

some notable differences as expected based on the methodology. Similar to the results

in hierarchical clustering, TXH1 is still grouped with TXH2 as is NYH2 with NYH3

and IAH2 with IAH3. We note that, unlike in the hierarchical clustering, IAH4 is

no longer grouped with IAH2 and IAH3. Both IAH1 and IAH4 are in clusters which

do not include other Iowa locations. Another difference can be seen when comparing

the southeast growing locations. Even though the shortest growing seasons were in

Georgia, South Carolina and Texas, in the hierarchical clustering algorithm, these

locations were split across two clusters with K=6 clusters. In the K-means clustering

algorithm, they are now all grouped together. More differences can also be seen
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with the pairings; however, one other notable difference is in the cluster containing

only WIH1 in Figure 21. We note that the first single cluster from the hierarchical

clustering would have been MNH1 at a threshold level around 1000; however, using

K=6 clusters with the maximum iterations of 50 and default tolerance of 1e–6, WIH1

is clustered independently, indicating it is most dissimilar from the averages of the

other growing locations.
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Figure 21: Clusters based using K=6 clusters in the K-means clustering algorithm

on the trend component of the time series decomposition assuming a daily period for

seasonality 63



In addition to Figure 21 for K=6 clusters, we include the results for K = 3, 5

and 9 in tabular form in Tables 11-13 respectively. In general, we can make several

other observations when analyzing the trend across a growing season assuming daily

seasonality. First, the locations TXH1 and TXH2 consistently appear together in

the same cluster as does NYH2 and NYH3 and IAH2 and IAH3 when using either

hierarchical or kmeans clustering. When K=9 with Kmeans clustering, MNH1 and

WIH1 form their own individual clusters with WIH1 being the first growing location to

form its own cluster. This differs from hierarchical clustering slightly in which MNH1

was the first to cluster individually at a threshold level of around 1000 followed by

IAH1 and then WIH1 at threshold levels around 800 and 500 respectively. Other

similarities can be found in the southern states in which GAH1 clusters with TXH1

and TXH2 while SCH1 clusters with TXH4 using either technique. We also notice a

slight change when considering a small number of clusters, i.e. a threshold value of

3000 in hierarchical clustering (forming 2 clusters) and when using K=3 in K-means

clustering. We note that with the large group with hierarchical clustering (see Figure

19), INH1 and MOH1 are grouped with the locations found in cluster 2 of Table 11;

whereas they are grouped differently when using Kmeans clustering. We also note

that cluster 5 in Table 12 (Kmeans) is similar to the leftmost grouping of Figure 19

(hierarchical) but with the addition of NEH2. If one further examines these results

we can continue to find other similarities with slight differences.

In this study, we distinguished between two popularly known clustering tech-

niques which are K-means and Hierarchical clustering to gain more insight into the

distinctions in cluster formation. It is well established fact that different clustering
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algorithms can yield to distinct clustering patterns due to their unique approaches

when executed as we saw in the analysis above[33]. This comparative analysis helped

us gain a comprehensive understanding of the data’s inherent clustering tendencies

and emphasize the influence of different algorithms on clustering outcomes. Though

K-means clustering is a popular approach, its extensive iterative process requires a

substantial amount of computational time and resources. Hence for the remaining

research in this thesis, we shall focus exclusively on those results generated from Hi-

erarchical clustering, while noting that the observations may be slightly different if

using K-means clustering or a different clustering algorithm.

Table 11: Clusters using K=3 in the K-means Clustering Algorithm

C1 C2 C3
GEH1
IAH1
IAH2
IAH3
IAH4
ILH1
INH1
MOH1
OHH1
WIH1

DEH1
GAH1
NCH1
SCH1
TXH1
TXH2
TXH4
WIH2

COH1
MIH1
MNH1
NEH1
NEH2
NYH2
NYH3
ONH2
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Table 12: Clustering using K=5 in the K-means Clustering Algorithm

C1 C2 C3 C4 C5
DEH1
IAH4
ILH1
INH1
MOH1
NCH1
OHH1
WIH2

COH1
IAH1
MIH1
ONH1

GAH1
SCH1
TXH1
TXH2
TXH4

GEH1
IAH2
IAH3
WIH1

MNH1
NEH1
NEH2
NYH2
NYH3

Table 13: Clustering using K=9 in the K-means Clustering Algorithm

C1 C2 C3 C4 C5 C6 C7 C8 C9

GAH1
TXH1
TXH2

NYH2
NHY3

IAH4
ILH1
INH1
MOH1
NCH1
OHH1

GEH1
IAH2
IAH3

MNH1

DEH1
SCH1
TXH4
WIH2

NEH1
NEH2

COH1
IAH1
MIH1
ONH2

WIH1

6.3 Clustering Based on Trend Assuming a Weekly Period

In section 3 we noted that the trend component when using a weekly seasonality

period (Figure 13) provided a greater degree of smoothing in the data when compared

to using the daily seasonality period (Figure 11); therefore we examine the clusters

formed when using this periodicity and compare it to the results in section 6.1.

In Figure 22, we have the resulting dendrogram with three horizontal lines which

correspond to threshold values of 2550, 1900, and 1200 resulting in 3, 5, and 6 clusters

respectively. In Figure 23, for each cluster, we plot the associated trends from the
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time series decomposition assuming a weekly periodicity and a threshold of 1200

(i.e. 6 clusters). Note that with 6 clusters, the clusters assuming a weekly period

have some similarities but also some noticeable differences from those when assuming

a daily period (Figure 20). For example, in both cases GAH1, TXH1 and TXH2

form their own cluster; however, when considering daily periodicity and examining

the trend SCH1 and TXH4 also formed their own cluster. On the countrary, when

considering weekly periodicity, these locations are now grouped with DEH1, NCH1

and WIH2. The latter three locations were previously grouped with INH1 and MOH1

which now form their own cluster. Furthermore, clusters 2 and 3 from Figure 20 are

now grouped as one cluster in Figure 23 with the exception of IAH1 and NEH2 which

are now grouped with IAH2, IAH3 and WIH1. We also note that the overall shape of

the dendrograms (Figures 19 and 22) are fundamentally different. In Figure 19, when

we assumed a daily periodicity, the dendrogram branched (from top down) from a

cluster of 2 to a cluster of 4; whereas in Figure 22, it branched from a cluster of 2

to a cluster of 3 instead. There is no one “right” way to group growing locations, so

the clustering process might need to be considered in conjunction with the predictive

modelling to determine what type of genetic properties best work in “similar” growing

locations where “similar” needs to be determined concurrently. We now examine the

seasonality component instead of the trend component.
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Figure 22: Dendrogram using hierarchical clustering on the trend component of the

time series decomposition when assuming a weekly seasonality period
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Figure 23: Clusters based on a threshold level of 1200 in the hierarchical clustering

algorithm on the trend component of the time series decomposition assuming a weekly

period for seasonality 69



6.4 Clustering Based on the Seasonality Component Assuming Daily Seasonality

As discussed in the introduction to this section, diurnal temperature can have a

great impact on the productivity of plant growth; therefore, in this section we analyze

the clusters formed when using the seasonality component as opposed to the trend

component of the time series decomposition when assuming daily seasonality only.

We then compare and contrast the resulting clusters with those found in section 6.1.1

where we used the trend component of the time series decomposition assuming a

daily seasonality. For this section, we assumed only a two-week time period which

overlapped between all growing seasons, consisting of 14 daily periods total as the

daily seasonality component does not differ greatly across the season. Similar to

the previous section, we first analyze the resulting dendrogram using hierarchical

clustering. Figure 24 gives the dendrogram resulting from using dynamic time warping

on the daily seasonality component with three threshold lines at values 90, 60 and 32

resulting in 3, 4 and 8 clusters respectively. In other words, this dendrogram considers

grouping growing locations based more on the similarity of daily variation about the

trend as opposed to the overall trend of the profile across the entire growing season.

We note that the branching behaviour is more similar to Figure 22 (dendrogram for

trend component assuming a weekly seasonality) in that it branches from 2 branches

to 3 but the growing of locations vary from the analysis based upon trend when

assuming either periodicity.
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Figure 24: Dendrogram using hierarchical clustering on the seasonal component of

the time series decomposition when assuming a daily seasonality period

In Figure 25, we plot the seasonal components for each of the growing locations in

the four clusters formed when assuming a threshold level of 60. We noticed that all

the growing locations display a consistent pattern in the range of variation of the daily

temperature, indicating that they experience the same fall and rise in temperature

throughout the growing season. The locations NEH1, MNH1 and WIH1 consistently

appear together in the same cluster as does NYH2 and NYH3 except for extremely

small threshold values, indicating that these locations share similar range of varia-

tion of the daily temperature seasonality. When considering a smaller threshold of

around 55 or below, OHH1 and TXH4 form their own individual cluster without

being grouped with any other locations, indicating that these two growing locations

are most dissimilar from other growing locations. We also noticed that the range

of variation is different across all the different clusters. The ones with large range
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of variation away from the trend are grouped together versus the smaller ones. For

example at the threshold value of 60 where K=4 clusters, locations like OHH1 and

TXH4 are clustered together with the largest range of variation in daily tempera-

ture seasonality (over 12◦C) as oppose locations like MNH1, NEH1, NEH2, NYH2,

NYH3 and WIH1 which are clustered together with the smallest range in variation

in daily temperature seasonality (approximately 8◦C). Finally based on Sunoj et al

[34] maize productivity might be more improved in locations like OHH1 and TXH4,

considering the large range of variation in daily temperature, but only if the overall

average temperature is in the optimal range [13] which still requires analyzing the

overall trend in Figure 20.

Comparing the trend component assuming daily seasonality to the seasonal com-

ponent assuming daily seasonality, what stands out as a factor of similarity between

them is the consistent clustering of the growing locations NYH2 and NYH3 which

shows a strong association between the two locations. However, previously, when

examining the trend component assuming daily or weekly seasonality, locations like

TXH1 and TXH2 were always clustered together except at small threshold values.

When examining the seasonal component, TXH1 and TXH2 are not immediately

clustered together; they are only together if moving higher in the branching process.

The same is true for IAH2 and IAH3.
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Previously, we also noticed that the southern-most locations in Texas, Georgia

and South Carolina always grouped together at smaller branches in the dendrogram

(Figures 19 and 22) using hierarchical clustering or smaller K values in K-means

clustering (Tables 11-13 and Figure 21) if grouping based on the trend across the

growing season. However, TXH4 isn’t grouped with these other locations except

for when not splitting the locations (i.e 1 group). The other locations still don’t

group together until moving all the way up the dendrogram to a threshold above 80.

Therefore, the seasonality component contains different information that might be

important when clustering growing locations. It might be useful in future studies to

incorporate both components, ideally with other climate measures as well, to cluster

growing locations
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Figure 25: Clusters based on a threshold level of 60 in the hierarchical clustering

algorithm on the seasonal component of the time series decomposition assuming a

daily period for seasonality
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7 Summary and Future Work

In this study, the overall goal was to develop a proof of concept for the use of clus-

tering techniques previously implemented by Taylor et al [35], to better control for

climate prior to trying to predict maize crop yield in a specific climate setting. It uses

K-means clustering and hierarchical clustering, two well-known clustering techniques,

a dynamic time warping distance metric, and time series decomposition. In time se-

ries data that describes climate variables like temperature, precipitation, humidity,

and wind patterns, the goal is to find similarities. Even though the growing season

for each time series data varies, the main goal is to compare the clustering results

between hierarchical clustering and K-means clustering approaches, highlighting the

differences of each method and how these differences resulted in different groupings

considering the same set of time series. We then examined the similarities and dif-

ferences in the resulting clusters when assuming different seasonality periods in the

data while comparing the overall trend in the data. Finally, given the importance of

the range in diurnal temperature, we also examined clusters when isolating just the

seasonal component. Thus, in summary, we showed how time series decomposition

can be leveraged in different ways to cluster time series data.

Having successfully implemented and compared hierarchical clustering and K-

means clustering approaches to cluster time series data using the idea of time series

decomposition couple with dynamic time warping distance metric, there are several

recommendations one would consider for future work to further improve the predictive

modeling of maize crop yield. First, it would be beneficial to examine clustering

locations using both the trend and seasonality components simultaneously. In this
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research, the idea of time series decomposition was used to extract separately the

trend component and the seasonality component of a time series data for clustering

analysis. So future work might consider clustering based on both the trend and

seasonality at the same time in order to capture more comprehensive patterns and

interactions within the data.

Furthermore, in our analysis, for the sake of identifying patterns, a single season-

ality period was assumed. Therefore, future research could explore time series de-

composition techniques that consider multiple seasonality periods at the same time,

giving room for more flexibility and accuracy of modeling seasonal patterns in maize

crop yield. For example, for most of our growing locations, there was a strong auto-

correlation for both daily and weekly seasonality, so we could consider breaking our

time series into a trend component, daily seasonality component, weekly seasonality

component and the residual. Even though our primary focus was on temperature

data, other climate factors, such as humidity, soil moisture, precipitation, or wind,

might also play an important role in controlling for climate. So, in future work,

one can incorporate these other climate factors into the clustering analysis process to

identify clusters based on a comprehensive set of available variables, providing enough

information for better understanding of the factors influencing maize crop yield.

Finally, once the clustering is implemented, one can perform predictive modeling

within each clusters. This can help enhance targeted predictive models for maize

crop yield after controlling for the effects of weathers conditions. By exploring these

future recommendations, the accuracy and interpretability can be further improved

for maize crop yield.
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