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ABSTRACT

Unsupervised Dimension Reduction Techniques for Lung Diagnosis using Radiomics 

by

Janet Akoth Kireta

Over the years, cancer has increasingly become a global health problem [12]. For 

successful treatment, early detection and diagnosis is critical. Radiomics is the use of 

CT, PET, MRI or Ultrasound imaging as input data, extracting features from image-

based data, and then using machine learning for quantitative analysis and disease 

prediction [23, 14, 19, 1]. Feature reduction is critical as most quantitative features 

can have unnecessary redundant characteristics. The objective of this research is 

to use machine learning techniques in reducing the number of dimensions, thereby 

rendering the data manageable. Radiomics steps include: Imaging, segmentation, fea-

ture extraction, and analysis. For this research, a large-scale CT data for Lung cancer 

diagnosis collected by scholars from Medical University in China is used to illustrate 

the dimension reduction techniques via R, SAS, and Python softwares. The proposed 

reduction and analysis techniques were; PCA, Clustering, and Manifold-based algo-

rithms. The results indicated the texture-based features as the most important in the 

analysis.
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1 INTRODUCTION

The goal of studying cancer is to develop safe and effective methods to prevent,

detect, diagnose, treat, and, ultimately, cure the collections of diseases we call can-

cer. The better we understand this disease, the more progress we will make toward

diminishing the tremendous human and economic tolls of cancer. Recent advances

in medical imaging, such as radiomics, have shown great potential in this regard.

Radiomics allows for the extraction and analysis of large data sets from imaging

techniques such as CT and PET scans. This, in turn, provides a more comprehensive

understanding of tumor growth and development. As such, using radiomics in cancer

detection and analysis represents a promising avenue for future research, potentially

leading to significant improvements in diagnosis, treatment, and patient outcomes.

The process may however turn out to be very hectic given the features obtained from

radiological images are so immense. Therefore there is a dire need to have the data

matrix in its simplest form to give way for prognosis, therapy, and any other objective

such kinds of research would intend to accomplish. To accomplish this, the research

intended to answer the following questions;

RQ 1. Is there a way we could reduce the number of variables which was 110 to

a lesser number that would make the process of working with the data simple?

RQ 2. Is any of the feature categories most significant for our analysis?

Overall, the ultimate intention of the analysis would be to generate a data matrix

with fewer and very significant features that can be used in the future as new predictor

variables to do predictions on the Lung Cancer data.
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1.1 Abbreviations

For the sake of readability, the following is a list of the main abbreviations used

in this thesis:

CT Computed Tomography
PET Positron Emmision Tomography
MRI Magnetic Resonance Imaging
DICOM Digital Imaging and Communications in Medicine
XML ExtensibleMark-up Language
PCA Principal Component Analysis
ISOMAP Isometric Feature Mapping
DNA Deoxyribonucleic Acid Aapping
cPCA contrastive Principal Component Analysis
JIVE Joint and Individual Variation Explained
OS Overall Survival
PFS Progression Free Survival
NSCLS Non Small Cell Lung Cancer
PD-L1 Programmed Death L1igand 1
GLCM Gray Level Co-occurence Matrix
GLRLM Gray Level Run Length Matrix
GLZLM Gray Level Zone Length Matrix
NGTDM Neighborhood Gray Tone Difference Matrix
MF Minkownski Functional
LDA Linear Discriminant Analysis
CCA Canonical Correlation Analysis
NMF Non-negative Matrix Factorization
FSA Feature Selection Algorithm
FEA Feature Extraction Algorithm
cmdscale classical(metric) multidimensionalscale

Table 1: Table of abbreviations

1.2 Background

The study of cancer is of critical importance, given the global impact of this dis-

ease. While the etiology of cancer is multifaceted, the common underlying issue is

11



the unregulated proliferation of aberrant cells. This can lead to the development of

tumors, which can be either benign or malignant. Malignant tumors are particularly

concerning, as they can invade surrounding tissues and metastasize to other body

parts. In 2020, cancer claimed nearly 10 million lives worldwide, making it the sec-

ond most common cause of mortality. As such, the identification and diagnosis of

cancer are essential for timely intervention and treatment. Medical imaging plays a

vital role in these processes, allowing clinicians to probe the body’s internal structures

non-invasively [19]. Various modalities, such as Computed Tomography , Magnetic

Resonance Imaging and Positron Emission Tomography , can be used to detect and

characterize tumors. There are many different types of cancer, with some being more

common than others. In 2020, lung, breast, brain, and colorectal cancers were the

most common worldwide. As such, a considerable amount of research is focused on

these specific types of cancer. However, studying all cancer forms is crucial to devel-

oping more effective treatments and improving patient outcomes. One emerging area

of research is radiomics, which uses computational methods to extract quantitative

data from medical images. This approach can provide insights into tumors’ charac-

teristics and help stratify patients according to their response to treatment. As such,

radiomics has the potential to play an essential role in advancing our understanding

of cancer and aiding in the development of personalized therapies.

1.3 Radiomics Overview

The field of radiomics has rapidly emerged as an important and influential area

of contemporary cancer research. It offers a range of potential benefits, particu-
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larly in standardizing the analysis of complex imaging data, which ultimately allows

for comparative studies across multiple patients and investigations [2]. Identifying

key imaging biomarkers through radiomics can significantly improve the accuracy of

cancer diagnosis and staging, which can have life-saving implications for patients.

Furthermore, the quantitative information that radiomics extracts from images can

offer valuable insights into the underlying biology of a tumor, providing clues as to its

aggressiveness or how it might respond to different treatments [16]. This information,

in turn, can be used to develop tailored treatment plans for patients, identifying those

most likely to benefit from specific therapies and those at a greater risk for recurrence

or progression. The non-invasive nature of radiomics offers distinct advantages in re-

ducing the need for invasive procedures and enhancing the efficiency of clinical trials

[28]. Different types of non-invasive imaging include, Molecular imaging which allows

clinicians to not only see where a tumor is located in the body, but also to visualize

the expression and activity of specific molecules (e.g., proteases and protein kinases)

and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence

tumor behavior and/or response to therapy, Anatomical imaging enables detection of

a phenotypic(physical expression of DNA(Deoxyribonucleic acid)) alteration that is

sometimes, but not invariably, associated with cancer and finally, Functional imaging

used to study tumor physiology, to probe tumor molecular processes, and to study tu-

mor molecules and metabolites in vitro and in vivo. These attributes make radiomics

an exciting and promising field poised to contribute significantly to advancing cancer

research and treatment.

Radiomics often encompasses the extraction and analysis of quantitative features
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from medical images, including but not limited to CT and PET scans. By evaluating

tumor size, shape, texture, and density, radiomics offers a promising avenue for ad-

vancing personalized medicine [1]. CT and PET scans are widely employed medical

imaging techniques that play an essential role in diagnosing and monitoring cancer.

While similar in that they are both non-invasive, the two methods differ in how they

generate images. CT scans use x-rays to create detailed, cross-sectional images of

internal organs and structures, which can help doctors identify the location and size

of tumors. On the other hand, PET scans involve injecting a small amount of ra-

dioactive material into the body, which is then used to produce images that reveal

the functional activity of tissues (John Hopkins Medicine, 2021). Doctors can analyze

these images to assess how cancer cells metabolize nutrients, grow, and spread. To-

gether, these two imaging techniques provide a comprehensive way to monitor cancer

without requiring invasive procedures.

One critical step in the radiomics workflow is feature extraction, which involves

identifying and quantifying the various characteristics of tumors. To accomplish this,

segmentation is typically performed to isolate the tumor region, and then multiple

methods are used to extract features based on tumor intensity, texture, and shape

[29]. Dimension reduction techniques, such as PCA and clustering, are often used to

help process and analyze these features. These techniques help to simplify the data

by reducing the number of variables and identifying key patterns. More advanced

methods have been developed for dimension reduction, such as contrastive Principal

Component Analysis (cPCA) and Joint and Individual Variation Explained (JIVE).

The cPCA approach can identify low-dimensional structures unique to a particular
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data set by comparing them to a reference data set. JIVE, on the other hand,

decomposes variation across multiple data types into joint and individual components

[21]. Both methods can help analyze complex medical imaging data. Some of the

software tools used for feature extraction include PyRadiomics, 3D Slicer, LIFEx,

IBEX, QIFE, and RayPlus. Each device has strengths and limitations, so researchers

must carefully consider which best meets their needs.

Overall, the implications of radiomics as a field of study are substantial, partic-

ularly as they pertain to diagnosing, treating, and monitoring cancer. By utilizing

quantitative data extraction methods from medical images, radiomics can allow re-

searchers to discern patterns in tumor biology that might otherwise remain obscured.

This may help shed light on various aspects of a tumor’s behavior, such as its aggres-

siveness or responsiveness to different treatment modalities. As such, radiomics has

the potential to contribute significantly to our overall understanding of cancer and to

facilitate the development of more effective and personalized therapies.
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2 LITERATURE REVIEW

The use of radiomics in cancer detection and analysis is an area of research that

has continued to grow in recent years. Many studies have demonstrated the poten-

tial benefits of using this approach in various types of cancer. [5] highlights that

radiomics can be employed in multiple ways to support the management of lung

cancer, such as by aiding in the detection and classification of pulmonary nodules,

assessing histopathology and genetics, staging the disease, and predicting response to

therapy and prognosis. The ability of radiomics to extract quantitative features from

medical images and identify associations with clinicopathological information can pro-

vide valuable insights that are not readily apparent through conventional analysis.

Similarly, a study by [29] contributes to the growing body of literature exploring the

potential of radiomics in lung cancer diagnosis and prognosis.

By examining the performance of eight selected radiomic features in three indepen-

dent cohorts, the authors demonstrate these features’ value for predicting long-term

prognosis and characterizing tumor heterogeneity. In particular, the feature ”kur-

tosis” emerged as a promising metric for lung cancer classification and progression.

However, the authors emphasize combining multiple radiomic features to achieve bet-

ter prognostic accuracy. Overall, the study offers valuable insights into the clinical ap-

plication of radiomics in lung cancer while highlighting areas for further research.[11]

present a comprehensive analysis of the potential for radiomics to predict Overall

Survival (OS) and Progression-Free Survival (PFS) in patients with Non-Small-Cell

Lung Cancer (NSCLC). While the authors highlight that several studies have demon-

strated the predictive value of Radiomics Features (RFs) in NSCLC, they also point
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out that no radiomics-based model is currently clinically validated or used in routine

practice. In their study, [11] found that while some RFs had prognostic value, adding

radiomics data to conventional data did not improve survival prediction. Addition-

ally, they did not find any association between PD-L1 (Programmed death-Ligand 1)

expression and RFs.

The article by [8] provides a comprehensive overview of the use of radiomics in lung

cancer detection, diagnosis, and treatment. The authors highlight the development

of radiologic features from semantic and handcrafted radiomics to deep radiomics

features, summarizing the latest applications of structural and functional radiomics

on early and advanced-stage lung cancer. While the article acknowledges some limi-

tations and challenges associated with radiomics, such as the need for extensive and

diverse datasets, reproducibility concerns, and the lack of standardized methodolo-

gies, the authors point to future directions for research, including the potential for

federated learning and multidisciplinary convergence. Overall, the article provides a

valuable contribution to the field, offering a current and forward-looking perspective

on applying radiomics in lung cancer. These studies, among others, demonstrate the

potential of radiomics in the detection and analysis of cancer. By providing a deeper

understanding of tumor biology and behavior, radiomics can improve diagnosis, prog-

nosis, and treatment outcomes.
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3 RESEARCH METHODOLOGY

The research, therefore, explored the techniques used to address the research ques-

tion. These include data description and analysis techniques.

3.1 Data description

The data was collected by Huiping Han, Funing Yang, and Rui Wang of Harbin

from the Medical University in Harbin in China [29]. This data is available on The

Cancer Imaging Archive (TCIA). The workflow of radiomics includes; Medical imag-

ing followed by segmentation performed to define the tumor region. From this region,

the features are extracted based on tumor intensity, texture, and shape[18]. Finally,

these features are used for analysis, Figure 1.

Figure 1: The radiomics workflow.

This dataset consists of CT DICOM images of 130 patients with lung cancer. The

XML Annotation files which include the location of the tumor were provided by five

academic radiologists with high expertise in lung cancer. To visualize the annotation

boxes on the tumor of the DICOM images[18], python codes through the terminal
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were used to pull out the images and put them in a box, Figure 2.

Figure 2: Visualization of the annotation box on the CT-DICOM images.

Source: https://wiki.cancerimagingarchive.net

3.1.1 The process of Data Acquisition

a) Software tools for extracting features.

There are massive software tools available for extracting tumor features from

medical images. Some standard options include PyRadiomics, 3D Slicer, LIFEx,

IBEX, QIFE, and RayPlus. Each of the devices has its drawbacks and advan-

tages. It is therefore at the researcher’s discretion to identify which best aligns

with his intended objectives. For example, PyRadiomics is a flexible open-

source platform capable of extracting a wide array of features, but it requires

some programming knowledge in Python [9]. 3D Slicer, on the other hand, is a

free and open-source application designed to facilitate the development of new

functionality in 3D Slicer extensions [7], Figure 3. LIFEx is another option that
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offers a user-friendly interface and powerful features for tumor segmentation,

feature extraction, and radiomics analysis. Ultimately, the choice of software

tool depends on the researcher’s goals and expertise,

Figure 3: Loading Lung-CT-PET images.

Source: https://wiki.cancerimagingarchive.net

b) Extracting features from CT medical images of lung cancer.

Features that are extracted can be generally classified into three main categories

[2]: First order radiomics which has Intensity-based features and Shape-

based features, second order radiomics which has Texture-based features

extracted based on different descriptive matrices (Gray level co-occurrence ma-

trix (GLCM), Gray level run length matrix (GLRLM), Neighborhood gray-tone

difference matrix (NGTDM), Gray level zone length matrix (GLZLM), Figure

4.
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(a) GLCM (gray level

co-occurence matrix).

(b) GLRLM (gray level run length

matrix).

(c) NGTDM (neighborhood gray-

tone difference matrix).

Figure 4: Texture Features Parekh and Jacobs (2016).

The last category, higher order radiomics applies the use of filters to extract

features from images through wavelet which decomposes tumor images into

different frequency domains (such as horizontal, vertical, and diagonal) and then

extracts the tumor shape, intensity, texture, and other information. Fourier
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features capture gradient information while Minkowski Functional (MF) is a

common higher-order feature extractor considering the patterns of pixels with

intensities above a predefined threshold.

Figure 5: Categories of features.

Source: https://wiki.cancerimagingarchive.net

c) Extraction process: Out of the 130 patients under consideration, the extrac-

tion of features was done on 74 patients because the provided annotation files

did not work for all 130 patients. A 3D slicer was used to do the segmentation

process as indicated by the yellow circle around the blue and pink colors on the

tumor, Figure 6.

The PyRadiomics package available in the 3D slicer was then used to extract

features from the tumor segmentations for all patients, Figure 7.
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Figure 6: A 3D slicer segmenting the tumor.

Figure 7: Pyradiomics package extracting features.
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d) Resulting Data Matrix After the whole process of extraction, an unsuper-

vised data matrix was obtained with a dimension of 74 by 110. Each row

represented the patient, and each column was for the extracted feature de-

pending on the categories earlier discussed. The 110 features acquired were

quantitative variables. Finally, the data matrix was normalized according to

the min-max normalization approach as it is robust to any feature distribu-

tions and leads to making unitless measurements for each feature[18]. The

features on the columns were renamed since the original names were too long

to enable data visualization through graphs. The column names range from di-

agnostic Image.original Maxim,. . ., original ngtdm Strength CT were renamed

to V1, . . . , V10. Since the resulting matrix has 74 rows by 110 columns, most

reduction techniques algorithms such as PCA, hierarchical and even k-means

clustering can not handle such a data format successfully, it is for this reason

that the normalized data set was transformed into a square correlation matrix

such that the new dimension was 106 by 106. It is after this transformation the

data matrix was finally ready for applying dimension reduction techniques.

3.2 Data Analyses

As directed by the research objective, dimension-reduction techniques were applied

to render the data more manageable. These approaches included feature extraction

and selection [27]. Feature extraction techniques are further categorized into; super-

vised and unsupervised learning. Supervised learning is a technique that considers

the relation of features with class labels and features are selected mostly based on
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their contribution to distinguish classes, while, unsupervised learning does not con-

sider the class labels and its objective is to remove redundant features[4]. Because

the obtained data matrix is unsupervised, therefore a further exploration into the

classification of unsupervised learning techniques whether linear (Principal Compo-

nent Analysis (PCA), Linear Discriminant Analysis (LDA), and Canonical Corre-

lation Analysis (CCA)) or non-linear (e non-negative Matrix Factorization (NMF)

and manifold-based methods) was done to transform the original data into a new set

of features that retain most of the original dataset’s information. Equally, feature

selection methods aim to discern the original dataset’s most relevant or informative

features. Methods of feature selection include filter methods (e.g. low variance fil-

ter selection, information gain, chi-square test, Fisher’s score), wrapper methods (e.g.

forward selection, backward elimination, exhaustive feature selection), and embedded

methods (e.g. regularization, random forest importance). Selecting the appropriate

dimension reduction technique is a function of the specific dataset and research ob-

jectives. Employing these techniques allows researchers to improve computational

efficiency, avoid the curse of dimensionality, and pinpoint the most salient features in

the dataset, Figure 8.

3.2.1 Feature Extraction Algorithm (FEA)

The objective of feature extraction algorithms is to convert unprocessed data into

a collection of features that more accurately reflect the intrinsic patterns present

within the data [10]. Although feature extraction algorithms can be implemented in

various ways, they generally fall into two primary categories: linear and non-linear.
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Figure 8: Dimensionality reduction techniques.

i) Linear Analysis is used when features have linear correlations. The proposed

linear analysis most ideal for this study was Principal Component Analysis

(PCA), which is a feature transformation technique that reduces the correlation

between sampled variables [15] say x1, x2, ..., xp. Using an orthogonal trans-

formation, PCA generates new variables referred to as principal components

PC1, PC2, ...PCm that retains many of the properties of the original variables

given m < p. This approach enables the creation of various features through

linear combinations of the main components, which maximize variance and im-

prove predictability [6], Figure 9.
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Figure 9: Principal component analysis.

Source: Rencher and Christensen (2012)

There are five main steps to conducting PCA:

(a) Standardize the data: Calculate the mean of all the dimensions of the

data set, except the labels. Scale the data so that each variable contributes

equally to the analysis. In the equation given below, z is the scaled value,

x is the initial, and µ and σ are the mean and standard deviation, respec-

tively.

Z =
x− µ

σ

(b) Compute the covariance matrix: Identifying highly correlated vari-

ables is a crucial step in data analysis. These variables often contain re-

dundant information, which can hinder the accuracy of statistical models

and analyses. Utilizing a covariance matrix allows for the examination of
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correlations between all possible variable pairs within a given data set and

facilitates the removal of any superfluous variables.

cov(x, y) =
1

n− 1
Σn

i=1(xi − x)(yi − y),

where x is the mean of the predictor variables, y is the mean of the re-

sponse variables, n is the sample size and i refers to each observation.

Basing the PCA on the covariance matrix would however lead to variables

with large variances dominating the most important principal components.

Also, changing the units of measurement (e.g., from ounces to pounds, or

from feet to inches) would change the PCA solution. For this reason, it

is often preferred to base the PCA solution on the eigenvectors and eigen-

values of the correlation matrix rather than the covariance matrix. This is

equivalent to initially standardizing all variables and then performing the

PCA based on correlation matrix[22].

(c) Calculate the eigenvectors and eigenvalues: Using concepts originat-

ing from linear algebra enables determining principal components stem-

ming from the covariance matrix. An eigenvalue is a scalar that is used to

transform (stretch) an eigenvector. The relevant equation is as follows:

Av = λv,

where A is the square covariance matrix, v is an eigenvector, λ is a scalar

which is eigenvalue (associated with eigenvector of A matrix.A solution of

this equation would yield λ eigenvalue:

det(A− λI) = 0,
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where det is the determinant, A is the covariance matrix, λI is a scalar

multiplying an identity matrix.

(d) Choose k eigenvectors with the largest eigenvalues: Sort the eigen-

values corresponding to eigenvalues from highest to lowest. In case the

goal is to decrease the dimension to two from three, take the first two

eigenvectors which are corresponding to the first two highest eigenvalues.

(e) Remodel the data: The final step uses the information from the eigen-

vectors of the covariance matrix to reorient data from the original axes to

the ones that are now represented by the principal components.

y = W⊤x,

where W⊤ is the transpose of the matrix W , X is the eigenvector matrix

and y is the transformed data set

Assuming our set of variables in the original data is x1, x2, ...xp after transforma-

tion the first principal component will be z1 = a11x1 + a21x2 + ...+ ap1xp,where

a11, a21, ..., ap1 are the loadings of the first principal component. As earlier illus-

trated the loadings are values of the eigenvector of the covariance matrix. Since

the eigenvalues are variances of the principal components, we can speak of ”the

proportion of variance explained” by the first k components[18]: proportion of

variance λ1+λ2+,...,λk

λ1+λ2+,...,λp
, where λ1 refers to the variation explains by the first com-

ponent, and so on [22].

To be able to come up with these principal components according to [22];
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(a) We can retain the first m components sufficient to explain a specified per-

centage (70% 80% 90% of the total variance of the original variables).

(b) Keep components whose eigenvalues are at least Σ
λi

p
which is the average

eigenvalue and also the average sample variance of the original variables,

where λi, is a constant λ multiplying the number of factors i and p is the

total number of observations in the data set.

(c) Use a Scree plot which is a plot of the eigenvalues λi, where λ is a constant

and i is the number of factors. It always displays a downward curve. The

point where the slope of the curve is leveling off (the “elbow) indicates the

number of factors that should be generated by the analysis as, Figure 10.

Figure 10: Scree plot.

Source: Rencher and Christensen (2012)

ii) Non-Linear Analysis is used when features are assumed not to lie on a linear
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space. For this study, manifold-based algorithms which is an approach that

executes tasks by the use of algorithms to project data into a lower dimensional

space were chosen. In line with the resolve that visualization of high-dimensional

data sets can be cumbersome and less intuitive, there is a need to reduce the

dimensions so that a few remaining dimensions can be plotted. The easiest

way to achieve this is by a random projection of the data, however, interesting

structures within the data may be lost. Steps towards achieving this objective

involve;

• Building a neighborhood graph from the given data.

• Computing the shortest-path distances along the graph.

• Applying multidimensional scaling to find a low-dimensional representa-

tion.

(a) Isometric Feature Mapping (ISOMAP): It is an algorithm that

projects data to a lower dimension space while preserving distances be-

tween data points retaining the geodesic distance rather than the Euclidean

distance. This allows it to capture the nonlinear structure of the data more

effectively. The geodesic distance of two data points that live in a manifold

is the shortest distance along the manifold, on a sphere, in other words,

the great circle distance[25], Figure 11
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Figure 11: A 3D swissroll showing euclidean and geodisic distance.

Source: https://web.mit.edu/cocosci/isomap/isomap.html

The ISOMAP Algorithm steps include;

• Construct a neighborhood graph G from the given data by connecting

only “nearby points” with edges weighted by their Euclidean distances,

i.e., dX(i, j) = ||xi − xj|| if xi, xj are “close” (and 0 otherwise) where

“closeness” is defined in one of the following ways:

i) ϵ - ball approach: For each xi another point xj is close if and only

if xi − xj < ϵ, Figure 12, or

ii) kNN approach: For each point xi, xj is close if it is among the k

nearest, Figure 12.

• Compute the shortest-path distances by applying Dijkstra’s algorithm

1 with the nearest neighbor graph G (constructed by either method) to

find the shortest-path distances for all pairs of data points (dG(i, j)),
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Figure 12: Epsilon ball and KNN graphs.

Source: https://web.mit.edu/cocosci/isomap/isomap.html

Figure 13.

Figure 13: Dijkstra’s algorithm1.

• Apply MDS with dG(i, j) as input distances to find a k -dimensional

representation Y of the original data.
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(b) Laplacian Eigen Maps of Data Mapping It employs a geometrically-

motivated algorithm for non-linear dimensionality reduction and relies on

spectral techniques to project data into a lower dimensional space. It aims

to preserve locality; that is, it endeavors to ensure that data points close

to one another in the high dimensional space remain so in the lower di-

mensional space. Ultimately, the method calculates the weights which are

most successful in reconstructing the vectors from their neighbors before

generating the low-dimensional vectors which are best reconstructed by

these weights[3].

The Laplacian Eigenmaps algorithm;

Input: x1, . . . , xnϵRd, embedding dimension k ≥ 1, neighborhood graph

method (ϵ -ball or kNN), weighting method (binary or Gaussian).

Output: A k-dimensional representation of the input data (yϵRn∗k).

Steps:

• Construct a neighborhood graph G from the given data.

• Set the edge weights using the specified method to form the weight

matrix W.

• Compute the normalized graph Laplacian

Lrw = D−1L = D−1(D −W ) = 1−D−1W , where D=diag(W1).

• Find the eigenvectors of Lrw corresponding to the second to (k + 1)st

smallest eigenvalues

Lrwvi = λivi, where i = 2, . . . , k + 1

• Return: Y = [v2 ldots, vk+1]ϵRn∗k.
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Analysis methods in Radiomics

Clustering Analysis : It separates individual observations into groups based on the

values for the p variables measured on each individual.

a) Hierarchical Clustering

Agglomerative hierarchical clustering begins with n clusters, each containing a

single object. At each stage, the two clusters that are “closest” are merged. As

the stages iterate, there are n clusters, then n-1, and so on. By the last stage,

there is 1 cluster containing all n objects, Figure 14.

Figure 14: Hierarchical clustering.

Source: https://www.slideserve.com/lenci/partitional-clustering

There are four common types of linkage: complete, average, single (Ward’s),

and centroid. The summary of these linkages is as follows [13][18]:

• Complete: In this approach, all pairwise dissimilarities between the ob-

servations in the clusters are computed and the maximum one will be
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recorded[18].

• Single (Ward’s): In this method, all pairwise dissimilarities between the

clusters are computed and the minimum one will be recorded[18].

• Average:In this approach, all pairwise dissimilarities between the clusters

are computed and the average of dissimilarities will be recorded.

• Centroid: In this technique, the dissimilarities between the mean vector

of for cluster. A (centroid) and the mean vector for cluster B (centroid)

are computed[18].

Below are the steps in the agglomerative hierarchical clustering algorithm for

grouping N objects according to [22]:

i) Start with N clusters, each containing a single entity and an N x N sym-

metric matrix of distances (or similarities) D = dik

ii) Search the distance matrix for the nearest (most similar) pair of clusters.

Let the distance between “most similar” clusters U and V be duv

iii) Merge clusters U and V . Label the newly formed cluster (UV ). Update

the entries in the distance matrix by,

(i) deleting the rows and columns corresponding to clusters U and V and

(ii) adding a row and column gives the distances between cluster (UV ) and

the remaining clusters.

iv) Repeat steps 2 and 3 a total of N−1 times. (All objects will be in a single

cluster after the algorithm terminates.) Record the identity of clusters that

36



are merged and the levels (distances or similarities) at which the mergers

take place.

b) k-means

The k-means algorithm [17] begins by randomly allocating the n objects into

k clusters (or randomly specifying k centroids). One at a time, the algorithm

moves each object to the cluster whose centroid is closest to it, using the mea-

sure of closeness. When an object is moved, the centroids are immediately

recalculated for the cluster gaining the object and the clutter losing it. The

method repeatedly cycles through the objects until no reassignments of objects

take place. The final clustering result will somewhat depend on the initial con-

figuration of the objects.

The k-means clustering results from a fundamental mathematical idea; Assume

that C1, C2, ..., Ck represents sets including the observations clustered into K

subgroups of the original data. These sets meet two properties[13][18]

• C1UC2U...UCk = 1, ..., n. It means the union of all clusters leads to the

whole observation[18].

• CknCk
⊤ = ϕ for all k ̸= k⊤. It means clusters are pairwise and mutually

exclusive[18].

The algorithm behind k-means clustering techniques[18] includes;

i) Randomly assign a number to each observation from 1 to K. This calls

for an initial clustering of the observations[18].

ii) Repeat the following process till the cluster assignments stop changing[18].
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• For each of the K clusters, calculate the kth cluster centroid which

is the vector of the p feature means for the observations in the kth

cluster[18].

• Use Euclidean distance for assigning each observation to the nearest

centroid[18].

Figure 15: K-means clustering.

Source: https://www.slideserve.com/lenci/partitional-clustering

3.2.2 Feature Selection Algorithm (FSA)

Feature selection is selecting the most relevant structures from a dataset to build

an accurate and efficient model. There are three general approaches to feature

selection: filter, wrapper, and embedded methods. Filter methods assess the

utility of individual features by quantifying their statistical relationship with
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the target variable. Various filter methods exist, but for our research, we will

focus on variance and loadings which can be used alongside other reduction

techniques to augment the process of variable selection. The filters can be used

to identify the features with little or high variability across the samples. Low

variance features can be considered less informative or redundant while high

variance would bring a lot of dissimilarities more so in clustering analysis, and

removing them can simplify the analysis and potentially improve its accuracy

or complicate the data introducing errors.

The process involving using the filter as a dimension reduction technique is to

set threshold values based on calculations such as five-number summary and

remove any features below or above such values. It is however necessary to

carefully select the appropriate threshold and consider the potential trade-offs

between dimensionality reduction and information loss.
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4 SUMMARY OF FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS

4.1 Principal Component Analysis

With the data set on 110 features extracted from tumors of CT images of lung

cancer patients, an illustration of how the reduction technique were used was shown.

This particular analysis entailed both the use of SAS and R soft wares consecutively.

The data was standardized through SAS such that each variable had a mean of

zero and a standard deviation of one. A partial table of features before and after

standardization is, Table 2.

Before Standardization
After

Standardization
Variable Mean Std Dev Mean Std Dev
diagnosticsImage.originalMaximumCT 2795.041 561.835 0.00 1.00
diagnosticsMask.originalVoxelN 1983.781 1983.918 0.00 1.00
diagnosticsMask.originalVolume 1.973 2.387 -0.00 1.00
originalshapeElongationCT 0.675 0.173 0.00 1.00
originalshapeFlatnessCT 0.003 0.0025 -0.00 1.00
originalshapeLeastAxisLengthC 0.363 3.119 -0.00 1.00
originalshapeMajorAxisLengthC 47.262 24.575 0.00 1.00
originalshapeMaximum2DDiameter 39.061 22.230 0.00 1.00
originalshapeMaximum2DDiameterRowCT 41.043 23.971 0.00 1.00
originalshapeMaximum2DDiameterSliceCT 53.315 27.032 -0.00 1.00
originalshapeMaximum3DDiameter 54.407 28.796 -0.00 1.00
originalshapeMeshVolumeCT 834.308 827.157 0.00 1.00
originalshapeMinorAxisLengthCT 31.080 16.408 0.00 1.00
originalshapeSphericityCT 0.213 0.078 0.00 1.00
originalshapeSurfaceAreaCT 2492.290 2419.104 -0.00 1.00
originalshapeSurfaceVolumeRatioCT 3.135 0.280 -0.00 1.00
originalshapeVoxelVolumeCT 857.009 836.936 0.00 1.00
originalfirstorder10PercentileCT -286.601 211.378 0.00 1.00
originalfirstorder90PercentileCT 137.711 101.039 0.00 1.00
originalfirstorderEnergyCT 94411905.230 101889295.88 -0.00 1.00
originalfirstorderEntropyCT 4.505 0.547 -0.00 1.00
originalfirstorderInterquartileRangeCT 191.916 106.791 0.00 1.00

Table 2: A partial table of the means and standard deviations of some of the features

before and after standardizing.
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Principal components are computed from the correlation matrix, so the total

variance is equal to the number of variables which is 110, Figure 16.

Figure 16: Number of observations and simple statistics.

SAS software computes the principal components from the correlation matrix, a

partial representation of the correlation matrix was shown, Figure 17.

Figure 17: Correlation matrix.

R software was then used for the remaining part of the analysis to generate some

desired results like the scree plot among others. By using eigen values as a way

of selecting principal components using, a summary table informed the conclusion

that the first principal component accounted for about 59.3% of the total variance,

the second principal component accounted for about 29.0%, and the third principal
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component accounted for about 5.1%. Note that the eigenvalues sum to the total

variance. The eigenvalues indicated that three components provide a good summary

of the data accounting for 93% of the total variance while the rest of the components

only account for less than 4% each, Table 2.

Eigenvalue Variance.percent Cumulative. variance.percent

Dim.1 12.11374 59.37771 59.37771
Dim.2 5.92293 29.03233 88.41004
Dim.3 1.037131 5.083689 93.49373
Dim.4 0.781042 3.828422 97.32215
Dim.5 0.249191 1.221458 98.5436
Dim.6 0.097194 0.476414 99.02002
Dim.7 0.076179 0.373403 99.39342
Dim.8 0.05263 0.257974 99.6514
Dim.9 0.034513 0.169171 99.82057
Dim.10 0.012128 0.059446 99.88001
Dim.11 0.007384 0.036196 99.91621
Dim.12 0.006432 0.031528 99.94774
Dim.13 0.004955 0.024286 99.97202
Dim.14 0.00153 0.0075 99.97952
Dim.15 0.000907 0.004445 99.98397
Dim.16 0.000797 0.003907 99.98788
Dim.17 0.000737 0.003613 99.99149
Dim.18 0.000444 0.002177 99.99367
Dim.19 0.000349 0.001713 99.99538
Dim.20 0.000254 0.001245 99.99662
Dim.21 0.000168 0.000822 99.99745
Dim.22 0.000143 0.000699 99.99815

Table 3: Principal component analysis of the first 22 features.

A graphical representation of how many principal components should be retained

to summarize our data was used. The graph is a scree plot which is a plot of the

eigenvalues λi against factor i. It always displays a downward curve. The point

where the slope of the curve is clearly leveling off (the “elbow) indicates the number
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of factors that should be generated by the analysis. The first three eigenvalues form a

steep curve, followed by a bend and then a straight-line trend with shallow slope[18].

The recommendation is to retain those eigenvalues in the steep curve before the first

one on the straight line[18]. The scree plot confirmed an earlier conclusion made by

the eigenvalues that 3 principal components was enough to explain variations from

original data which was about 93% in total, Figure 18.

Figure 18: Scree plot.

There was need to clearly specify which variables contributed most to the three

principal components. From the eigenvector’s matrix, the first principal component

Prin1, was written as a linear combination of the original variables,

Prin1 = 0.059936V1 − 0.00529V3 + ...+ 0.00268811V110

The second principal component Prin2 was,

Prin2 = 0.013899V1 + 0.028365V3 − ...+ 0.127930776V110
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The third principal component Prin3 was,

Prin3 = 0.098596V1 + 0.015988V3 + ...− 0.110117110V110,

where the variables were standardized, Figure 19.

Figure 19: Feature loadings for 13 principal components.

Since the main objective of the research was to end up with less number of vari-

ables, based on three principal components chosen, a low loadings filter was used

based on the five number summary for each variables in the three principal com-

ponents, a threshold value of 0.1 was chosen and features with loadings below 0.1

removed. This finally resulted to 39 features out of the 110 in the original data set. A

summary of the selected features were as follows; principal component one had a total

of 17 features whereby 1 was intensity and 16 were texture based features, principal

component two had a total of 13 features whereby 2 were shape, 4 intensity and 7

texture based features, finally, principal component three had a total of 9 features

whereby 1 was shape, 3 intensity and 5 texture based features. From our findings, We

concluded the most important feature category based on PCA was texture feature

category. A summary of selected PCA features, Table 3.
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Figure 20: A list of features selected in each principal component.
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Reduction Principal Categories Number of Percentage
Technique Component variables selected

PC1

Intensity 1 2.6
Shape 0 0
Texture 16 41

Principal

PC2

Intensity 2 5.2
Component Shape 4 10.3
Analysis Texture 7 17.9
(PCA)

PC3

Intensity 1 2.6
Shape 3 7.7
Texture 5 12.8
Total 39 100

Table 4: Features selected through PCA.

A heat map is a visual representation of data in which values are represented as

colors. These maps use a color gradient to represent the values with cooler colors

e.g green or blue indicating low values and warm colors e.g orange or red indicating

high values. R program was used to generate the clustered heat map since it’s goal is

to build associations between features selected. A report on the correlation between

variables indicated very strong correlation in the main diagonal. It was also observed

that there was a very weak correlation between most features on the west of the map

and features to the north eastern part of the heat map.
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Figure 21: Heat map of selected features based on PCA.
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4.2 Clustering Analysis

4.2.1 Hierarchical Clustering

Examining the agglomerative hierarchical approach on the extracted features from

lung cancer data by complete, average and ward’s minimum-variance clustering meth-

ods, R program was used. A dendrogram is a graphical representation of the hier-

archy of clusters shows the distance between clusters and the order in which they

were merged. The height of the branches on the dendrogram represents the distance

between the clusters. The closer the branches are to each other, the more similar the

clusters are, Figures 22, 23 and 24.

Figure 22: Cluster dendogram of all features.
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Figure 23: Cluster dendogram of all features.

Figure 24: Cluster dendogram of all features.
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The hierarchical clustering algorithm grouped the features into 3 clusters, Table

5.

Features Cluster 1 Cluster 2 Cluster 3
V1 1 0 0
V10 0 1 0
V100 1 0 0
V101 0 1 0
V102 0 0 1
V103 0 1 0
V104 1 0 0
V105 0 0 1
V106 0 0 1
V107 0 0 1
V108 0 1 0
V109 1 0 0
V11 0 1 0
V110 1 0 0
V12 0 1 0
V13 0 1 0
V14 0 0 1
V15 0 1 0
V16 0 0 1
V17 0 1 0
V19 0 1 0
V20 0 1 0
V21 1 0 0
V23 0 1 0
V24 0 1 0
V25 1 0 0
V26 0 1 0
V27 0 1 0
V28 0 0 1
V29 0 1 0

Table 5: Features per cluster.

The feature names were V1, . . . , V110 as opposed to the initial names of the vari-
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ables, It was observed that cluster 2 started grouping with feature V10 then V101 as it

was trying to cluster features with the closest distance and the iteration continued till

all the features were clustered. After determining the number of clusters, the three

clusters were further analyzed to understand their characteristics. This was realized

by identifying variables in each cluster and identifying any patterns or similarities. A

‘cutree()’ function on R grouped 48 features in cluster 1, 33 features in cluster 2 and

27 features in cluster 3.

Optimal number of clusters

To diagnose if the number of clusters chosen were adequate, R was used to generate;

a) A silhouette plot which is a graph used to interpret the results of clustering

algorithms, including hierarchical clustering. In this plot, each data point is

represented by a vertical line or bar that reflects its silhouette coefficient. This

is a measure of how similar the point is to its own cluster compared to other

clusters. The silhouette coefficient ranges from -1 to 1, with higher values

indicating that the point is well-matched to its own cluster and poorly matched

to other clusters. The silhouette plot typically shows each data point sorted by

its cluster assignment, with the silhouette coefficient plotted against the index

of the data point, Figures 25, 26 and 27.
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Figure 25: Silhouette plot 3 clusters.

Figure 26: Silhouette plot 2 clusters.

Figure 27: Silhouette plot 4 clusters.
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Interpretation of silhouette plots considers the following;

• Looking for well-defined clusters: If there are clear gaps between the bars

for different clusters, this indicates that the clustering algorithm has suc-

cessfully separated the data into distinct groups. For our silhouette plots,

Figure 25 and 26 have clear gaps while Figure 27 has no clear gap showing

the clustering algorithm did not successfully separate the clusters.

• Looking for an overlap between clusters: If there is significant overlap be-

tween the bars for different clusters, this indicates that the clustering al-

gorithm may not have successfully separated the data into distinct groups.

Figure 27 had an overlap, while Figure 25 and 26 had no overlaps making

the two better clusters.

• Finally, assess the overall quality of the clustering: The average silhouette

coefficient for all data points can be used as a measure of the overall qual-

ity of the clustering. A high average silhouette coefficient indicates that

the data points are well-matched to their respective clusters, while a low

average silhouette coefficient indicates that the clustering algorithm may

not have successfully separated the data into distinct groups. So out of

the clustering, the plot with 3 clusters has a silhouette coefficient of 4.3

making it a more appropriate number of clusters.

b) Elbow Method looks at the total within-cluster sum of squares (wss) as a fuc-

ntion of the number of clusters. Just like is in the case of a scree plot in the

PCA, the location of a knee is considered an indicator of appropriate number
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of clusters. Based on the plot it was noted that 3 clusters would suffice, Figure

28.

Figure 28: Elbow method for optimal number of clusters.

The analysis progressed into using a variance filter on each cluster to identify

features within each cluster with the most similarity. A five number summary on the

selected feature matrix identified the 25th percentile averaging as 0.01 as an adequate

threshold which was to drop every feature with a variance higher than 0.02. A

summary of the selected features were as follows 21 features; 4 in Clst1, 3 in Clst2 and

14 in Clst3. Cluster one features consisted of 1 intensity, 2 shape and 1 texture based

features, Cluster two had a total of 3 features whereby 2 were intensity, 1 shape and

no texture based features, cluster three however had 14 texture based features with

no shape nor intensity based features. The findings concluded that texture based
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features are the most dominant selected features contributing the largest percentage

to the new data matrix. A summary of the findings, Table 5.

Reduction Clusters Categories Number of Percentage
Technique Variables selected

Clst1

Intensity 1 4.7
Shape 2 9.5
Texture 1 4.7

Hierarchical

Clst2

Intensity 2 9.5
Clustering Shape 1 4.7

Texture 0 0

Clst3

Intensity 0 0
Shape 0 0
Texture 14 67
Total 21 100

Table 6: Summary table of features selected through hierarchical clustering.

A list of specific features in each cluster were identified and listed, Table 6.

4.2.2 k-means

For the k-means analysis it is very important to find the optimal number of clusters

before hand before doing our analysis on the data set. R software was used in the

analysis. The analysis was preceded by loading two libraries; library(factoextra) and

library(cluster). The cancer data that had an earlier been loaded was assigned the

name df, R through the function na.omit(df) deleted rows with missing values which

is a data science management technique. Each variable was scaled to have a mean

of 0 and standard deviation of 1 using the function ‘scale(df)’. To find the optimal

number of clusters two plots were used:
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Clusters Cluster 1 Cluster 2 Cluster 3

S
el
ec
te
d
F
ea
tu
re
s

diagnosticImage.original originalshapeSurface originalglcmCluster
MaximumCT-intensity feature VolumeRatioCT-shape feature ShadeCT-texture feature
originalshapeFlatnessCT originalfirstorderInterquartile originalgldmLargeDependence
-shape feature RangeCT-intensity feature LowGrayLevelEmphasisCT-

texture feature
originalshapeLeastAxisLength originalfirstorderRobustMean originalgldmLowGrayLevel
CT-shape feature AbsoluteDeviationCT- EmphasisCT-texture feature

intensity feature
originalgldmLargeDependence originalglrmLongRunGray
HighGrayLevelEmphasisCT LevelEmphasisCT-texture
texture feature feature

originalglrmLowGrayLevel
RunEmphasisCT-texture
feature
originalglrmShortRunLow
GrayLevelEmphasisCT-
texture feature
originalglszmGrayLevelNon
UniformityNormalizedCT-
texture feature
originalglszmLargeArea
EmphasisCT-texture feature
originalglszmLargeAreaHigh
GrayLevelEmphasisCT-
texture feature
originalglszmLargeAreaLow
GrayLevelEmphasisCT-texture
feature
originalglszmLowGrayLevel
ZoneEmphasisCT-texture
feature
originalglszmSmallAreaLow
GrayLevelEmphasisCT-
texture feature
originalglszmZoneVarianceCT
texture feature

Table 7: List of features selected under hierarchical clustering.

a) Number of Clusters vs. the Total Within Sum of Squares which involves the use

of the fviz−nbclust() function to create a plot of the number of clusters versus

the total within sum of squares. Our resulting plot from this method is shown

in figure 25. When we create this type of plot we look for an “elbow” where

the sum of squares begins to “bend” or level off. This is typically the optimal

number of clusters. For this plot it appears that there is a bit of an elbow or

“bend” at k = 3, Figure 29.
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Figure 29: A plot of the total within sum of squares vs. the number of clusters.

b) The other method to identify the optimal number of clusters is to use a metric

known as the gap statistic. This method compares total intra-cluster variation

for different values of k with their expected values for a distribution with no

clustering. Gap statistic was calculated for each number of clusters using the

clusGap() function from the cluster package along with a plot of clusters vs.

gap statistic using the fviz−gap−stat() function: From the plot it was observed

that the gap statistic was highest at k = 3 clusters, Figure 30.

Clustering analysis on the data set by categorizing the objects into 3 clusters re-

spectively made it possible to visualize the respective features in each cluster through

a cluster plot and cluster mapping generated through R, Figure 31 and 32.
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Figure 30: A plot of gap statistic versus clusters.

Figure 31: A cluster plot of the 3 optimum clusters of features under k-means clus-

tering.
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Figure 32: A cluster mapping of of the 3 optimum clusters of features under k-means

clustering.

A variance selection filter on each cluster on k-means clustering was then done.A

variance threshold of 0.02, was used removed every feature with a variance less than

0.02 and finally ended up with 21 variables; 3 in Clst1, 3 in Clst2 and 15 in Clst3.

Cluster one features consisted of 3 intensity based features and no shape nor

texture based features, Cluster two had a total of 3 features whereby 1 intensity,1

shape and 1 texture based features, cluster three no intensity, 1 shape and 14 texture

based features. Findings concluded the most important feature category based on

k-means clustering analysis were the texture based features, Table 7.

The specific features per cluster, Table 8
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Reduction Clusters Categories Number of Percentage
Technique Variables Selected

k-meansclustering

Clst1

Intensity 3 14
Shape 0 0
Texture 0 0

Clst2

Intensity 1 4.7
Shape 1 4.7
Texture 1 4.7

Clst3

Intensity 0 0
Shape 1 4.7
Texture 14 67
Total 21 100

Table 8: Summary table of features selected through k-means clustering.

Clusters Cluster 1 Cluster 2 Cluster 3

S
el
ec
te
d
F
ea
tu
re
s

diagnosticImage.original origin alshapeFlatness originalShapeSurfaceVolume
MaximumCT-intensity feature shape feature RatioCT-shape feature
originalfirstorderInterquartile originalshapeLeastAxis originalglcmClusterShadeCT
RangeCT-intensity feature LengthCT-intensity feature -texture feature
originalfirstorderRobustMean originalgldmLargeDependence originalgldmLargeDependence
AbsoluteDeviationCT- HighGrayLevelEmphasisCT- LowGrayLevelEmphasisCT-
intensity feature texture feature texture feature

originalgldmLowGrayLevel
EmphasisCT-texture feature
originalglrmLongRunLow
GrayLevelEmphasisCT-texture
feature
originalglrmShortRunLowGray
LevelEmphasisCT-texture
feature
originalglszmGrayLevelNon
UniformityNormalizedCT
-texture feature
originalglszmLargeArea
Emphasis-CTtexture feature
originalglszmLargeAreaHigh
GrayLevelEmphasisCT-texture
feature
originalglszmLowGrayLevel
ZoneEmphasisCT-texture
feature
originalglszmSmallAreaLow
GrayLevelEmphasisCT-
texture feature
originalglszmZoneVarianceCT
texture feature
originalngdtmZoneBusynessCT
texture feature

Table 9: List of features selected under k-means clustering.
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4.3 Isometric Feature Mapping (ISOMAP)

The research intention for using this non-linear dimensionality reduction technique

was to map high-dimensional data onto a lower-dimensional space while preserving

the underlying structure of the data. To realize this R program was used. The proce-

dure involved installing and running a library called ‘vegan’ in R. The number of axes

in metric scaling using the argument ‘k’ in cmdscale(Classical (Metric) Multidimen-

sional Scaling scale) was specified, the analysis then inputed the number of shortest

dissimilarities retained for a point to be ‘k=3’ to use the three nearest neighbors to

construct the geodesic distance matrix, which was later opted to use ‘epsilon=0.45’,

finally the ‘isomap()’ function which under ‘MASS’ package in R was used.To visual-

ize the results ‘plot()’ function was used. The resulting plot showed the algorithm was

able to separate the different features into distinct clusters in the lower dimensional

space, Figure 34 and 35 ISOMAP was able to preserve the underlying structure of

the data and capture the important features that differentiate the different features

in each of the clusters. It is however, unfortunate the results could not clearly tell

which specific features for each of the clusters were chosen in the lower dimensional

space.

More expertise and skill would be necessary to successfully analyze using this kind

of method and give a clear report of the same. Having achieved this objective using

PCA, clustering Analysis augmented with either loadings or variance filter, it was

not very urgent to apply detailed analysis, however this was recommended as a great

starting point for future work. Results for this analysis was visualized in a 2-D space,

Figure 33 and 34.
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Figure 33: A 2-D plot to visualizing how similar each features are across all of the

variables in the data frame.

Figure 34: A 2-D coloured plot to visualizing how similar each features are across all

of the variables in the data frame.
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5 CONCLUSION

The conclusion of any research is to ascertain if the research questions asked at the

beginning of the research were successfully answered. This particular research was

to find out if the number of variables could be reduced from 110 to a lesser number.

After analysis, 39 features were selected for PCA, 21 features for both Hierarchical

and k-means clustering. The other research question we intended to answer was

to ascertain the most significant feature category, all the analyses confirmed that

the texture based feature category was the most important features. The intended

goal of the research objective was met as we were able to reduce the features to a

number averaging between 20 to 40 which approximately reduced our dimension by

over 75% approximately to a data matrix of 74 by 39 for through PCA and 74 by 21

for clustering analyses.

To be specific, for PCA the eigenvalues indicated that three principal components

provided a good summary of the data accounting for 93% of the total variance while

the rest of the components only accounted for less 4% each. 39 features were then

selected based on the loadings filter with a threshold value of 0.1 that had been

computed and agreed on based on the five- number summary. Principal component

one had a total of 17 features whereby 1 was intensity and 16 were texture based

features, principal component two had a total of 13 features whereby 2 were shape,

4 intensity and 7 texture based features, finally, principal component three had a

total of 9 features whereby 1 was shape, 3 intensity and 5 texture based features.

For clustering analysis, agglomerative hierarchical clustering algorithm clustered the

features to 3 clusters. Selection of 21 features based on the variance filter with
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a 0.02 threshold value was done , whereby 3 were intensity, 3 shape and 15 were

texture based features. k-means clustering algorithm with an initial cluster optimum

cluster of 3, selected 21 features based on the variance filter with a threshold value we

computed of 0.02, out of which 4 intensity, 1 shape and 15 texture based features were

selected. ISOMAP analysis generated a graph with variables clustered in different

classes indicated by black, yellow, green, purple, blue, red, grey and turquoise colors,

however it was hard to clearly tell which specific variable was in which cluster and

how many were selected. Overally, all our analyses clearly outlined the texture based

features as the most significant features in the lung cancer data. The texture feature as

earlier discussed is in the Second order radiomics category, it is concerned with texture

features and relations between pixels to model intra-tumor heterogeneity. These

features are generated from different matrices such as GLCM, GLRLM, NGTDM

and finally GLZLM[26].
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6 FUTURE WORK

There is still more to the future of this data exploration. By shear fact that the

end of research is able to reduce the data into a manageable matrix, our objective

should not stop at this however, future works may therefore explore prognosis and

therapy on the cancer patients. We can do this by using the significant variables

chosen which are 21 for clustering or 35 for PCA as new predictors to;

i) Perform logistic regression analysis to compare cancer stages among males and

females.

ii) Perform multinomial logistic regression analysis to predict the cancer stage of

a patient.

An in-depth analysis into using Manifold logarithms such as ISOMAP and Laplacian

to counter check the adequacy in the number of features selected and ascertain if the

texture based features are the most important is equally very necessary. Being that

cancer is a pressing global health concern being a leading cause of death worldwide,

timeliness of detection and diagnosis is critical to maximizing the chances of successful

treatment. The better we understand these diseases, the more progress we will make

toward diminishing the tremendous human and economic tolls of cancer.
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APPENDICES

1 CODES

1.1 R codes

######################

install.packages("readxl")

library(readxl)

file.choose()

Lung_CT<- read_excel("C:\\Users\\Student175

\\Desktop\\spring 2023\\Thesis\\1. Dissertation

\\Data sets\\Raw data\\Lung_Cancer_CT.xlsx")

View(Lung_CT)

#define Min-Max normalization function

min_max_norm <- function(x) {

(x - min(x)) / (max(x) - min(x))

}

#apply Min-Max normalization to dataset

LungCT_norm <- as.data.frame(lapply(Lung_CT,

min_max_norm))
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write.csv(LungCT_norm,"C:/Users/Student175/

Desktop/spring 2023/Thesis/1. Dissertation/

Data sets/Raw data/LungCT_norm.csv")

file.choose()

LungCT_norm<- read.csv("C:\\Users\\Student175

\\Desktop\\spring 2023\\Thesis\\1. Dissertation\\

Data sets\\Raw data\\LungCT_norm.csv")

LungCT_norm<-as.matrix(LungCT_norm)

View(LungCT_norm)

##data prep

Lung_Norm_mod<-LungCT_norm[ , which(apply

(LungCT_norm, 2, var) != 0)]

View(Lung_Norm_mod)

write.csv(Lung_Norm_mod,"C:/Users/Student175

/Desktop/spring 2023/Thesis/1. Dissertation/Data

sets/Raw data/Lung_Norm_mod.csv")

##Correlation matrix

Lung_Norm_mod<-cor(Lung_Norm_mod)

View(Lung_Norm_mod)

dim(Lung_Norm_mod)
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##1. PCA##

install.packages("factoextra")

library("factoextra")

library("FactoMineR")

res.pca <- princomp(Lung_Norm_mod)

fviz_eig(res.pca)

### Extract and visualize eigenvalues/variances:

# Extract eigenvalues/variances

get_eig(res.pca)

Eigenvalues <- as.data.frame(get_eig(res.pca))

write.csv(Eigenvalues,"C:/Users/Student175/

Desktop/spring 2023/Thesis/1. Dissertation/

Data sets/Raw data/Eigenvalues.csv")

View(Eigenvalues)

# Visualize eigenvalues/variances(REAL DATA)

fviz_screeplot(res.pca, addlabels = TRUE, ylim = c(0, 63))

#Renamed columns for easy visualization

file.choose()
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Lung_Norm_modR<-read.csv("C:\\Users\\Student175

\\Desktop\\spring 2023\\Thesis\\

1. Dissertation\\Data sets\\Raw data\\

Lung_Norm_modR.csv")

Lung_Norm_modR<-as.matrix(Lung_Norm_modR)

View(Lung_Norm_modR)

##Correlation matrix

Lung_Norm_modR<-cor(Lung_Norm_modR)

View(Lung_Norm_modR)

dim(Lung_Norm_modR)

###PCA

library("factoextra")

library("FactoMineR")

r.pca <- princomp(Lung_Norm_modR)

fviz_eig(r.pca)

fviz_screeplot(r.pca, addlabels = TRUE, ylim = c(0, 63))

fviz_pca_ind(r.pca,

col.ind = "cos2", # Color by the quality

of representation gradient.cols =
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c("#00AFBB", "#E7B800", "#FC4E07"),

repel = TRUE # Avoid text overlapping

)

fviz_pca_var(r.pca,

col.var = "contrib", # Color by contributions

to the PC gradient.cols = c("#00AFBB",

"#E7B800", "#FC4E07"),

repel = TRUE # Avoid text overlapping

)

fviz_pca_biplot(r.pca, repel = TRUE,

col.var = "#2E9FDF", # Variables color

col.ind = "#696969" # Individuals color

)

###Loadings

princomp_Lung <- princomp(Lung_Norm_mod)

loadings_Lung <- princomp_Lung$loadings

names(loadings_Lung)

class(loadings_Lung)

75



loadings_Lung

#Save the loading as a matrix data

loadings_matrix=loadings( princomp_Lung)[]

View(loadings_matrix)

write.csv(loadings_matrix,"C:/Users/Student175/

Desktop/spring 2023/Thesis/1.Dissertation/

Data sets/Raw data/loadings_matrix.csv")

file.choose()

loadings_matrix<- read.csv("C:\\Users\\

Student175\\Desktop\\spring 2023\\Thesis\\

1. Dissertation\\Data sets\\Raw data\\loadings_matrix.csv")

View(loadings_matrix)

#######

####Summary of loadings for 3 Principal

loadings3_matrix<-loadings_matrix[2:4]

View(loadings3_matrix)

write.csv(loadings3_matrix,"C:/Users/Student175/

Desktop/spring 2023/Thesis/1. Dissertation/

Data sets/Raw data/loadings3_matrix.csv")
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file.choose()

loadings3_matrix<- read.csv("C:\\Users\\

Student175\\Desktop\\spring 2023\\Thesis\\

1. Dissertation\\Data sets\\

Raw data\\loadings3_matrix.csv")

View(loadings3_matrix)

####Column means for PC 1 to 3

colMeans(loadings3_matrix[sapply(loadings3_matrix,

is.numeric)])

####Summary for PC 1 to 3

summary(loadings3_matrix)

#Selection based on loading 1 for variables greater

than 0.1

#####

loading1=loadings3_matrix[,1]

loading1_selection=loading1[which(loading1>=0.1)]

loading1_selection=as.array(loading1_selection)
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match(loading1_selection, loading1)

plot(loading1_selection, pch=19, xlab="axis 1",

ylab="axis 2", main="Selection of loading 1")

#######

#Selection based on loading 2 for variables greater

than 0.1

#####

loading2=loadings3_matrix[,2]

loading2_selection=loading2[which(loading2>=0.1)]

loading2_selection=as.array(loading2_selection)

match(loading2_selection, loading2)

plot(loading2_selection, pch=19, xlab="axis 1",

ylab="axis 2", main="Selection of loading 2")

#######
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#Selection based on loading 3 for variables greater than 0.1

#####

loading3=loadings3_matrix[,3]

loading3_selection=loading3[which(loading3>=0.1)]

loading3_selection=as.array(loading3_selection)

match(loading3_selection, loading3)

plot(loading3_selection, pch=19, xlab="axis 1",

ylab="axis 2", main="Selection of loading 3")

#####a. Heat Map example

# how to make a heatmap in R

library(readxl)

file.choose()

featurematrix<- read_excel("C:\\Users\\Student175

\\Desktop\\jan\\pca\\features selected.xlsx")

View(featurematrix)
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featurematrix<-as.matrix(featurematrix)

heatmap(featurematrix, main = "Test Heat Map")

featurematrix<-cor(featurematrix)

heatmap(featurematrix, main = "Test Heat Map")

##2. Clustering Analysis

file.choose()

LungR_norm<- read.csv("C:\\Users\\Student175\\

Desktop\\jan\\Normalized data\\2. Lung_Norm_mod.csv")

LungR_norm<-as.matrix(LungR_norm)

View(LungR_norm)

LungR_norm<-cor(LungR_norm)

View(LungR_norm)

View(Lung_Norm_mod)

##a. Hierarchical Clustering Analysis

###Calculate distance matrix

distance = dist(LungR_norm)

distance2 = dist(Lung_Norm_mod)

####Hierarchical agglomerative clustering
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##Understanding the Dendogram

mydata.hclust = hclust(distance)

plot(mydata.hclust)

member = cutree(mydata.hclust,3)

table(member)

member

mydata.hclust<-hclust(distance,method="average")

plot(mydata.hclust,hang=-1)

member = cutree(mydata.hclust,3)

table(member)

member

mydata.hclust<-hclust(distance,method="single")

plot(mydata.hclust,hang=-1)

member = cutree(mydata.hclust,3)

table(member)

member

##Variables in each cluster

mydata.hclust<-hclust(distance2,method="average")

plot(mydata.hclust,hang=-1)

member = cutree(mydata.hclust,3)

81



table(member)

member

#Silhouette Plot

library(cluster)

plot(silhouette(cutree(mydata.hclust,3), distance))

library(cluster)

plot(silhouette(cutree(mydata.hclust,2), distance))

library(cluster)

plot(silhouette(cutree(mydata.hclust,4), distance))

wss <- (nrow(Lung_Norm_mod)-1)*sum(apply

(Lung_Norm_mod,2,var))for (i in 2:20) wss[i] <-

sum(kmeans(Lung_Norm_mod, centers=i)$withinss)

plot(1:20, wss, type="b", xlab="Number of

Clusters", ylab="Within groups sum of squares")

ot<-LungR_norm

###### Selection of variables per cluster in

Hierachical clustering
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file.choose()

clst1<- read.csv("C:\\Users\\Student175\\Desktop\\

jan\\Clustering\\clst1.csv")

View(clst1)

dim(clst1)

clst2<- read.csv("C:\\Users\\Student175\\Desktop\\

jan\\Clustering\\clst2.csv")

View(clst2)

dim(clst2)

clst3<- read.csv("C:\\Users\\Student175\\Desktop\\

jan\\Clustering\\clst3.csv")

View(clst3)

dim(clst3)

####Summary for clst1

summary(var(clst1))

####Summary for clst2

summary(var(clst2))

####Summary for clst3

summary(var(clst3))

install.packages("reshape2")

library("reshape")
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variancesclst1<-apply(clst1, 2, var)

variancesclst1_Less<-variancesclst1[which

(variancesclst1<=0.02)]

plot(variancesclst1_Less, pch=19, xlab="axis 1",

ylab="axis 2", main="Variance Selection

(Less or Equal 0.02) for Feature from Cluster 1")

write.csv(variancesclst1_Less,"C:/Users/Student182/

Desktop/jan/Clustering/selected/variancesclst1_Less.csv")

##Features in Cluster 2

variancesclst2<-apply(clst2, 2, var)

variancesclst2_Less<-variancesclst2[which

(variancesclst2<=0.02)]

plot(variancesclst2_Less, pch=19, xlab="axis 1",

ylab="axis 2", main="Variance Selection

(Less or Equal 0.02) for Feature from Cluster 2")

write.csv(variancesclst2_Less,"C:/Users/Student175/
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Desktop/jan/Clustering/selected/variancesclst2_Less.csv")

##Features in Cluster 3

variancesclst3<-apply(clst3, 2, var)

variancesclst3_Less<-variancesclst3[which

(variancesclst3<=0.02)]

plot(variancesclst3_Less, pch=19, xlab="axis 1",

ylab="axis 2", main="Variance Selection

(Less or Equal 0.02) for Feature from Cluster 3")

write.csv(variancesclst3_Less,"C:/Users/

Student175/Desktop/jan/Clustering/selected/

variancesclst3_Less.csv")

######### k means

library(factoextra)

library(cluster)

#load data

df <- LungR_norm
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#remove rows with missing values

df <- na.omit(df)

#scale each variable to have a mean of 0 and sd of 1

df <- scale(df)

#Find the Optimal Number of Clusters

#1. Number of Clusters vs. the Total Within

Sum of Squares

#Use the fviz_nbclust() function to create a

plot of the number of clusters vs. the total

within sum of squares:

fviz_nbclust(df, kmeans, method = "wss")

#2. Number of Clusters vs. Gap Statistic

#Calculate the gap statistic for each number

of clusters using the clusGap() function from the

cluster package along with a plot of clusters vs.

gap statistic using the fviz_gap_stat() function:
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#calculate gap statistic based on number of clusters

gap_stat <- clusGap(df,

FUN = kmeans,

nstart = 25,

K.max = 3,

B = 50)

#plot number of clusters vs. gap statistic

fviz_gap_stat(gap_stat)

#make this example reproducible

set.seed(1)

#perform k-means clustering with k = 3 clusters

km <- kmeans(LungR_norm, centers = 3, nstart = 25)

#view results

km

#plot results of final k-means model

fviz_cluster(km, data = LungR_norm)

#find means of each cluster
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aggregate(df, by=list(cluster=km$cluster), mean)

#add cluster assignment to original data

final_data <- cbind(df, cluster = km$cluster)

#view final data

head(final_data)

##Each variable clustered

kc<-kmeans(LungR_norm,3)

kc

###Cluster mapping for 3 clusters

datadistshortset<-dist(LungR_norm,method = "euclidean")

hc1 <- hclust(datadistshortset, method = "complete" )

pamvshortset <- pam(datadistshortset,3, diss = FALSE)

clusplot(pamvshortset, shade = FALSE,labels=2,col.clus="blue",

col.p="red",span=FALSE, main="Cluster Mapping",cex=1.2)

pamvshortset_matrix=as.matrix(pamvshortset)

View(pamvshortset_matrix)
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clusters_lung=as.matrix(pamvshortset$clustering)

write.csv(clusters_lung,"C:/Users/Student175/

Desktop/jan/Clustering/clusters_lung.csv")

file.choose()

clusters_lung_matrix<- read.csv("C:\\Users\\Student175

\\Desktop\\jan\\Clustering\\clusters_lung.csv")

View(clusters_lung_matrix)

clusters_lung_matrix<-as.matrix(table

(clusters_lung_matrix))

write.csv(clusters_lung_matrix,"C:/Users/Student175/

Desktop/jan/Clustering/clusters_lung_matrix.csv")

file.choose()

clusters_lung_matrix<- read.csv("C:\\Users\\

Student175\\Desktop\\jan\\

Clustering\\clusters_lung_matrix.csv")

View(clusters_lung_matrix)

###### Selection of variables per cluster k-means

file.choose()

cluster1<- read.csv("C:\\Users\\Student175\\

89



Desktop\\jan\\Clustering\\PC1.csv")

View(cluster1)

cluster2<- read.csv("C:\\Users\\Student175\\

Desktop\\jan\\Clustering\\PC2.csv")

View(cluster2)

cluster3<- read.csv("C:\\Users\\Student175\\

Desktop\\jan\\Clustering\\PC3.csv")

View(cluster3)

##Features in Cluster 1

variancesClu1<-apply(cluster1, 2, var)

variancesClu1_Less<-variancesClu1[which

(variancesClu1<=0.02)]

plot(variancesClu1_Less, pch=19, xlab="axis 1",

ylab="axis 2", main="Variance Selection

(Less or Equal 0.02) for Feature from Cluster 1")

write.csv(variancesClu1_Less,"C:/Users/Student175/

Desktop/jan/Clustering/selected/variancesClu1_Less.csv")

##Features in Cluster 2
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variancesClu2<-apply(cluster2, 2, var)

variancesClu2_Less<-variancesClu2[which

(variancesClu2<=0.02)]

plot(variancesClu2_Less, pch=19, xlab="axis 1",

ylab="axis 2", main="Variance Selection

(Less or Equal 0.02) for Feature from Cluster 2")

write.csv(variancesClu2_Less,"C:/Users/Student175/

Desktop/jan/Clustering/selected/variancesClu2_Less.csv")

##Features in Cluster 3

variancesClu3<-apply(cluster3, 2, var)

variancesClu3_Less<-variancesClu3[which

(variancesClu3<=0.02)]

plot(variancesClu3_Less, pch=19, xlab="axis 1",

ylab="axis 2", main="Variance Selection

(Less or Equal 0.02) for Feature from Cluster 3")

write.csv(variancesClu3_Less,"C:/Users/Student175/
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Desktop/jan/Clustering/selected/variancesClu3_Less.csv")

#####ISOMAP

####data

library(readxl)

Lung_CT<- read_excel("C:\\Users\\Student175

\\Desktop\\jan\\Raw data\\Lung_Cancer_CT.xlsx")

LungCT_norm <- as.data.frame(lapply

(Lung_CT, min_max_norm))

LungCT_norm<- read.csv("C:\\Users

\\Student175\\Desktop\\jan\\Raw data\\LungCT_norm.csv")

LungCT_norm<-as.matrix(LungCT_norm)

View(LungCT_norm)

Lung_Norm_mod<-LungCT_norm[ ,

which(apply(LungCT_norm, 2, var) != 0)]

View(Lung_Norm_mod)

####Relevant Packages

install.packages("vegan")

library("vegan")

####ISOMAP logarithm
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head(LungCT_norm[,1:10])

View(LungCT_norm)

dim(LungCT_norm[,1:10])

View(Lung_Norm_mod[,1:10])

dis <- vegdist(Lung_Norm_mod[,1:10])

tr <- spantree(Lung_Norm_mod[,1:10],toolong = 0)

pl <- ordiplot(cmdscale(dis), main="cmdscale")

lines(tr, pl, col="red")

ord <- isomap(dis, k=3)

ord

pl <- plot(ord, main="isomap k=3")

lines(tr, pl, col="red")
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pl <- plot(isomap(dis, k=5), main="isomap k=5")

lines(tr, pl, col="red")

pl <- plot(isomap(dis, epsilon=0.45),

main="isomap epsilon=0.45")

lines(tr, pl, col="red")
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1.2 SAS Codes

<SAS CODE>

/* Generated Code (IMPORT) */

/* Source File: MatrixData_Lung_CT_1_74_Modify.xlsx */

/* Source Path: /home/mostafazahed0/SESUG */

/* Code generated on: 7/17/22, 6:51 PM */

%web_drop_table(WORK.IMPORT);

16

FILENAME REFFILE ’/home/mostafazahed0/SESUG/Lung_Cancer_CT.xlsx’;

PROC IMPORT DATAFILE=REFFILE

DBMS=XLSX

OUT=Lung;

GETNAMES=YES;

RUN;

PROC CONTENTS DATA=Lung;

RUN;

%web_open_table(WORK.IMPORT);

/*view mean and standard deviation of dataset*/

proc means data=Lung Mean StdDev ndec=3;

run;

/*normalize the dataset*/

proc stdize data=Lung out=normalized_Lung;

*var values;
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run;

/*print normalized dataset*/

proc print data=normalized_Lung;

/*view mean and standard deviation of normalized dataset*/

proc means data=normalized_Lung Mean StdDev ndec=2;

*var values;

run;
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