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ABSTRACT

Roots of Quaternionic Polynomials and Automorphisms of Roots

by

Olalekan Peter Ogunmefun

The quaternions are an extension of the complex numbers which were first described

by Sir William Rowan Hamilton in 1843. In his description, he gave the equation of

the multiplication of the imaginary component similar to that of complex numbers.

Many mathematicians have studied the zeros of quaternionic polynomials. Prominent

of these, Ivan Niven pioneered a root-finding algorithm in 1941, Gentili and Struppa

proved the Fundamental Theorem of Algebra (FTA) for quaternions in 2007. This

thesis finds the zeros of quaternionic polynomials using the Fundamental Theorem of

Algebra. There are isolated zeros and spheres of zeros. In this thesis, we also find

the automorphisms of the zeros of the polynomials and the automorphism group.
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1 INTRODUCTION

Quaternions are a mathematical concept that extend the idea of complex numbers.

While complex numbers are expressed in terms of a real number and an imaginary

number, quaternions have three imaginary components in addition to the real com-

ponent. Quaternions were first introduced by the Irish mathematician Sir William

Rowan Hamilton on 16th of October 1843. He was inspired by the complex numbers

and sought to find a way to extend their properties to higher dimensions. Hamilton

realized that he could define a set of numbers with three imaginary components by

introducing a set of rules for their multiplication. They were discovered as a way to

describe three-dimensional rotations in a mathematically elegant way.

Like complex numbers, quaternions consist of a real part and three imaginary

parts. They can be written in the form a+ bi+ cj + dk, where a, b, c, and d are real

numbers and i, j, and k satisfy i2 = j2 = k2 = −1 and ijk = −1.

A quaternionic polynomial is a polynomial with coefficients in the quaternions.

Quaternions are not commutative with multiplication, therefore quaternionic poly-

nomials are usually separated into left and right polynomials. A left polynomial is

an expression of the form P (x) = anx
n + ... + a1x + a0, ai ∈ H, an ̸= 0, n ≥ 1

and a right polynomial is of the form P (x) =
∑n

i=0 x
iai, ai ∈ H [8]. The study of

the zeros of quaternionic polynomials is a complex area of mathematics that involves

both algebraic and geometric techniques. One of the fundamental tools for studying

quaternionic polynomials is the concept of the characteristic polynomial, which is the

polynomial obtained by replacing each quaternion variable in the polynomial with a

scalar variable.
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Ivan Niven pioneered root-finding for a quaternion polynomial by proposing an

algorithm [6], Gentili and Struppa proved the Fundamental Theorem of Algebra [3]

. By applying the FTA, in [3] it is proven that any quaternionic polynomial has two

types of zeros which are either isolated or spherical zeros. Since then, many studies

have been conducted for quaternionic polynomial root finding. In 2013, Kalantari

gave an algorithm for the root-finding in [5].

This thesis explores recent work in finding the zeros of quaternionic polynomi-

als and also the automorphisms of the zeros. The automorphisms of the zeros of

quaternionic polynomials acts on the zeros of the polynomial thereby preserving their

algebraic properties. The automorphism group is the group of all bijective func-

tions that map the zeros of the polynomial to themselves and preserve the algebraic

relations between the zeros.

The following chapters will explore quaternions and the automorphisms of the

zeros of quaternionic polynomials. Chapter 2 will introduce quaternions and its poly-

nomials such as quadratic and cyclotomic polynomials. Some known results will be

used in finding the zeros of polynomials. Chapter 3 will extend these concepts to

automorphisms of the zeros. Chapter 4 will discuss possible future directions for the

study of the automorphisms of roots.
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2 BACKGROUND

This chapter introduces the quaternions through the idea of complex numbers.

Unless otherwise noted, all material from this chapter section will reference [1]. A

complex number is a number of the form z = a + ib where a and b are real numbers

and i2 = −1. The set of complex numbers C = {a+ ib|a, b ∈ R}, form a 2-dimensional

vector space over R. On R2, the norm of a vector is defined by |⟨a, b⟩| =
√
a2 + b2

which means that if z = a+ ib ∈ C, then |z| =
√
a2 + b2.

A unit vector is a vector with magnitude one. For example, the complex number
√
2√
3
+ i 1√

3
is a unit complex number since |

√
2√
3
+ i 1√

3
| =

√
2
3
+ 1

3
= 1.

All complex numbers z = a+ ib can be written in the form z = r(cos θ+ i sin θ) where

r = |z| and θ is an argument of z, denoted θ = arg(z), the angle between the positive

real axis and the line joining 0 and z with z ̸= 0.

If |z| = r and θ = arg(z), then we have the picture in figure 1.

Figure 1: Complex number [1]

Any complex number can be expressed in terms of the norm r and argument θ. For

any complex number z = a+ bi with r =
√
a2 + b2 and tan(θ) = b

a
, then we can write

z = reiθ.
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With De Moivre’s formula, zn = rn(cosnθ+i sinnθ), we can compute roots of complex

polynomials. Let w ∈ C, w ̸= 0, then we want to find all z ∈ C such that zn = w

(for a given n ∈ N). For such a z, we need |z| = |w| 1n and arg(z) = arg(w)
n

. Let

α = arg(w), then one such z is z = |w| 1n (cos(α
n
)+ i sin(α

n
)). However there are several

choices for α. We find that the z are given by |w| 1n (cos(α+2kπ
n

) + i sin(α+2kπ
n

)) for

k = 0, 1, 2, ...n− 1.

Example 2.1. Find the sixth roots of unity

For |z|6 = a = 1, we have a = |a|(cos(α) + i sin(α)). So the sixth roots of unity

are |a| 16 (cos(α+2kπ
6

) + i sin(α+2kπ
6

)) for 0 ≤ k ≤ n − 1, that is cos(πk
3
) + i sin(πk

3
) for

0 ≤ k ≤ 5,

z0 = cos(0) + i sin(0) = 1,

z1 = cos(π
3
) + i sin(π

3
) = 1

2
+ i

√
3
2

= 1+i
√
3

2
,

z2 = cos(2π
3
) + i sin(2π

3
) = −1

2
+ i

√
3
2

= −1+i
√
3

2
,

z3 = cos(π) + i sin(π) = −1 + 0 = −1,

z4 = cos(4π
3
) + i sin(4π

3
) = −1

2
+ i−

√
3

2
= −1−i

√
3

2
,

z5 = cos(5π
3
) + i sin(5π

3
) = 1

2
+ i−

√
3

2
= 1−i

√
3

2
.

If a polynomial P (x) is defined on C, then we can define an automorphism φ : C → C

on the roots such that φ(z∗) = z∗ where z∗ is a root of the polynomial P (x) in C and

z∗ is the conjugate of z∗.

In the sixth roots of unity, with roots zo = 1, z1 = 1+i
√
3

2
, z2 = −1+i

√
3

2
, z3 = −1,

z4 =
−1−i

√
3

2
, z5 =

1−i
√
3

2
, then φ(zo) = zo, φ(z1) = z5, φ(z2) = z4, φ(z3) = z3.
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2.1 Quaternions

A quaternion is a number of the form q = a+ bi+ cj + dk such that a, b, c, d are

real numbers and i, j, k satisfy i2 = j2 = k2 = ijk = −1. The set of quaternions

H = {q = a+ bi+ cj+ dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1} is an extension

of the complex field which was first described by Hamilton in 1843.

The quaternions i, j and k relate with each other satisfying; ij = k, jk = i

and ki = j. Unlike the case of complex numbers, quaternion multiplication is not

commutative because ij = −ji, ik = −ki and jk = −kj. In fact, the quaternions form

a division ring which is similar to a field but multiplication is not commutative. and

are a real vector space of dimension four with basis (1, i, j, k) [2]. Every quaternion

q = a + bi + cj + dk can be written as q = a + v⃗ where v⃗ = bi + cj + dk, called the

vector part and a is called the real part (sometimes denoted as Re(q)).

Definition 2.2. A quaternion q = a+bi+cj+dk has a conjugate q = a−bi−cj−dk.

The trace of q is Tr(q) = q + q = 2Re(q) = 2a. The norm of q denoted |q| =

√
a2 + b2 + c2 + d2.

For any quaternion q such that q = −q, then q is called a pure quaternion, this

means the trace of q = 0.

Example 2.3. Suppose q1 = a1 + b1i + c1j + d1k and q2 = a2 + b2i + c2j + d2k are

two quaternions, then

q1 + q2 = a1 + b1i+ c1j + d1k + a2 + b2i+ c2j + d2k

= a1 + a2 + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k

= a2 + a1 + (b2 + b1)i+ (c2 + c1)j + (d2 + d1)k

9



= a2 + b2i+ c2j + d2k + a1 + b1i+ c1j + d1k

= q2 + q1.

Quaternion addition is commutative.

Example 2.4. Given a quaternion q = a+ bi+ cj+dk, then the inverse of q denoted

q−1 such that qq−1 = q−1q = 1 and can be calculated as follows:

Let q = a− bi− cj − dk and |q| =
√
a2 + b2 + c2 + d2,

then q−1 = q
|q|2 = a−bi−cj−dk

a2+b2+c2+d2
. This implies that

qq−1 = (a+ bi+ cj + dk)
(a− bi− cj − dk)

a2 + b2 + c2 + d2

=
a(a− bi− cj − dk) + bi(a− bi− cj − dk) + cj(a− bi− cj − dk)

a2 + b2 + c2 + d2

+
dk(a− bi− cj − dk)

a2 + b2 + c2 + d2

=
a2 − abi− acj − adk + bai+ b2 − bck − bdj + caj + bck + c2 − cdi

a2 + b2 + c2 + d2

+
adk + dbj − dci− d2

a2 + b2 + c2 + d2

=
a2 + b2 + c2 + d2

a2 + b2 + c2 + d2

= 1.

This means that the inverse of a quaternion q is q−1 = q
|q|2 where q ̸= 0.

The division of a quaternion q1 by q2 ̸= 0 is specified either as q1q
−1
2 or q−1

2 q1,

if q1, q2 are non zero then (q1q2)
−1 = q−1

2 q−1
1 . Similarly it can also be show that

q1 + q2 = q1 + q2.

Two quaternions q1 and q2 are said to be congruent, denoted by q2 ∼ q1, if for

some quaternion w ̸= 0, then we have q2 = wq1w
−1. The congruence class of q =

10



a+ bi+ cj + dk, denoted by [q] is the set

[q2] = {q1 ∈ H | q1 ∼ q2}.

On the other hand, any quaternion is congruent to a complex number with the same

real part and norm.

Example 2.5. The complex number z = 1
2
+ i

√
3
2

has many quaternions congruent to

it; q = 1
2
+ i1

2
+ j 1

2
+ k 1

2
is one of the quaternions .

If q is congruent to a complex number z where z = a+ i
√
b2 + c2 + d2, then

[q] = {a+ x2i+ x3j + x4k|x2
2 + x2

3 + x2
4 = b2 + c2 + d2}.

It follows [q] has a singleton element if and only if q is a real number. If q is not real,

its congruent class is the three dimensional sphere in the coordinate space of x2, x3,

x4 centered at the point (a, 0, 0, 0) having radius equal to
√
b2 + c2 + d2. [5]

2.2 Polynomials

For quaternions q = a + bi + cj + dk ∈ H, the characteristic polynomial of q,

denoted Pq(x), is Pq(x) = x2 − Tr(q)x+ (|q|)2, where Tr(q) and |q| are the trace and

norm of q respectively. The characteristic equation is Pq(x) = 0.

Example 2.6. For the quaternions ±i, ±j, ±k, the characteristic polynomial is the

polynomial x2 + 1.

We define a left polynomial over the quaternions as P (x) = anx
n + ...+ a1x+ a0,

ai ∈ H, an ̸= 0, n ≥ 1. The quaternion conjugate of P (x) is P (x) = anx
n +

11



... + a1x + a0. The evaluation of the polynomial P (x) for a given quaternion q is

P (q) = anq
n + ...+ a1q + a0.

The multiplication of quaternionic polynomials is defined in terms of the regular

product. Let f(x) =
∑n

i=0 x
iai and g(x) =

∑m
j=0 x

ibj be two polynomials, then the

regular product of f and g is defined as the polynomial f ∗ g(x) =
∑mn

k=0 x
kck where

ck =
∑k

i=0 aibk−i for all k [3].

2.3 Cyclotomic Polynomials

A cyclotomic polynomial is a polynomial with coefficients in the integers that is

defined in terms of roots of unity. Specifically, the nth cyclotomic polynomial, denoted

by Φn(x), is the polynomial whose roots are all nth primitive roots of unity , that is,

the numbers of the form e
2πik
n , where k is an integer relatively prime to n.

For any positive integer n, a complex number z is an nth root of unity if zn = 1.

There are n distinct such roots of unity. Applying the De Moivre formula as discussed

above, such roots are uniquely determined as e
2πik
n for k = 0, 1, ...n−1. For some root

z, we say z is a primitive nth root of unity if zk ̸= 1 for all k < n. This is equivalent

to z = e
2πik
n , with gcd(k, n) = 1.

Example 2.7. The fourth roots of unity are the solutions of z4 − 1 = 0, which are;

1,−1,±i. Now 1 is a primitive first root of unity, -1 is a primitive second root of

unity, and ±i are the primitive fourth roots of unity.

Example 2.8. The sixth roots of unity are the solutions of z6 − 1 = 0 which are

z0 = 1, z1 = e
πi
3 = 1+i

√
3

2
, z2 = e

2πi
3 = −1+i

√
3

2
, z3 = eπi = −1, z4 = e

4πi
3 = −11−i

√
3

2

and z5 = e
5πi
3 = 1−i

√
3

2
.

12



z0 = 1 is a primitive first root of unity,

z3 = −1 is a primitive second root of unity,

z2 =
−1+i

√
3

2
and z4 == −1−i

√
3

2
are primitive third roots of unity,

z1 =
1+i

√
3

2
and z5 =

1−i
√
3

2
are primitive sixth roots of unity.

Then with the above understanding, we define the nth cyclotomic polynomial for

any positive integer as the unique irreducible polynomial (a polynomial that cannot

be expressed as the product of two non-constant polynomials) with integer coefficient

that is a divisor of xn − 1 and not a divisor of xk − 1 for any k < n. Its roots are all

primitive roots of unity e
2iπk
n where k ∈ N, 1 ≤ k ≤ n, gcd(k, n) = 1.

For any positive integer n the nth cyclotomic polynomial, Φn(x), is given by

Φn(x) = (x− z1)(x− z2)...(x− zs),

where z1, z2, . . . , zs are the primitive nth roots of unity. The nth cyclotomic

polynomial can be written as

Φn(x) =
n∏

k=1
gcd(k,n)=1

(x− e
2iπk
n ).

If n is a positive integer, then Φn(x) is monic and its degree is ϕ(n), where ϕ(n) is

the Euler ϕ− function, that is ϕ(n) is defined as the number of non negative integers

less than n that are relatively prime to n.

Example 2.9. The following are examples of cyclotomic polynomials

Φ1(x) = x− 1,

Φ2(x) = x+ 1,
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Φ3(x) = x2 + x+ 1,

Φ4(x) = x2 + 1,

Φ5(x) = x4 + x3 + x2 + x+ 1,

Φ6(x) = x2 − x+ 1,

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1,

Φ8(x) = x4 + 1,

Φ9(x) = x6 + x3 + 1

Φ10(x) = x4 − x3 + x2 − x+ 1,

Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

2.4 Roots of Polynomials

A quaternion q is a root of P (x) if and only if P (x) = Q(x) ∗ (x − q) for some

Q(x) =
∑n−1

i=0 qix
i. In line with this, we define various types of roots of quaternionic

polynomials [3].

Definition 2.10. Let P(x) be a quaternionic polynomial with q a root.

(i) q is a root of multiplicity k if P (x) = Q(x)∗(x−q)k, where Q(q) ̸= 0. In particular,

if k = 1, we say q is a simple root.

(ii) q is an isolated root if there exists a neighborhood of q that contains no other root

of P(x).

(iii) q is a spherical root if [q] is contained in Zp (the set of zeros of P(x)). [q] is

called sphere of zeros for P(x).

Theorem 2.11. Fundamental Theorem of Algebra [3]

14



Let P(x) be a quaternionic polynomial of degree n. Then the number of isolated zeros,

plus twice the number of spheres of zeros, counted with multiplicity, is n.

In other words, this theorem can be stated as; if P (x) has r real roots, such that

m = deg(P (x))− r, then P(x) has m
2
spheres of roots.

Example 2.12. Find the roots of the polynomial P (x) = x2 + 1.

The above polynomial is the characteristic polynomial of the quaternions ±i, ±j, ±k.

By the above theorem, that if P(x) has r real roots, with m = deg(P(x)) - r, then P(x)

has m
2
spheres of roots.

In this case, this polynomial has zero real roots which means r = 0, deg(P (x)) = 2,

and hence m = 2 and so P (x) has one sphere of roots.

The zeros constitute the 3-D unit sphere centered at the origin (0, 0, 0, 0) with zero

real part, {bi + cj + dk ∈ H | b2 + c2 + d2 = 1}. Examples of such roots are ±i,

±j, ±k, − 1√
2
i+ 1√

2
j, 1√

3
i+ 1√

3
j + 1√

3
k and infinitely many others on the sphere.

We test one of the roots of the polynomial x2 + 1, say when q = 1√
3
i+ 1√

3
j + 1√

3
k.

P (q) = q2 + 1 =

(
1√
3
i+

1√
3
j +

1√
3
k

)2

+ 1

=

(
1√
3
i+

1√
3
j +

1√
3
k

)(
1√
3
i+

1√
3
j +

1√
3
k

)
+ 1

=
1

3
i2 +

1

3
ij +

1

3
ik +

1

3
ji+

1

3
j2 +

1

3
jk +

1

3
ki+

1

3
kj +

1

3
k2 + 1

= −1

3
+

1

3
k − 1

3
j − 1

3
k − 1

3
+

1

3
i+

1

3
j − 1

3
i− 1

3
+ 1

= −1

3
− 1

3
− 1

3
+ 1

= 0.

Hence q = 1√
3
i+ 1√

3
j + 1√

3
k ∈ Zp (zeroes of the polynomial P(x) = x2 + 1).
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Example 2.13. Find the roots of the polynomial P (x) = x2− c with c a positive real.

P(x) has two real roots;
√
c and −

√
c. Therefore, r = 2 which means m = deg(P(x))

- r = 2 - 2 = 0.

P (x) = x2 − c has 0
2
(zero) spheres of roots.

The only roots of P (x) = x2 − c with c is positive are
√
c and −

√
c.

Example 2.14. Find the roots of the polynomial P (x) = x2 + f such that f is a

positive real.

The above polynomial is the characteristic polynomial of the quaternions ±
√
fi, ±

√
fj,

±
√
fk.

By the FTA for H, if P(x) has r real roots, with m = deg(P(x)) - r, P(x) has m
2

spheres of roots.

In this case it can be seen that the polynomial has no real roots, therefore r = 0,

deg(P (x)) = 2 and m = 2 which means the polynomial has one sphere of zeros.

The zeros constitute the radius
√
f 3-sphere centered at the origin (0, 0, 0, 0) with

zero real part, such that {bi+ cj + dk ∈ H | b2 + c2 + d2 = f}.

Examples of such roots are ±
√
fi, ±

√
fj, ±

√
fk, −

√
f√
2
i+

√
f√
2
j,

√
f√
3
i+

√
f√
3
j+

√
f√
3
k and

infinitely many others on the sphere.

Proposition 2.15. If q and a distinct conjugate q
′
are both roots of P(x), then so is

any element of the conjugacy class [q]. In particular, P (x) = Q(x) ∗ Pq(x) for some

quaternion polynomial Q(x).

Proof. For any quaternion q, the characteristic polynomial Pq(x) is defined as Pq(x) =

x2−Tr(q)x+ |q|2. Since q is a root of the polynomial, then it means Pq(x) is a factor
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of P (x). Given also that the distinct conjugate is a root of P (x) and by conjugacy,

q′ ∈ [q] then the conjugacy class [q] is a subset of the zeros of P (x).

Suppose Pq(x) is not a factor of P (x). Then applying Niven’s division [6] it follows

that both q and q
′
are solutions of the corresponding equation fx + g = 0, with

f, g ̸= 0. But there is a unique solution which is a contradiction.

Example 2.16. Find the roots of the polynomial P (x) = x3 − 1

The polynomial can be expressed as P (x) = x3 − 1 = (x2 + x + 1) ∗ (x − 1). Using

FTA, it can be seen that 1 is an isolated root of P (x) with deg(P(x)) = 3. Hence

m = 3− 1 = 2 which means that P (x) has 2
2
= 1 sphere of zeroes.

Solving for the root of x2 + x+ 1 using the quadratic formula, −1
2
± i

√
3
2

is a complex

root of x2 + x+ 1.

Every quaternion is congruent to a complex number with the same real part, then

q ∈ {−1
2
+ bi+ cj + dk | b2 + c2 + d2 = 3

4
} is a root of the polynomial.

The sphere of zeros is centered at (−1
2
, 0, 0, 0) and is given by {−1

2
+bi+cj+dk | b2+

c2 + d2 = 3
4
}.

Some examples of roots of P (x) = x3 − 1 are −1
2
± i

√
3
2
, −1

2
± j

√
3
2
, −1

2
± k

√
3
2
, −1

2
+

i
√
3√
8
+ j

√
3√
8
and infinitely many others on the sphere.

Example 2.17. Find the quaternion roots of the cyclotomic polynomial Φ12(x) =

x4 − x2 + 1.

Φ12(x) has no isolated roots, hence by the FTA, m = ϕ12 = 4. This means that Φ12(x)

has two spheres of zeros.

The complex primitive roots of Φ12(x) are {e 2πih
12 | 1 ≤ h ≤ 12, gcd(h, 12) = 1}.

Note, ϕ(12) = [1, 5, 7, 11]. So the roots are

17



e
2πi
12 = e

πi
6 = cos(π

6
) + i sin(π

6
) =

√
3
2
+ i

2
,

e
10πi
12 = e

5πi
6 = cos(5π

6
) + i sin(5π

6
) = −

√
3
2
+ i

2
,

e
14πi
12 = e

7πi
6 = cos(7π

6
) + i sin(7π

6
) = −

√
3
2
− i

2
,

e
22πi
12 = e

11πi
6 = cos(11π

6
) + i sin(11π

6
) =

√
3
2
− i

2
.

Applying conjugacy of complex number and quaternions, we can easily generate the

roots of Φ12(x).

From the complex roots
√
3
2
+ i

2
and

√
3
2
− i

2
, the quaternions on the sphere centered at

(
√
3
2
, 0, 0, 0) where q ∈ {

√
3
2
+ bi+ cj + dk | b2 + c2 + d2 = 1

4
} are quaternion roots

of Φ12(x). Examples are
√
3
2
+ i

2
,

√
3
2
+ j

2
,

√
3
2
+ k

2
,

√
3
2
+ i√

8
+ j√

8
,

√
3
2
+ i√

12
+ j√

12
+ k√

12

Similarly, from the complex roots −
√
3
2
+ i

2
and −

√
3
2
− i

2
, the quaternions on the sphere

centered at (−
√
3
2
, 0, 0, 0) where q ∈ {−

√
3
2

+ bi + cj + dk | b2 + c2 + d2 = 1
4
} are

quaternion roots of Φ12(x). Examples are −
√
3
2
+ i

2
, −

√
3
2
+ j

2
, −

√
3
2
+ k

2
, −

√
3
2
+ i√

8
+ j√

8
,

−
√
3
2
+ i√

12
+ j√

12
+ k√

12
.

Example 2.18. Find the quaternion roots of the cyclotomic polynomial

Φ13(x) = x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1.

Φ13(x) has no isolated roots, hence by FTA, m = ϕ(13) = 12. This means that Φ13(x)

has six spheres of zeros.

The complex primitive roots of Φ13(x) are {e 2πih
13 | 1 ≤ h ≤ 13, gcd(h, 13) = 1},

So, the complex roots are, e
2πi
13 = cos(2π

13
) + i sin(2π

13
), e

4πi
13 = cos(4π

13
) + i sin(4π

13
)

e
6πi
13 = cos(6π

13
) + i sin(6π

13
), e

8πi
13 = cos(8π

13
) + i sin(8π

13
), e

10πi
13 = cos(10π

13
) + i sin(10π

13
),

e
12πi
13 = cos(12π

13
) + i sin(12π

13
), e

14πi
13 = cos(14π

13
) + i sin(14π

13
), e

16πi
13 = cos(16π

13
) + i sin(16π

13
)

e
18πi
13 = cos(18π

13
) + i sin(18π

13
), e

20πi
13 = cos(20π

13
) + i sin(20π

13
), e

22πi
13 = cos(22π

13
) + i sin(22π

13
)

18



e
24πi
13 = cos(24π

13
) + i sin(24π

13
).

Applying conjugacy of complex number and quaternions, we can easily generate each

sphere of zeros.

From the complex roots e
2πi
13 and e

24πi
13 , the quaternions on the sphere centered at

(cos(2π
13
), 0, 0, 0) where q ∈ {cos(2π

13
) + bi+ cj + dk | b2 + c2 + d2 = (sin(2π

13
))2} are

quaternion roots of Φ13(x).

From the complex roots e
4πi
13 and e

22πi
13 , the quaternions on the sphere centered at

(cos(4π
13
), 0, 0, 0) where q ∈ {cos(4π

13
) + bi+ cj + dk | b2 + c2 + d2 = (sin(4π

13
))2} are

quaternion roots of Φ13(x).

From the complex roots e
6πi
13 and e

20πi
13 , the quaternions on the sphere centered at

(cos(6π
13
), 0, 0, 0) where q ∈ {cos(6π

13
) + bi+ cj + dk | b2 + c2 + d2 = (sin(6π

13
))2} are

quaternion roots of Φ13(x).

From the complex roots e
8πi
13 and e

18πi
13 , the quaternions on the sphere centered at

(cos(8π
13
), 0, 0, 0) where q ∈ {cos(8π

13
) + bi+ cj + dk | b2 + c2 + d2 = (sin(8π

13
))2} are

quaternion roots of Φ13(x).

From the complex roots e
10πi
13 and e

16πi
13 , the quaternions on the sphere centered at

(cos(10π
13

), 0, 0, 0) where q ∈ {cos(10π
13

) + bi + cj + dk | b2 + c2 + d2 = (sin(10π
13

))2}

are quaternion roots of Φ13(x).

From the complex roots e
12πi
13 and e

14πi
13 , the quaternions on the sphere centered at

(cos(12π
13

), 0, 0, 0) where q ∈ {cos(12π
13

) + bi + cj + dk | b2 + c2 + d2 = (sin(12π
13

))2}

are quaternion roots of Φ13(x).
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3 AUTOMORPHISM OF ROOTS

If G is a nonempty set, then a binary operation on G is a function from G×G to

G. If the binary operation is denoted ∗, then we use the notation a ∗ b = c if (a, b) ∈

G×G is mapped to c ∈ G under the binary operation. A semigroup is a nonempty set

G with an associative binary operation. A monoid is a semigroup with an identity.

A group is a monoid such that each a ∈ G has an inverse a−1 ∈ G. A semigroup G

is abelian or commutative if a ∗ b = b ∗ a for all a, b ∈ G.

Let G and H be semigroups. A function f : G −→ H is a homomorphism

if f(ab) = f(a)f(b) for all a, b ∈ G. A one to one (injective) homomorphism is a

monomorphism. An onto (surjective) homomorphism is an epimorphism. A one to

one and onto (bijective) homomorphism is an isomorphism. If there is an isomorphism

from G to H, we say that G and H are isomorphic, denoted G ∼= H. A homomor-

phism f : G −→ G is an endomorphism of G. An isomorphism f : G −→ G is an

automorphism of G.[4]

Example 3.1. If a polynomial P (x) is defined on C, then we can define an auto-

morphism φ : C → C on the roots such that φ(z∗) = z∗ where z∗ is a root of the

polynomial P (x) in C and z∗ is the conjugate of z∗.

In the sixth roots of unity, with roots z0 = 1, z1 = 1+i
√
3

2
, z2 = −1+i

√
3

2
, z3 = −1,

z4 =
−1−i

√
3

2
, z5 =

1−i
√
3

2
, then

φ(zo) = zo,

φ(z1) = z5,

φ(z2) = z4,
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φ(z3) = z3.

3.1 Orthogonal/Special Orthogonal groups

The plane R2 can be identified with the complex plane C where z = a + ib ∈ C

is the same as (x, y) ∈ R2. Every rotation in the two dimensional plane ρ by angle θ

can be represented by multiplication with the complex numbers eiθ = cos θ + sin θ.

If we let 1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
and k =

[
0 i
i 0

]
.

Then a1+bi+cj+dk in matrix form is of the form A =

[
x y
−y x

]
where x = a+ ib

and y = c+id, a, b, c, d ∈ R. An orthogonal matrix is a square matrix with real entries

whose columns and rows are orthonormal vectors, meaning that they are unit vectors

(vectors of length 1) and are mutually perpendicular to each other. An orthogonal

matrix has the property that its transpose is also its inverse. More formally, let A be

an n× n matrix, then A is an orthogonal matrix if AAT = ATA = I, where I is the

n×n identity matrix. The set of orthogonal matrices denoted O(n) = {A ∈ GLn(R) :

A−1 = AT} forms the orthogonal group of n× n matrices with matrix multiplication

as the group operation.

Theorem 3.2. The set O(n) is a group under matrix multiplication.

Proof. It is obvious that I (the identity) ∈ O(n). By definition AT = A−1, then

each A ∈ O(n) has an inverse and since AT ∈ O(n), then A−1 ∈ O(n) . Matrix

multiplication is associative, then O(n) is associative under matrix multiplication.

Let A,B ∈ O(n), consider (AB)(AB)T = ABBTAT = AIAT = AAT = I.

This means that O(n) is closed under matrix multiplication.
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Similarly, the orthogonal group can be thought of as a linear symmetry distance-

preserving map of a Euclidean space of dimension n that preserves a fixed point with

the group operation being composition of transformations. We define an isometry f of

Rn as a function f : Rn → Rn which for any vector x, y ∈ Rn we have |f(x)− f(y)| =

|x−y|, i.e., f preserves the distance between two points in Rn. Any isometry function

f : Rn → Rn that fixes the origin preserves the length of all vectors in Rn.

Lemma 3.3. [9] Let A be an element of O(n). The transformation associated with

A preserves dot products .

Proof. For any vector x, y ∈ Rn, the dot product of x and y becomes x · y = xTy. For

any transformation A ∈ O(n), then (Ax) · (Ay) = (Ax)T (Ay) = xTATAy = xTy =

x · y

Lemma 3.4. [9] Suppose the function f : Rn → Rn is an isometry that moves the

origin. Then the function g : Rn → Rn given by g(x) = f(x) - f(0) is a linear isometry.

Proof. For any two vectors x, y ∈ Rn,

|g(x) − g(y)| = |f(x) − f(0) − f(y) + f(0)| = |f(x) − f(y)| = |x − y|. Then g is an

isometry on Rn. Similarly, g(0) = f(0)− f(0) = 0 and g fixes the origin.

Lemma 3.5. [9] If A ∈ O(n) then A is a linear isometry.

Proof. Let A be an element of O(n). Since A preserves dot products, this means it

must also preserve lengths in Rn, since the length of a vector v ∈ Rn may be defined

as |v| =
√
v · v Furthermore, it is clear that the origin is fixed since A0 = 0. Thus, A

is a linear isometry.
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For all n × n matrices A and B, we have that det(A) = det(AT ) and det(AB) =

det(A)det(B). This implies that for all A ∈ O(n),

det(A2) = det(A)det(A) = det(A)det(AT ) = det(AAT ) = det(I) = 1.

This implies all orthogonal matrices must have determinant of ±1. By this, the

orthogonal group of dimension n has the orthogonal matrices of determinant 1 and

the orthogonal matrices of determinant −1.

The orthogonal matrices of determinant 1 forms the special orthogonal group,

denoted SO(n). This is also called the rotation group.

Theorem 3.6. The subset SO(n) = {A ∈ O(n) : det(A) = 1} is a subgroup of O(n).

Proof. The identity I ∈ SO(n) and all A ∈ SO(n) has an inverse by definition.

Matrix multiplication is associative, hence SO(n) is associative under matrix mul-

tiplication. For closure, let A,B ∈ SO(n), then it means det(A) = 1 = det(B).

Consider det(AB) = det(A)det(B) = 1, hence AB ∈ SO(n). SO(n) is closed under

matrix multiplication. Thus, SO(n) is a subgroup of O(n).

Theorem 3.7. The group SO(n) is a normal subgroup of O(n).

In addition, O(n)/SO(n) ∼= Z2.

Proof. The set {−1, 1} is a group under multiplication. We define f : O(n) → {−1, 1}

by f(A) = det(A) for all A ∈ O(n).

Let A, B ∈ O(n), f(AB) = det(AB) = det(A)det(B) = f(A)f(B). Thus, f is a

homomorphism. Clearly f is an epimorphism with kernel of f equals all A ∈ O(n)

such that det(A) = 1. Thus, Ker(f) = SO(n).
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Since every kernel of a homomorphism f is a normal subgroup of O(n), then by the

first isomorphism theorem, there is an isomorphism from O(n)/SO(n) with the image

on f . Hence O(n)/SO(n) ∼= Z2.

The orthogonal matrices of determinant −1 do not form a subgroup of O(n). A

quick check is by picking matrices A and B. It means det(A) = -1 and det(B) = -1.

Consider det(AB) = det(A)det(B) = -1 × -1 = 1. Hence AB does not belong to the

second component and the component is not closed under matrix multiplication.

3.2 Properties of SO(n)

The orthonormal basis {⟨1, 0⟩, ⟨0, 1⟩} for R2 can be used to define rotation in

the plane. The group of rotations in the plane is SO(2). The rotation by angle θ

transfers the basis to ρθ⟨1, 0⟩ = ⟨cos θ, sin θ⟩ and ρθ⟨0, 1⟩ = ⟨−sinθ, cosθ⟩ with matrix

representation A =

[
cos θ − sin θ
sin θ cos θ

]
. It can be seen that det(A) = +1 and that

AAT =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
1 0
0 1

]
.

The vector ⟨cos θ, sin θ⟩ parametrizes the unit circle centered at the origin and any

element of SO(2). In the unit circle two vectors ⟨− sin θ, cos θ⟩ and ⟨sin θ,− cos θ⟩ are

orthogonal to ⟨cos θ, sin θ⟩. It is obvious that

B =

[
cos θ sin θ
sin θ − cos θ

]
/∈ SO(2) since |B| = −(cos2 θ + sin2 θ) = −1.

We now show SO(2) is an abelian group. Let

A =

[
cos θ − sin θ
sin θ cos θ

]
, B =

[
cos β − sin β
sin β cos β

]
,
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and consider

AB =

[
cos θ − sin θ
sin θ cos θ

] [
cos β − sin β
sin β cos β

]

=

[
cos θ cos β − sin θ sin β − cos θ sin β − sin θ cos β
sin θ cos β + cos θ sin β − sin θ sin β + cos θ cos β

]

=

[
cos(θ + β) − sin(θ + β)
sin(θ + β) cos(θ + β)

]
.

Similarly,

BA =

[
cos β − sin β
sin β cos β

] [
cos θ − sin θ
sin θ cos θ

]

=

[
cos(θ + β) − sin(θ + β)
sin(θ + β) cos(θ + β)

]
.

Thus, SO(2) is abelian. We can also check if SO(3) is abelian.

Consider the matrices A =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

, B =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


It can be shown that AAT = I and BBT = I and det(A) = 1 = det(B). This

means that A,B ∈ SO(3). Consider

AB =

cos θ − sin θ cos θ sin2 θ
sin θ cos2 θ − sin θ cos θ
0 sin θ cos θ

 , BA =

 cos θ sin θ 0
sin θ cos θ cos2 θ − sin θ
sin2 θ sin θ cos θ cos θ.

 .

Thus SO(3) is not abelian and in turn implies that SO(4) is not since it contains

SO(3) as a subgroup.
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Lemma 3.8. [9] The one-sphere is an abelian group under complex multiplication.

Proof. S
′
= {x ∈ C : |x| = 1}.

The set of non zero complex numbers forms a group under multiplication. To show

that S
′
is a group, then we can show that it is a subgroup of C \ {0}.

Note 1 ∈ S
′
. Similarly, for all x ∈ S

′
it means that xx−1 = 1, then |xx−1| = |1| = 1

and |x| = 1, |x−1| = 1. So every element of S
′
has an inverse in S

′
. S

′
is associative

since C is associative.

Let x, y ∈ S
′
, then |xy| = |x||y| = |1||1| = 1. Hence, S

′
is closed under multiplication.

Theorem 3.9. The group SO(2) is isomorphic to S1.

Proof. Complex numbers can be written in the form eiθ = cos θ + i sin θ and every

rotation in SO(2) can be written as A(θ) =

[
cos θ − sin θ
sin θ cos θ

]
where θ is the angle of

rotation and θ ∈ [0, 2π).

We define a mapping f : S
′ → SO(2) by f(eiθ) = A(θ). Then

f(eiθ)f(eiβ) =

[
cos θ − sin θ
sin θ cos θ

] [
cos β − sin β
sin β cos β

]

=

[
cos θ cos β − sin θ sin β −(cos θ sin β + sin θ cos β)
sin θ cos β + cos θ sin β cos θ cos β − sin θ sin β

]

=

[
cos(θ + β) − sin(θ + β)
sin(θ + β) cos(θ + β)

]
.
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Similarly,

f(eiθ)f(eiβ) = f(ei(θ+β))

=

[
cos(θ + β) − sin(θ + β)
sin(θ + β) cos(θ + β)

]
= f(eiθ)f(eiβ).

Thus f is a homomorphism. Similarly, f is surjective and since θ is uniquely deter-

mined, then f is injective which means f is an isomorphism.

3.3 Quaternions and the Special Orthogonal group

Given any two quaternions, X = a+ bi+ cj + dk and Y = w + xi+ yj + zk, the

maps Y → XY and X → XY are linear maps. By quaternion multiplication, the

map Y → XY becomes

XY = (a+ bi+ cj + dk)(w + xi+ yj + zk)

= a(w + xi+ yj + zk) + bi(w + xi+ yj + zk) + cj(w + xi+ yj + zk)

+ dk(w + xi+ yj + zk)

= aw + axi+ ayj + azk + bwi+ bxi2 + byij + bzik + cwj + cxji+ cyj2

+ czjk + dwk + dxki+ dykj + dzk2

= aw − bx− cy − dz + (ax+ bw + cz − dy)i+ (ay + cw − bz + dx)j

+ (az + dw + by − cx)k.
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From the above, we can write XY in matrix form as XY =


a −b −c −d
b a −d c
c d a −b
d −c b a



w
x
y
z

 .

We say XY = AXY where AX =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

Similarly the map X → XY can be done the same way as above and we have

XY =


w −x −y −z
x w z −y
y −z w x
z y −x w



a
b
c
d

, such that XY = BYX where

BY =


w −x −y −z
x w z −y
y −z w x
z y −x w

 .

Note; Let AXA
T
X = LA

LA =


a2 + b2 + c2 + d2 0 0 0

0 a2 + b2 + c2 + d2 0 0
0 0 a2 + b2 + c2 + d2 0
0 0 0 a2 + b2 + c2 + d2


= (|X|)2I,

and det(A2
X) = det(AX)det(A

T
X) = det(AXA

T
X) = det((|X|2)I) = (|X|2)4det(I) =

|X|8. This means that det(Ax) = |X|4.

If X is a unit quaternion, then AX is an orthogonal matrix and hence AX is a

rotation matrix. Similarly, BYB
T
Y = (|Y |)2I and Y a unit quaternion, means BY is

an orthogonal matrix and a rotation matrix.

The following lemmas and proofs adopted from [2] gives the rotation and reflection
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maps for quaternions.

Lemma 3.10. For every quaternion Z ̸= 0, the map ρZ : X → ZXZ−1 (where

X ∈ H) is a rotation in SO(H) = SO(4) whose restriction to the space Hp of pure

quaternions is a rotation in SO(Hp) = SO(3). Conversely, every rotation in SO(3)

is of the form ρZ : X → ZXZ−1 for some quaternion Z ̸= 0 and for all X ∈ Hp.

Furthermore, if two nonnull quaternions Z and Z
′
represent the same rotation, then

Z
′
= λZ for some λ ̸= 0 in R.

Proof. For any non-zero quaternions X, the maps Y → XY and Y → Y X are lin-

ear maps and when |X| = 1, the maps are in SO(4). The map ρY,Z : H → H

where for X ∈ H is defined as ρY,Z(X) = Y XZ. The map ρY,Z is an isometry and

ρY,Z = ρY,1 ◦ ρ1,Z .

ρY,1 is the map X → Y X and ρ1,Z is the X :→ XZ, which are both rotations. The

composition of rotations is a rotation, hence, ρY,Z = ρY,1 o ρ1,Z is a rotation in SO(4).

If Z = Y −1, then the map ρY,Y −1 is denoted by ρY . It can be observed that for any

X, Y ∈ H, ρz(X + Y ) = ρZ(X) + ρZ(Y ) and also ρZ(X) = ρZ(X).

Then we have ρZ(X + X) = ρZ(X) + ρZ(X) = ρZ(X) + ρZ(X). If X ∈ Hp, then

X+X = 0, then ρZ(X)+ρZ(X) = 0 which means ρZ(X) is a pure quaternion. Thus,

ρz ∈ SO(3).

Every rotation that is not the identity is the composition of an even number of reflec-

tions. Then we want to show that for every reflection σ of Hp, about a hyperplane,

there is some pure quaternion Z ̸= 0 such that σ(X) = −ZXZ−1 for all X ∈ Hp. If
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Z is a pure quaternion orthogonal to the plane, we know that

σ(X) = X − 2
(X · Z)
(Z · Z)

Z

for all X ∈ Hp. However, for pure quaternions Y, Z ∈ Hp, we have

2(Y · Z) = −(Y Z + ZY ).

Then (Z · Z) = −Z2, and we have

σ(X) = X − 2
(X · Z)
(Z · Z)

Z = X + 2(X · Z)Z−1,

σ(x) = X − (XZ + ZX)Z−1 = −ZXZ−1,

for all X ∈ Hp.

If σ(Z1) = σ(Z2), then

Z1XZ−1
1 = Z2XZ−1

2

for all X ∈ H, which is equivalent to

Z−1
2 Z1X = XZ−1

2 Z1,

where Z−1
2 Z1 = a1 for some a ∈ R and since Z1 and Z2 are non zero, we get Z2 = ( 1

a
)Z1

where a ̸= 0.

Lemma 3.11. For every quaternion Z = a+ t where t is a nonnull pure quaternion,

the axis of the rotation ρz associated with Z is determined by the vector in R3 corre-

sponding to t, and the angle of rotation θ is equal to π when a = 0, or when a ̸= 0,

given a suitable orientation of the plane orthogonal to the axis of the rotation, the

angle is given by

tan
θ

2
=

√
N(t)

|a|
,

with 0 < θ ≤ π.
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Proof. A simple calculation shows that the line of direction t is invariant under the

rotation ρZ and thus the axis of rotation. For any two non zero vectors X, Y ∈ R3

such that |X| = |Y |, there is some rotation ρ such that ρ(X) = Y . If X = Y , then

the identity will work and if X ̸= Y , we use the rotation of axis determined by X×Y

rotating X to Y in the plane containing X and Y . Thus given any two nonnull pure

quaternions X, Y such that |X| = |Y |, there is some nonnull quaternions W such that

Y = WXW−1.

For any non zero quaternions Z, W , the angle of rotation ρz is the same as the angle

of the rotation ρWXW−1 . Z = a+ t where t is a pure nonnull quaternion, the axis of

rotation ρWXW−1 is WtW−1 = ρwt. WtW−1 is pure, and

WZW−1 = W (a1 + t)W−1 = Wa1W−1 +WtW−1 = a1 +WtW−1.

Also given any pure non zero quaternion X orthogonal to t, the angle of the rotation

Z is the angle between X and ρz(X). Since rotations preserve orientation (since they

preserve the cross product), the angle θ between two vectors X and Y is preserved

under rotation. Since rotations preserve the inner product, if Xt = 0, we have ρW (X)·

ρW (t) = 0 and the angle of rotation ρWXW−1 = ρW ◦ ρZ ◦ (ρW )−1 is the angle between

the two vectors ρw(X) and ρWXW−1(ρW (X)). Since

ρWXW−1(ρW (X)) = (ρW ◦ ρZ ◦ (ρW )−1 ◦ ρW )(X) = (ρW ◦ ρZ)(X) = ρW (ρZ(X)),

the angle of rotation of ρWXW−1 is the angle between the two vectors ρW (X) and

ρW (ρZ(X)). Since the rotation preserves angles, this is also the angle between the

two vectors X and ρZ(X) which is the angle of the rotation ρZ .

Thus, given any quaternion Z = a + t, where t is a non zero pure quaternion, since
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there is some non zero quaternionW such thatWtW−1 = |t|i andWZW−1 = a1+|t|i,

we can figure out the angle of rotation for a quaternion Z of the form a+bi ( a rotation

of axis i). We can find the angle between j and ρZ(j)

ρZ(j) = (a+ bi)j(a+ bi)−1,

we get

ρZ(j) =
1

a2 + b2
(a+ bi)j(a− bi) =

a2 − b2

a2 + b2
j +

2ab

a2 + b2
k.

Then if a ̸= 0, we must have

tanθ =
2ab

a2 − b2
=

2(b/a)

1− (b/a)2
,

and since

tanθ =
2tan( θ

2
)

1− tan2( θ
2
)
,

with a suitable orientation we have

tan
θ

2
=

b

|a|
=

|t|
|a|

.

If a = 0, we get

ρZ(j) = −j,

and θ = π.

We define the map ρ : H → H by ρZ(X) = ZXZ−1, for Z,X ∈ H where |Z| = 1.

Then let Z = a+ bi+ cj+dk and X = w+xi+yj+zk. Since Z is a unit quaternion,

then Z−1 = Z = a− bi− cj − dk.

Evaluating ρZ(X) = ZXZ−1 = ZXZ. Then

ZX = (a+ bi+ cj + dk)(w + xi+ yj + zk)
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= (aw − bx− cy − dz) + (ax+ bw + cz − dy)i+ (ay + cw − bz + dx)j

+ (az + dw + by − cx)k

=


a −b −c −d
b a −d c
c d a −b
d −c b a



w
x
y
z

 .

Let α = aw − bx− cy − dz, β = ax+ bw + cz − dy,

γ = ay + cw − bz + dx, σ = az + dw + by − cx,

ZX = α + βi+ γj + σk. Then,

ZXZ = (α + βi+ γj + σk)(a− bi− cj − dk)

= (αa+ βb+ γc+ σd) + (−αb+ βa− γd+ σc)i+ (−αc+ βd+ γa− σb)j

+ (−αd− βc+ γb+ σa)k

=


α β γ σ
β −α σ −γ
γ −σ −α β
σ γ −β −α



a
b
c
d

 .

With substitution and simplification we have

ZXZ = LZ


w
x
y
z

 , where

LZ =


a2 + b2 + c2 + d2 0 0 0

0 a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2cd
0 2ad+ 2bc a2 − b2 + c2 − d2 −2ab+ 2cd
0 −2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2


This can be seen as the composition of transformations since
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ZX =


a −b −c −d
b a −d c
c d a −b
d −c b a



w
x
y
z

 and XZ =


a b c d
−b a −d c
−c d a −b
−d −c b a



w
x
y
z

 .

which implies that

ρZ(X) = ZXZ

= ρZ,1(X)oρ1,Z(X)

=


a −b −c −d
b a −d c
c d a −b
d −c b a




a b c d
−b a −d c
−c d a −b
−d −c b a



w
x
y
z



= LZ


w
x
y
z

 , where

LZ =


a2 + b2 + c2 + d2 0 0 0

0 a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2cd
0 2ad+ 2bc a2 − b2 + c2 − d2 −2ab+ 2cd
0 −2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

 .

By definition

ρZ(XY ) = Z(XY )Z

= Z(XZZY )Z

= ZXZZY Z

= ρZ(X)ρZ(Y ).
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Thus, ρZ is a bijective homomorphism. Similarly,

ρZ(X + Y ) = LZ


w + p
x+ q
y + u
z + v



= LZ


w
x
y
z

+ LZ


p
q
u
v


= ρz(X) + ρz(Y ),

and

ρz(λx) = LZ


λw
λx
λy
λz



= λ

LZ


w
x
y
z




= λρz(X).

From the above results, ρz is a linear tranformation [2].

3.4 Automorphisms of Cyclotomic and Quadratic Polynomial roots

At this point, we can define the different automorphisms on the sphere of zeros of

a quaternionic polynomial. Let ∆ be a sphere of zeros of a quaternionic polynomial;
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then we define the following automorphisms:

ι : ∆ → ∆ such that ι(a) = a for all a ∈ ∆ (Identity),

τ : ∆ → ∆ such that τ(a) = a for all a ∈ ∆ (Conjugation),

σz : ∆ → ∆ such that σz(a) = −zaz−1 for all a ∈ ∆ , z ∈ Hp (Reflection),

ρz : ∆ → ∆ such that ρz(a) = zaz−1 for all a ∈ ∆, z ∈ H (Rotation).

We look at general and concrete examples of quaternionic polynomials in quadratic

and cyclotomic forms.

For the quadratic polynomial P (x) = ax2 + bx+ c with discriminant D = b2 − 4ac;

• If D = 0, the quadratic polynomial has one real root.

• If D > 0, the quadratic polynomial has two real (without any sphere of roots).

• If D < 0, then the quadratic polynomial has no real roots. By the FTA, the

polynomial has m
2
spheres of zeros where m = deg(P (x))− r.

In order to examine the automorphisms of the roots of the quadratic polynomial, we

consider the case where D < 0.

Example 3.12. Consider the general form of quadratic polynomial, P (x) = ax2 +

bx+ c with discriminant D = b2 − 4ac < 0.

The solution of the polynomial becomes x = −b
2a

±
√
b2−4ac
2a

. The polynomial has no real

roots, it means it has one sphere of zeros centered at (−b
2a
, 0, 0, 0). The quaternion roots

of the polynomial on the sphere satisfies q ∈ {−b
2a

+ ui+ vj + wk | u2 + v2 + w2 =

b2−4ac
4a2

}.

Example 3.13. Consider the quadratic polynomial P (x) = x2 + 1

Solution: The above polynomial is the characteristic polynomial of the quaternions
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±i, ±j, ±k.

In this case, this polynomial has zero real roots which means r = 0, deg(P (x)) = 2,

and hence m = 2.

The zeros constitute the unit sphere in the space b, c, d, centered at the origin (0, 0,

0, 0): {bi + cj + dk ∈ H | b2 + c2 + d2 = 1}. Example of such roots are ±i, ±j,

±k, − 1√
2
i+ 1√

2
j, 1√

3
i+ 1√

3
j + 1√

3
k and infinitely many others on the sphere.

We can define the automorphisms on this sphere of zeros. ι : ∆ → ∆ such that

ι(a) = a for all a ∈ ∆ (Identity),

τ : ∆ → ∆ such that τ(a) = a for all a ∈ ∆ (Conjugation),

For reflection, let z = i and a = xi+ yj.

Then σz(xi+yj) = −i(xi+yj)(−i) = −xi+yj. If a = i 1√
2
+j 1√

2
, then σi(i

1√
2
+j 1√

2
) =

−i(i 1√
2
+ j 1√

2
)(−i) = −i 1√

2
+ j 1√

2
.

Rotating such zeros through the same axis space z = i (θ = π, z is pure quaternion),

we have

ρi(i
1√
2
+ j 1√

2
) = i(i 1√

2
+ j 1√

2
)(−i) = i 1√

2
− j 1√

2
.

Example 3.14. Consider the roots of the polynomial P (x) = x2 + x+ 1.

Solution: The discriminant D = b2 − 4ac = 12 − 4 × 1 × 1 = −2, D < 0. The

polynomial has no real roots and hence one sphere of zeros.

Solving for the roots of x2 + x+1 using the quadratic formula, −1
2
± i

√
3
2

is a complex

root of x2 + x+ 1.

If a quaternion is congruent to a complex number with the same real part, then q ∈

{−1
2
+ bi+ cj + dk | b2 + c2 + d2 = 3

4
} is a root of the polynomial.

The sphere of zeros is centered at (−1
2
, 0, 0, 0) such that {−1

2
+ bi + cj + dk | b2 +
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c2 + d2 = 3
4
}.

Hence the roots of P (x) = x2 + x + 1 are on the sphere of zeros such as −1
2
± i

√
3
2
,

−1
2
± j

√
3
2
, −1

2
± k

√
3
2
, −1

2
+ i
√

3
8
+ j
√

3
8
and infinitely many others on the sphere.

We define the first automorphism on the roots as the conjugate of the roots.

Let ∆ be the set of roots of the polynomial P (x) = x2+x+1 on the sphere, we define

the automorphism τ : ∆ → ∆ as τ(a) = a.

It can be verified that the conjugate of each root is on the sphere and also a root of

the polynomial,

−1
2
+ i
√

3
8
+ j
√

3
8
is a root; then τ(−1

2
+ i
√

3
8
+ j
√

3
8
) = −1

2
− i
√

3
8
− j
√

3
8
is on the

sphere and also a root. Confirming this we have;

x2 + x+ 1 = (−1

2
− i

√
3√
8
− j

√
3√
8
)2 + (−1

2
− i

√
3√
8
− j

√
3√
8
) + 1

= (
1

4
+ i

√
3

2
√
8
+ j

√
3

2
√
8
+ i

√
3

2
√
8
− 3

8
+ k

3

8
+ j

√
3

2
√
8
− k

3

8
− 3

8
)

+ (−1

2
− i

√
3√
8
− j

√
3√
8
) + 1

= (−1

2
− i

√
3√
8
− j

√
3√
8
) + (−1

2
− i

√
3√
8
− j

√
3√
8
) + 1

= 0.

We can define a rotation of the roots of the quadratic polynomial P (x) = x2 + x+ 1.

First we need to choose the axis of rotation z which is represented by a unit pure

quaternion and angle of rotation θ. For this example, let z =
√
3
2

+ i1
4
+ j

√
3
4

be the

axis of rotation through which we want to rotate the roots. From the previous lemma,

we can determine the angle of rotation which is tan θ
2
= |t|

|a| where t = i1
4
+ j

√
3
4

and
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a =
√
3
2
. Then θ = π

3
.

As define above, ρz(X) = ZXZ−1, we rotate the root x = −1
2
+ i

√
3
2
, then

ZXZ−1 =

(√
3

2
+ i

1

4
+ j

√
3

4

)(
−1

2
+ i

√
3

2

)(√
3

2
− i

1

4
− j

√
3

4

)

=

(
−3

√
3

8
+ i

5

8
− j

√
3

8
− k

3

8

)(√
3

2
− i

1

4
− j

√
3

4

)

= −16

32
+ i

10
√
3

32
+ j

6

32
− k

12
√
3

32
.

A quick check shows that (10
√
3

32
)2 + ( 6

32
)2 + (12

√
3

32
)2 = 300

1024
+ 36

1024
+ 432

1024
= 768

1024
= 3

4
.

We can confirm that −16
32

+ i10
√
3

32
+ j 6

32
− k 12

√
3

32
is on the sphere and also a root of

the polynomial:

x2 + x+ 1 =

(
−16

32
+ i

10
√
3

32
+ j

6

32
− k

12
√
3

32

)2

+

(
−16

32
+ i

10
√
3

32
+ j

6

32
− k

12
√
3

32

)
+ 1

=

(
256

1024
− i

160
√
3

1024
− j

96

1024
+ k

192
√
3

1024
− i

160
√
3

1024
− 300

1024
+ k

60
√
3

1024

+j
360

1024
− j

96

1024
− k

60
√
3

1024
− 36

1024
− i

72
√
3

1024
+ k

192
√
3

1024
− j

360

1024

+i
72
√
3

1024
− 432

1024

)
+

(
−16

32
+ i

10
√
3

32
+ j

6

32
− k

12
√
3

32

)
+ 1

=

(
− 512

1024
− i

320
√
3

1024
− j

192

1024
+ k

384

1024

)

+

(
−16

32
+ i

10
√
3

32
+ j

6

32
− k

12
√
3

32

)
+ 1
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= 0.

Now we consider the cyclotomic polynomials. The cyclotomic polynomials have

no real roots, hence using the congruence of complex numbers and quaternions we

know that the number of spheres of zeros is |ϕ(n)|
2

. On each sphere of zeros, we can

define automorphisms of roots in terms of conjugation and rotation.

Example 3.15. For the cyclotomic polynomial Φ12(x) = x4 − x2 + 1.

We apply the FTA, Φ12(x) has no isolated roots, hence m = ϕ12 = 4. This means

that Φ12(x) has two spheres of zeros.

The complex primitive roots of Φ12(x) = {e 2πih
12 | 1 ≤ h ≤ 12, gcd(h, 12) = 1},

ϕ12 = [1, 5, 7, 11] which are ( for h = 1, 5, 7, 11)

e
2πi
12 = e

πi
6 = cos(π

6
) + i sin(π

6
) =

√
3
2
+ i

2
,

e
10πi
12 = e

5πi
6 = cos(5π

6
) + i sin(5π

6
) = −

√
3
2
+ i

2
,

e
14πi
12 = e

7πi
6 = cos(7π

6
) + i sin(7π

6
) = −

√
3
2
− i

2
,

e
22πi
12 = e

11πi
6 = cos(11π

6
) + i sin(11π

6
) =

√
3
2
− i

2
.

Applying conjugacy of complex numbers and quaternions, we can easily generate the

quaternion roots of Φ12(x).

From the complex roots
√
3
2
+ i

2
and

√
3
2
− i

2
, the quaternions on the sphere centered at

(
√
3
2
, 0, 0, 0) where q ∈ {

√
3
2
+ bi+ cj + dk | b2 + c2 + d2 = 1

4
} are quaternion roots

of Φ12(x). Such as
√
3
2
+ i

2
,

√
3
2
+ j

2
,

√
3
2
+ k

2
,

√
3
2
+ i√

8
+ j√

8
,

√
3
2
+ i√

12
+ j√

12
+ k√

12

Similarly, from the complex roots −
√
3
2
+ i

2
and −

√
3
2
− i

2
, the quaternions on the sphere

centered at (−
√
3
2
, 0, 0, 0) where q ∈ {−

√
3
2

+ bi + cj + dk | b2 + c2 + d2 = 1
4
} are

quaternion roots of Φ12(x). Such as −
√
3
2
+ i

2
, −

√
3
2
+ j

2
, −

√
3
2
+ k

2
, −

√
3
2
+ i√

8
+ j√

8
,
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−
√
3
2
+ i√

12
+ j√

12
+ k√

12
.

For each of the spheres, the conjugate of each root is also a root in the sphere. As

defined above, we can also rotate the roots in each sphere to get another root in the

sphere.

We choose the axis of rotation z which is represented by a unit pure quaternion and

angle of rotation θ. For this example, let Z = 1
2
+ k

√
3
2

be the axis of rotation through

which we want to rotate the roots from the sphere centered at (−
√
3
2
, 0, 0, 0) where

q ∈ {−
√
3
2

+ bi + cj + dk | b2 + c2 + d2 = 1
4
}. From the previous lemma, we can

determine the angle of rotation which is tan θ
2
= |t|

|a| where t = k
√
3
2

and a = 1
2
. Then

θ = 2π
3
.

As define above, ρz(X) = ZXZ−1, we rotate the root x = −
√
3
2
+ i

2
, then

ZXZ−1 =

(
1

2
+ k

√
3

2

)(
−
√
3

2
+

i

2

)(
1

2
− k

√
3

2

)

=

(
−
√
3

4
+

i

4
− k

3

4
+ j

√
3

4

)(
1

2
− k

√
3

2

)

= −
√
3

2
− i

4
+ j

√
3

4
.

Which is a root on the sphere. We can also check that Φ12(−
√
3
2
− i

4
+ j

√
3
4
) = 0

Example 3.16. For the cyclotomic polynomial Φ13(x) = x12 + x11 + x10 + x9 + x8 +

x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1.

Solution:

Applying the FTA, Φ13(x) has no isolated roots, hence m = ϕ(13) = 12. This means

that Φ13(x) has six spheres of zeros.

The complex primitive roots of Φ13(x) = {e 2πih
13 | 1 ≤ h ≤ 13, gcd(h, 13) = 1},
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ϕ13 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] which are ( for h = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12)

e
2πi
13 = cos(2π

13
) + i sin(2π

13
), e

4πi
13 = cos(4π

13
) + i sin(4π

13
), e

6πi
13 = cos(6π

13
) + i sin(6π

13
),

e
8πi
13 = cos(8π

13
) + i sin(8π

13
), e

10πi
13 = cos(10π

13
) + i sin(10π

13
), e

12πi
13 = cos(12π

13
) + i sin(12π

13
),

e
14πi
13 = cos(14π

13
) + i sin(14π

13
), e

16πi
13 = cos(16π

13
) + i sin(16π

13
), e

18πi
13 = cos(18π

13
) + i sin(18π

13
),

e
20πi
13 = cos(20π

13
) + i sin(20π

13
), e

22πi
13 = cos(22π

13
) + i sin(22π

13
), e

24πi
13 = cos(24π

13
) + i sin(24π

13
).

Applying conjugacy of complex numbers and quaternions, we can easily generate the

quaternion roots of Φ13(x) for each sphere of roots.

From the complex roots cos(2π
13
) + i sin(2π

13
) and cos(24π

13
) + i sin(24π

13
), the quaternions

on the sphere centered at (cos(2π
13
), 0, 0, 0) where q ∈ {cos(2π

13
) + bi+ cj + dk | b2 +

c2 + d2 = (sin(2π
13
))2} are quaternion roots of Φ13(x).

From the complex roots cos(4π
13
) + i sin(4π

13
) and cos(22π

13
) + i sin(22π

13
), the quaternions

on the sphere centered at (cos(4π
13
), 0, 0, 0) where q ∈ {cos(4π

13
) + bi+ cj + dk | b2 +

c2 + d2 = (sin(4π
13
))2} are quaternion roots of Φ13(x).

From the complex roots cos(6π
13
) + i sin(6π

13
) and cos(20π

13
) + i sin(20π

13
), the quaternions

on the sphere centered at (cos(6π
13
), 0, 0, 0) where q ∈ {cos(6π

13
) + bi+ cj + dk | b2 +

c2 + d2 = (sin(6π
13
))2} are quaternion roots of Φ13(x).

From the complex roots cos(8π
13
) + i sin(8π

13
) and cos(18π

13
) + i sin(18π

13
), the quaternions

on the sphere centered at (cos(8π
13
), 0, 0, 0) where q ∈ {cos(8π

13
) + bi+ cj + dk | b2 +

c2 + d2 = (sin(8π
13
))2} are quaternion roots of Φ13(x).

From the complex roots cos(10π
13

)+ i sin(10π
13

) and cos(16π
13

)+ i sin(16π
13

), the quaternions

on the sphere centered at (cos(10π
13

), 0, 0, 0) where q ∈ {cos(10π
13

)+ bi+ cj+dk | b2+

c2 + d2 = (sin(10π
13

))2} are quaternion roots of Φ13(x).
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From the complex roots cos(12π
13

)+ i sin(12π
13

) and cos(14π
13

)+ i sin(14π
13

), the quaternions

on the sphere centered at (cos(12π
13

), 0, 0, 0) where q ∈ {cos(12π
13

)+ bi+ cj+dk | b2+

c2 + d2 = (sin(12π
13

))2} are quaternion roots of Φ13(x).

Similarly, for each of the spheres, the the conjugate of each root is also a root in the

sphere. As defined above, we can also rotate the roots in each sphere to get another

root in the sphere.

Also, we can define a mapping from one sphere of zeros to another sphere of zeros.

Let Υ be the set of spheres of zeros of a quaternionic polynomial. Suppose there

are m spheres of zeros; S1, S2, . . . Sm. We can define the mapping φ : Υ → Υ by

φ(Si) = Si × wk
n = Sj, where Si, Sj ∈ Υ, 0 ≤ k ≤ m− 1, wn is an nth root of unity.

When k = 0, the sphere of zeros is mapped to itself.

Example 3.17. Consider the cyclotomic polynomial Φ12(x) = x4 − x2 + 1 =

Φ12(x) has two spheres of zeros, S1 centered at (
√
3
2
, 0, 0, 0) with the zeros q ∈ {

√
3
2
+

bi + cj + dk | b2 + c2 + d2 = 1
4
} and S2 centered at (−

√
3
2
, 0, 0, 0) with the zeros

q ∈ {−
√
3
2
+ bi+ cj + dk | b2 + c2 + d2 = 1

4
}.

With appropriate k and wn, when k = 1, wn = eπi = −1, then φ(S1) = S1×−1 = S2.

Similarly φ(S2) = S2 ×−1 = S1

Example 3.18. Consider the cyclotomic polynomial Φ20(x) = x8 − x6 + x4 − x2 + 1

We determine the zeros of the polynomial using the primitive roots approach.

ϕ(20) = {1, 3, 7, 9, 11, 13, 17, 19}. The primitive roots of Φ20(x) are e
πi
10 , e

3πi
10 , e

7πi
10 ,

e
9πi
10 , e

11πi
10 , e

13πi
10 , e

17πi
10 and e

19πi
10 . This polynomial has four spheres of zeros; S1 de-

termined by e
πi
10 and e

19πi
10 centered at (cos( π

10
), 0, 0, 0) with q ∈ {cos( π

10
) + bi + cj +

dk | b2 + c2 + d2 = (sin π
10
)2},
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S2 determined by e
3πi
10 and e

17πi
10 centered at (cos(3π

10
), 0, 0, 0) with q ∈ {cos(3π

10
) + bi+

cj + dk | b2 + c2 + d2 = (sin3π
10
)2},

S3 determined by e
7πi
10 and e

13πi
10 centered at (cos(7π

10
), 0, 0, 0) with q ∈ {cos(7π

10
) + bi+

cj + dk | b2 + c2 + d2 = (sin7π
10
)2},

S4 determined by e
9πi
10 and e

11πi
10 centered at (cos(9π

10
), 0, 0, 0) with q ∈ {cos(9π

10
) + bi+

cj + dk | b2 + c2 + d2 = (sin9π
10
)2},

For k = 1 and wn = e
2πi
10 , φ(S1) = S1 × e

2πi
10 = S2. For k = 2, wn = e

4πi
10 ,

φ(S1) = S1 × (e
4πi
10 )2 = S4.
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4 FUTURE WORK

Automorphisms of roots of quaternionic polynomials are an important topic of

research in the field of algebra and its applications. There is much more research that

can be done in the area of root automorphisms of quaternionic polynomials.

One possibility for future work would be to prove the structure of automorphisms of

roots of quaternionic polynomials. This involves studying the properties and charac-

teristics of automorphisms of roots of quaternionic polynomials which could lead to

a better understanding of the structure of these automorphisms and their behavior.

Also one can explore the relationship between automorphisms of roots of quaternionic

polynomials and the geometry of quaternions. The geometry of quaternions is a rich

and interesting topic, and understanding the relationship between automorphisms

of roots of quaternionic polynomials and quaternionic geometry could lead to new

insights.
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