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ABSTRACT

Finding a Representative Distribution for the Tail Index Alpha, α, for Stock Return

Data from the New York Stock Exchange

by

Jett Burns

Statistical inference is a tool for creating models that can accurately display real-world

events. Special importance is given to the financial methods that model risk and large

price movements. A parameter that describes tail heaviness, and risk overall, is α.

This research finds a representative distribution that models α. The absolute value

of standardized stock returns from the Center for Research on Security Prices are

used in this research. The inference is performed using R. Approximations for α

are found using the ptsuite package. The GAMLSS package employs maximum

likelihood estimation to estimate distribution parameters using the CRSP data. The

distributions are selected by using AIC and worm plots. The Skew t family is found

to be representative for the parameter α based on subsets of the CRSP data. The

Skew t type 2 distribution is robust for multiple subsets of α̂ values calculated from

the CRSP stock return data.
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1 INTRODUCTION

Statistical inference, especially in the late 20th century, has relied heavily on the

work of Carl Friedrich Gauss and Louis Bachelier. Around 1900, Bachelier developed

a random walk model based on probability theory, which laid the foundation for

Brownian motion and what became known as the ‘normal distribution’ [19]. He used

this to model bets on coin tosses, and then option prices in the financial market; his

thesis went relatively unnoticed until 1964, when it was translated to English and

became a cornerstone of 20th century economics and finance [19]. The late 1900s,

especially the 1970s, stands out as a distinct period for the creation of financial

models. For instance, the Markowitz portfolio theory, the Bachelier market model,

the Sharpe asset-pricing, the Capital Asset Pricing Model and its modifications, and

the Black-Scholes formula, among others, remain valuable tools in finance [18] [23]

[27]. Since the tools’ inception, they have been continually modified using stable

distributions, computational mathematics, and software-based modeling [23].

For example, a Gaussian distribution allows for an event outside of three standard

deviations, ‘3σ’, to happen approximately 0.13% of the time [19]. Historical data for

the Standard and Poor’s 500 index indicate that ‘3σ’ events happened at an almost

1% frequency, 8 times the Gaussian prediction [19][31]. Eugene Fama, a student of

Mandlebrot, investigated the 30 stocks in the Dow Jones Industrial index one-by-one,

finding that price changes of five standard deviations or more occurred two thousand

more times than expected, or, to quote Mandlebrot, “you should have encountered

such drama only once every seven thousand years; in fact, . . . it happened once every

three or four years” [9] [19]. In the currency market, there is research by Citigroup

that found many price changes outside of the ‘3σ’ boundary, the largest being a

9



‘10.7σ’ event, which under Gaussian odds, to quote Mandlebrot again, “would not

have happened once if Citigroup had been trading dollars and yen every day since

the Big Bang 15 billion years ago” [9] [19].

A graph of daily price changes of the Dow Jones Industrial Average index is

found in Figure 1. The graph contains the size of changes in standard deviations

on the horizontal axis, and the frequency of these changes on the vertical axis [19].

The black bars are the real-world data, and the grey are the Gaussian simulation.

The data is right-skewed, and the Gaussian simulation fails to account for the heavy

tails. Evidently, as the preceding examples explain, there is a fundamental issue

with the ‘normal distribution’, especially when applied in the complex setting of

financial modeling [19] [26]. This research focuses on compiling data on stock returns,

estimating the heaviness of the tail index, and then finally, finding a representative

distribution for the tail index. In order to do this, there must be a discussion of the

family of stable distributions.

Figure 1: Dow Jones Index vs Gaussian Simulation, found in [19]
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1.1 Alpha-Stable Distributions

As will be discussed later, Figure 1 is integral to this research. Overall, the

Gaussian problem, or ‘normal distribution’ problem, has been identified by financial

modelers and academics for some time [26]. The Gaussian distribution is one of

three special cases of a ‘stable distribution’, the others being the Cauchy distribution

and the Lévy Distribution [26]. A stable distribution is defined as the following: If

X0, X1, and X2 are independent, identically distributed (iid) random variables, then

the distribution of these random variables is ‘stable’ if for every pair of positive real

numbers, a and b, there exists a positive c and real d so that cX0 + d is distributed

the same as aX1 + bX2 [8].

Alpha-Stable distributions are specified by four parameters [8] [13]. We can write

a stable distribution as follows: Xs ∼ (αs, β, µ, σ), using the notation of Taleb [26].

We will define each parameter as follows: αs is the stability index for αs ∈ (0, 2], also

known as the tail index, which determines tail behavior; β is the skewness parameter

for β ∈ [−1, 1], which indicates a right skew for positive β, a left skew for negative β,

and symmetry at 0; µ is the shift parameter, which measures the shift of the mode

or rather the ‘peak’ of the distribution; σ is the scale parameter, which is a positive

number determining the width and dispersion [14]. Besides the three special cases of

Gaussian, Cauchy, and Lévy, the probability density function (PDF) and cumulative

distribution function (CDF) of stable distributions do not have a closed form [15][26].

The Gaussian distribution has parameters αs = 2 and β = 0, with µ and σ. [14] The

Cauchy distribution has parameters αs = 1 and β = 0, with µ and σ [15]. The Lévy

distribution has parameters αs = 1/2 and β = 1, with µ and σ [14].

Figure 2 shows the three cases where β = 0 for the Gaussian and Cauchy and
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Figure 2: The 3 Special Cases of Alpha-Stable Distributions, from [15]

β = 1 for the Levy, µ = 0 and σ = 1, with Gaussian being blue, Cauchy being

green, and Lévy in red [15]. Stable distributions have heavy tails, except for the

Gaussian, making stable distributions more appropriate for modeling systems that

behave randomly or involve risk [26]. The red line in Figure 2 bears a resemblance

to the behavior of the black bars in Figure 1. Of particular interest is the Lévy

distribution and similar generalized distributions, as they have become widely applied

in quantitative finance as a solution to the Gaussian problem described above [14]

[15] [26] [19].

1.2 The Lévy Distribution and the Applications of Stable Distributions in

Quantitative Finance

The Lévy distribution is named after mathematician Paul Lévy, who began much

of the work on stable distributions [19] [26]. Mandlebrot worked extensively with

these distributions; he termed stable distributions with 1 < αs < 2, and β = 1 as

‘Pareto- Lévy distributions’ and found these better for financial markets than the
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Gaussian distribution [19]. The PDF of the Lévy distribution with αs =
1

2
and β = 1

is as follows:

fx(x|µ, σ,
1

2
, 1) =

( σ

2π

)1/2 1

(x− µ)3/2
e−

σ
2(x−µ) ,

where µ < x < ∞ [2] [14] [18].

As discussed, financial engineers have attempted to fix the ‘Gaussian problem’

with the family of stable distributions with αs < 2 [19] [26] [32]. Specifically, Lévy

and Pareto-Lévy distributions and processes, such as Brownian motion with drift,

Poisson and compound Poisson jump processes, and pure jump Lévy processes have

all been applied in quantitative finance, with examples such as Wu [31], Todorov and

Tauchen [27], Figueroa- López [11], [18], Choi and Yoon [6], Hirsa and Neftci [12],

Choudhry [7], and Xiong [32].

Wu states that a Lévy process that generates an infinite number of jumps is

more suitable to capture daily changes in financial securities [31]. In addition, Wu

concludes that infinite-activity jumps perform better than finite-activity jumps, and

that 1 ≤ αs < 2 generates sample paths with infinite variation, which provides smooth

transitions from large jumps to small jumps to continuous movement [31]. Wu closes

by describing Lévy processes as integral to modern finance, and that different Lévy-

based models can be used to model both continuous and discontinuous movement

[31].

Most of the other technical research is driven by modeling price behavior using

Lévy processes, like Todorov and Tauchen, who introduce a bivariate mixture of

Gamma models for driving the Lévy process [27].
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The main interest in describing the Lévy distribution is to focus on the param-

eter αs, the tail index. The tail index is the parameter of interest in this research

because of the significance α holds with modern financial models, portfolio risk anal-

ysis, and Lévy processes [20] [17]. Therefore, a focus on modeling α is the beginning

of developing and influencing models for financial risk as a whole [20].

1.3 The Tail Index Alpha

The tail index α measures the heaviness of the tail of the distribution, and thus

α helps measure the risk of a large price movement for a financial asset [20] [26] [22].

According to Mittinik, it may be more beneficial to approximate the tail index alpha

for a financial asset directly, rather than model the entire distribution [20].

Therefore, α is generally regarded as a tool to model the risk of large movements

in the price of a financial asset and its value plays an integral role in the modeling

of financial risk [17] [20]. The consequences of an unexpected downside event in

financial markets can have drastic effects in the real-world economy [30]. Naturally,

individuals, private businesses, and governments have a vested interest to prepare for

any potential downside events [30].

This research intends to fortify the complex models described above by finding

a representative distribution for the tail index α overall by using a software-based

approach to stock returns obtained from the New York Stock Exchange. Ultimately,

the α parameter inside of the models described above or new models can be viewed as

a random variable based on the representative distribution found by using real data.

Thus, there are two research questions proposed here:
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1. Using numerical estimation methods, can estimates for α be obtained, and are

these α’s approximately .50, akin to the Lévy distribution?

2. Can a representative distribution, and the estimated parameters of that distri-

bution, be found that can accurately model α?

In order to answer both of these questions, there must be a discussion on the

numerical approach to the data using R statistical software.

1.4 Review of Software Based Approaches

Using the statistical software R, numerical approximation was used to estimate

the tail index, denoted α̂, and numerical searches were used to develop representative

models for α̂. R is an open source programming language used predominantly in

academia because of its ease of use and versatility. The foundation of R is built with

the development of specific packages and functions for specific problems, especially

when there are no present functions available.

R was introduced in 1996, built upon the software S, and became publicly available

in 2000 with version 1.0.0 [16]. This research is done solely in R version 4.1.2. R

packages can be built by individuals or institutions and can be accessed on the R

repository for public use. There are two main packages that are used in this research.

For a full list of R packages used here, and for all the code used to find the results,

see appendix.

1.5 Use of the ptsuite Package

The package ptsuite was built by Ranjiva Munasinghe, Pathum Kossinna, Dovini

Jayasinghe, and Dilanka Wijeratne with the specific intention of finding estimates for
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the tail index α̂ of heavy-tailed distributions [21]. The team behind ptsuite devel-

oped unique functions that would estimate α using multiple different approximation

methods [21]. In this research, the numerical approximation of α was performed using

the geometric mean modified percentile method of Bhatti that was built inside of the

package ptsuite [5]. The geometric mean modified percentile method (GMMP) did

not perform as well in Bhatti’s Monte Carlo simulations compared to other percentile

methods and maximum likelihood methods. [5] However, when the GMMP method

was performed and compared to the other methods for the data in this research, the

GMMP method was the best performer. Performance was judged based on miscal-

culations or outlying observations by the approximation method. Additionally, the

geometric mean has long been used in quantitative finance for calculations involving

data that may not be independent or time-series. [28]. Thus, it was determined

that α estimation for this research would be done using the geometric mean modified

percentile estimator. The equation 1 is the approximation method for α̂ [21]. For

clarity, α represents the unknown true value of the parameter, and α̂ represents the

estimated tail index specific to the data. The equation can found on page 4 of [21].

α̂ =
1− ln(4)

1
N

∑N
i=1 lnxi − ln(P ∗

75)
(1)

We have that P ∗
q is the qth percentile of the data [21]. Percentiles are the recom-

mended approach for parameter approximation; the idea behind percentiles begins

with equating two values of the cumulative distribution function with the respective

percentiles and then solving for the unknown parameters [5]. See both [5] and [21]

for more details.
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1.6 Use of the GAMLSS Package

The Generalized Additive Models for Location, Scale, and Shape (GAMLSS) pack-

age and model procedure were developed by Robert Rigby, Mikis Stasino- poulos,

Calliope Akantziliotou, and others in 2005 to overcome limitations associated with

the Generalized Linear and the Generalized Additive Models at the time [29].

Specifically, GAMLSS utilizes Maximum Likelihood Estimation procedures and

numerical search methods to find estimates for parameters and fit distributions over

quantitative data sets [24]. Below is an example of the Maximum Likelihood Es-

timation procedure under GAMLSS for the gamma distribution. Theoretically, the

data in this example will be fit to a two parameter gamma distribution, defined as

GA(µ, σ) [24].

Let GA(µ, σ) be defined with the following probability density function:

y1/σ
2−1e−y/(σ2µ)

(σ2µ)1/σ2Γ(σ−2)

The mean, E(Y ) = µ, and the variance, V ar(Y ) = σ2µ2 are also defined [24].

Now, the likelihood function can be developed in the following way:

L(µ, σ) = Πn
i=1

1

(σ2µ)1/σ2

y
1/σ2−1
i e−yi/(σ

2µ)

Γ(1/σ2
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Likewise, the log-likelihood is defined as:

ℓ(µ, σ) =
n∑

i=1

[− 1

σ2
(log σ2 + log µ) + (σ−2 − 1) log(yi)−

yi
σ2µ

− log Γ(σ−2)]

= − n

σ2
(log σ2 + log µ)− n log Γ(σ−2) + (σ−2 − 1)

n∑
i=1

log yi −
∑n

i=1 yi
σ2µ

In Maximum Likelihood Estimation, the derivations are typically easier to handle

with the log-likelihood [24]. The next step in the MLE process is to take derivatives

of the log-likelihood with respect to each of the parameters [24]. In this case, the

derivative is taken with respect to µ and σ.

∂ℓ(µ, σ)

∂µ
=

∑n
i=1 yi − nµ

σ2µ2

∂ℓ(µ, σ)

∂σ
=

2

σ3
[(

∑n
i=1 yi
µ

)− (
n∑

i=1

log yi) + n log(µ) + n log(σ2)− n+ nΨ(
1

σ2
)],

where Ψ(x) =
d

dx
log Γ(x) [24]. In order to find the maximum likelihood estimate

(MLe) for each of the parameters, the derivatives for each parameter are set equal to

zero and solved [24]. Analytically, µ̂ = ȳ can be found [24]. However, σ̂ cannot be

found using a closed form, and thus must be found using numerical search methods

[24]. The numerical search methods involves searching along a vector of values and

finding the value which minimizes the equation in terms of absolute value, therefore
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finding the value for which the equation equals zero [29]. The package GAMLSS,

and the included functions, are built specifically to streamline the process for Maxi-

mum Likelihood Estimation of parameters for many different distributions [29]. For

example, using the function gamlssML(), the likelihood functions, derivatives, and

numerical searches are performed internally, especially since many of the distributions’

log-likelihood derivations do not have closed forms, like the gamma distribution ex-

ample above [29] [24]. This numerical search procedure will be employed in order to

find the representative distribution of α̂, and the parameters for the distribution. For

more information, please refer to [24] [29].

The Akaike information criterion is used for comparing models to one another.

There are many model selection techniques, including the Schwarz Bayesian criterion

(SBC); however, the AIC is chosen for this research since it is generous in model selec-

tion [24]. While this can create complicated models, the AIC’s generosity is favorable

for situations where the distribution and parameters are completely unknown [24].

The AIC value has no meaning on its own, but has meaning when compared to other

AIC values for the same data, and the typical rule is the smallest value indicates

the best model fit [29]. In addition, checking the normalized quantile residuals using

worm plots, which are detrended Q-Q plots and found using the function wp(), pro-

vides guidance as to the model fit [24]. Worm plots provide approximate 95% bands,

represented as dotted lines, and plot the observations’ residuals based on deviance

from 0 [24]. The larger each observations deviance from zero then the less a fitted

model is representing the data [24].

The Generalized Likelihood Ratio (GLR) test is used to describe the significance of

parameters in models that are nested [29]. That is, one model is a complex extension
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of another; the GLR test determines if the parameters of the complex model are

useful [24]. For instance, let M1 and M2 be two models, where M1 is nested within

M2 [24]. Therefore, M1 is the simpler model and M2 is the more complex model [24].

The hypothesis test becomes [24]:

1. H0 : M1

2. H1 : M2

Both of these models have fitted likelihood functions, L̂1 and L̂2, respectively [24].

Thus, the likelihood ratio is LR =
L̂1

L̂2

[24]. The GLR test statistic becomes:

Λ = −2 log(LR)

There is an asymptotic distribution Λ ∼ χ2
d [24]. Since this data is based explicitly

on data with no explanatory variable, the null hypothesis will be rejected if Λ ≥ 3.84,

which corresponds to χ2
1 [24].
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2 THE DATA AND DATA CLEANING PROCESS

The research questions proposed in Section 1.3 require financial data that is both

significant in the amount of observations and significant in the relevance that the

parameter α would provide. Thus, it was determined that data on stocks, specifically

the standardized returns on stocks, would be appropriate for analysis; the parameter

α would provide an estimate on the tail risk for large movements in the stock, as

measured by the standardized return [17] [28]. Standardized returns represent the

financial return on a certain stock, standardized over time for analysis of financial

performance [1].

All calculations of α̂ were calculated based on stock return data from Center

for Research in Security Prices (CRSP) at the University of Chicago Booth School

of Business [1]. The data begins at the date 01/04/1926 and ends with the date

12/31/2020 for a sample of 1642 stocks in the New York Stock Exchange (NYSE),

resulting in 25,044 entries in the data set. However, not all the stocks in the data set

have been actively traded since 1926, resulting in incomplete columns of data for a

large proportion of the stocks. In the data set, there is a −77, −88, −99 or similar

value, in the place of the missing data. Because of these values, unique functions were

written to go column by column and remove these values in order to have a column

of data that was just the stock returns themselves. See appendix for these functions.

Additionally, the focus on the α parameter implies that the interest is on strictly

price swings; whether the swings are in the positive or negative direction are not

of particular interest. Likewise, returns that are approximately zero cannot be used

since this implies no price movement, and the zeros cannot be used in the estimation

of α using (1) [21]. Thus, the final data column for each stock is the absolute value of
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the standardized return (AVSR) for each trading day since the stock’s introduction

on the NYSE, excluding those returns that are approximately zero. This process will

be referred to as the data cleaning process.

2.1 Example of the Process using Altria Group

For example, the histogram of the AVSR for Altria Group, ticker symbol MO,

is found in Figure 3. The histogram in Figure 3 is extremely right skewed, with a

minimum value of 0.000062, a median value of 0.009075, and a maximum value of

0.28, with a total of 22, 690 observations. Thus, we can define this as a distribution

with a heavy tail [26]. It is the tail of this distribution in Figure 3 for which an

estimate for α, designated as α̂ once it is assigned a value, will be obtained in order

to attempt to describe the heaviness of the tail with a singular parameter estimate

[17]. For instance, using (1), Altria group has an α̂ = 0.5815435. While this value has

meaning on its own, it is important to analyze this value compared to other α values

in the data set. This process of data cleaning and α̂ estimation will be repeated for

each stock in the data set, allowing for the distribution of the α̂’s to be analyzed.
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Figure 3: Histogram of the Absolute Value Standardized Return for MO

2.2 Use of Different Sample Sizes

The data cleaning process implies that each α̂ value will be calculated with differ-

ent sample sizes for each stock, depending on when that stock was introduced on the

NYSE. In order to account for this, a unique function called lengthfunc() was written

to record the number of observed values for each stock after the cleaning process has

taken place. Therefore, this function can be used to find stocks that share a certain

amount of observations and enable the partitioning of the data set into subsets where

each subset has the same amount of observations per stock. However, this process

will sacrifice overall sample size in order to equalize the observations. For clarity,

following notation will be used in reference to the data and subsets of the data:

1. sn = the number of stocks in the data set, or subset of the data
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2. so = the number of observations for each stock in a subset of the data

For example, for the overall data set, sn = 1642, but so varies for each stock.

Using the function lengthfunc() and the indexing process in R, 3 subsets of the data

were created. See appendix for details. The subsets are as follows:

1. A subset containing so = 2500, and sn = 1284.

2. A subset containing so = 5000, and sn = 905.

3. A subset containing so = 10000 and sn = 270

Increasing the so threshold limits sn, the number of stocks that can be analyzed.

There were subsets past the so value of 10, 000 created, but this decreased the sn value

so much that statistical inference did not seem appropriate. The interest and purpose

for creating the subsets is three-fold: first, ensuring a model was created based on an

equal number of observations for each α̂, second, comparing these models together

and to the model with different sample sizes, and finally, to see if similar results

appear for each of the four models.

2.3 Creating the α̂ Vectors

Each of these subsets and the original data were analyzed to create the vector of α̂

values that correspond to each stock in the data set, such as Figure 3. The α̂ vectors

were used inside the gamlssML() function to create a GAMLSS object [29]. This

object is used for the numerical search to find the most approrpiate distribution and

the MLe’s for the parameters of that distribution [24] [29].

Each model was named in R, using the following format: m0 represents the model

created using the entire data set with varying so values, m1 represents the model
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created using the so = 2500 subset, m2 represents the model created using the so =

5000, and finally m3 represents the model created using the so = 10000 subset.

There are two unique function written to find the α̂ for each stock, called alpha estimate()

and alpha estimate2(), each with the same basic application. The input would be

a column of data, and the output would be the α̂ value using (1). This function

was applied in conjunction with the lapply() function, which allowed for each column

(stock) of the data sets to be recognized, α̂ to be calculated, and the output be a

vector containing sn number of α̂ values. See appendix for details. This process

was repeated to create an α̂ vector corresponding to the data set overall and to each

subset. These sets of α̂ vectors will be labeled with a subscript corresponding to the

subscript of mi for each subset. Thus, α̂0 will correspond to the α̂ vector used to

create the m0 model, the model with varying so values. Likewise, α̂1 will correspond

to the α̂ vector used to create the m1 model, the model with so = 2500.

During this process of creating these vectors, there were some data irregularites

that made it past the cleaning process that was intended when using the lengthfunc()

and indexing procedures. For example, when creating the α̂1 vector, there were issues

with some of the α̂ estimates. The α̂1 vector contained three NaN values for columns

48, 63, and 147 in the so = 2500 data subset. Additionally, columns 23 and 1157

returned α̂ estimates of −1.968654 and 6.865167, which are well outside the assumed

standard for stable distributions and their tails [14]. Upon further investigation, these

estimates were the result of stocks that made it through the cleaning process that

did not have 2500 observations, with −77 as a value for missing observations, which

skewed the α̂ estimate for these two columns. These two columns were removed,

along with the columns that produced NaN values. This same process of amending
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the α̂ vector after it was calculated was repeated for each subset, although the other

subsets had far less issues with α̂ estimation and NaN values.

The data cleaning process and the creation of the α̂ vectors produced four sets of

α̂ values, one for the original data set with differing so values, and three corresponding

to each of the subsets partitioned by the so threshold. The α̂ vectors are noted as α̂0

for the original data set, and then α̂1, α̂2, and α̂3 for each of the subsets, respectively.

These four sets are used to estimate representative distributions for α overall.
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3 METHODOLOGY AND R IMPLEMENTATION

3.1 The m0 Model with Varying so Values

Beginning with m0, the model with varying sample sizes, the α̂0 vector was used

as the input into gamlssML() function to create a GAMLSS object. Next, the

chooseDist() function employed the Maximum Likelihood Estimation process dis-

cussed in Section 1.6. This process fit 29 distributions in total, and the AIC values

for each are found using the getOrder() function [29]. Importantly, the selection

procedure will be performed with the following guidelines: comparing each model’s

AIC value, creating worm plots, and if necessary, examining the model’s parameter

significance. Parameter significance will be discussed in detail in Section 4, including

parameter estimates for the final selected models. The guidelines were decided due

to the close proximity of many of the AIC values in the following results, and the

analysis of worm plots played a significant role in model selection. Going forward,

the three models with the lowest AIC values will be analyzed, including the worm

plots for each. See appendix for more details and code used for model selection. The

final models selected in this section are discussed in detail in Section 4.

The histogram of the α̂0 values can be found in Figure 4. Overall, there are 1642

α̂0 values.
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Figure 4: Histogram of the α̂ values for the varying sample size data set

According to AIC value, the top two distributions to fit this data were the Skew

Exponential Power type 2 (SEP2) and the Skew t type 3 (ST3), with AIC values

−5513.77 and −5512.18, respectively. The Skew Student t (SST) distribution is third

with an AIC value of −5512.18. The SST distribution is a reparameterization of the

ST3 distribution, thus the fit for both are the same, although the parameters may

differ [24]. The final model for the α̂0 is discussed in detail in Section 4.1.

The worm plots for the SEP2 model, the ST3 model, and the SST model are found

in Figure 5, Figure 6, and Figure 7 respectively.
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Figure 5: Worm Plot for the m0 SEP2 model
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Figure 6: Worm Plot for the m0 ST3 model
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Figure 7: Worm Plot for the m0 SST model
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In the comparison of these three plots, which each lend credence to the individual

models’ overall fit to the α̂0 values, there is more deviance from 0 in the SEP2 model

than in the ST3 model. The dotted lines represent approximate 95% level confidence

bands [24]. All of the observation points fall within these bands for the ST3 model,

whereas in the SEP3 model, there is a strong dip which seems to violate the confidence

band, in addition to a strongly outlying observation on the right hand side of the

graph. Both of these considered and in comparison with the ST3 model plot, the ST3

model seems to actually have a more robust fit on the data. The SST worm plot is

nearly identical to the ST3 model. Thus, the ST3 model is chosen to represent the

α̂0 data.

3.2 The m1 Model with so = 2500

Figure 8: Histogram of the α̂1 values for so = 2500 subset
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The m1 model is fit using the partition of the α̂1 vector of values with so = 2500,

thus making sn = 1284. After creating the m1 GAMLSS object and fitting it using

gamlssML(), the getOrder() function is used to order the distributions by AIC value.

The histogram of the α̂1 values can be found in Figure 8. Overall, there are 1284

α̂1 values. The top three distributions are as follows: the Skew t Azzalini type 1

distribution (ST1) has AIC value −5320.814 and the worm plot is shown in Figure

9, the Skew t type 5 distribution (ST5) has AIC value −5320.810 and the worm

plot is shown in Figure 10, and the Johnson SU original distribution has AIC value

−5320.435 and the worm plot is shown in Figure 11.
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Figure 9: Worm Plot for the m1 ST1 model
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Figure 10: Worm Plot for the m1 ST5 model
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Figure 11: Worm Plot for the m1 JSUo model
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After examining all three worm plots and comparing the AIC values for each of the

distributions, the ST1 distribution is chosen for the α̂1 values. The ST1 distribution

shows the least deviance in the observations in the worm plot, which makes it a

suitable distribution along with the the model having the best overall AIC value [24].

The fitted model is discussed in Section 4.2.

3.3 The m2 Model with s0 = 5000

Figure 12: Histogram of the α̂2 values for so = 5000 subset

The m2 model is fit using the α̂2 vector with so = 5000, thus making sn = 905.

The histogram of the α̂2 values can be found in Figure 12. Overall, there are 905 α̂.

The getOrder() function returned the Skew t Azzalini type 2 (ST2) distribution as the

distribution with the lowest AIC value, −4169.4904. The next five distributions fit for
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this distribution are all members of the Skew t family of distributions, including ST5,

ST3, SST, and ST1. The worm plot for the m2 model fit with the ST2 distribution is

found in Figure 13. The AIC values for the ST5 distribution and ST3 distribution are

−4167.6077 and −4164.1521, and the worm plots are found in Figure 14 and Figure

15, respectively.
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Figure 13: Worm Plot for the m2 ST2 model
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Figure 14: Worm Plot for the m2 ST5 model
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Figure 15: Worm Plot for the m2 ST3 model
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The worm plots for ST5 and ST3 show more deviance of the residuals for the

respective models. The y-axis in Figure 14 had to be extended in order to capture

the deviating observations. Thus, The ST2 distribution is chosen to represent the α̂2

set of values based on the AIC value and the worm plot for the model.

3.4 The m3 Model with s0 = 10000

The m3 model is fit using the partition of the data set with so = 10000, thus

making sn = 270. The histogram of the α̂3 values can be found in Figure 16. Overall,

there are 270 α̂3 values. The getOrder() function returned the Skew t Azzalini type

2 as the distribution with the lowest AIC value, −1020.9639, followed by the Skew

t type 3 with an AIC value −1020.84, and by Skew Student t with an AIC value

−1020.8436. The worm plots for the the ST2, the ST3, and the SST fits are given in

Figure 17, Figure 18, and Figure 19, respectively.

Figure 16: Histogram of the α̂3 values for so = 10000 subset
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Figure 17: Worm Plot for the m3 ST2 model
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Figure 18: Worm Plot for the m3 ST3 model
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Figure 19: Worm Plot for the m3 SST model
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While the differences are subtle, there is more deviation in the ST3 worm plot than

in the ST2 worm plot, and likewise for SST. Again, the SST and ST3 distributions

are closely related, and their fits are virtually identical [24] [10]. Analyzing these

plots, and the respective AIC values leads the ST2 distribution to be chosen for the

α̂3 values.

3.5 Discovering a Final Model Overall

Although there is a decrease in the sample size, sn, for the α̂2 and α̂3 subsets,

the fitting procedures still lead to a distribution within the Skew t family, the ST2

distribution. The significance of this pertains to the robustness of the ST2 distribution

and its application to larger sample sizes. It is possible that the ST2 distribution could

be a proper distribution to model α for each set of data. In order to investigate this,

the getOrder() function was used on the m0 and m1 GAMLSS model objects; the

AIC value for the ST2 distribution is within 8.462 units of the top distribution for

the m0 model and within 1.409 units of the top distribution for the m1 model.

If the discussion divulges into choosing a final model for α overall, regardless of

sample size, then the ST2 distribution seems a suitable candidate. Thus, worm plots

for both the α̂0 and α̂1 fit with the ST2 distribution for the purpose of establishing a

definitive final distribution. These are found in Figure 20 and Figure 21.
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Figure 20: Worm plot for the α̂1 fitted with the ST2 distribution
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Figure 21: Worm plot for the α̂2 fitted with the ST2 distribution
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The model selction procedures in Sections 3.1 and 3.2 found other distributions

for m0 and m1, namely the ST3 and ST1, that are better suited for the data strictly

based on AIC values and worm plots. However, the worm plots hold up well compared

to the plots presented in each of the models’ selection procedures. If all four subsets

are considered to be representative of the parameter α, then the ST2 distribution fit

over a data set with a representative sn value does seem to be a robust candidate for

modeling the tail index.
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4 OVERVIEW OF THE SELECTION RESULTS AND FITTED MODELS

The model selection process produced four models, one for each set of data. All

four of the distributions selected, the Skew t type 3 (ST3) for the m0 model, the

Skew t Azzalini type 1 (ST1) for the m1 model, Skew t Azzalini type 2 (ST2) for the

m2 model, and the Skew t Azzalini type 2 (ST2) for m3 model, are from the same

family of distribution, the Skew t family of distributions [24]. The model selection

process also singled out the ST2 distribution as a candidate robust enough to model

α overall. The Skew t Azzalini type 2 was developed by Azzanlini and Capitanio [4].

The Skew t type 3 is based on the work of Fernandez and Steel [10]. The Skew t

Azzalini type 1 was developed by Azzalini [3]. The table below, Table 1, summarizes

the model selection results. What follows is a discussion of each fitted model, along

with summaries of the parameters and probability density functions.

Table 1: Overview of Model sn and AIC Values
Model sn value Distribution AIC
m0 1642 ST3 −5512.18
m1 1284 ST1 −5320.814
m2 905 ST2 −4169.4904
m3 270 ST2 −1020.8436

4.1 The m0 Fitted Model

First, the m0 model which is based on the varying s0 values for each stock. The

model selection procedures settled on the Skew t type 3. The ST3 distribution was

chosen over the Skew Exponential type 2 due to the worm plot, since the AIC values

of the two distributions were very close. The fitted distribution is below in Figure 22.
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Figure 22: Histogram of α̂0 values with the fitted ST3 distribution

The ST3 distribution is fit to the histogram using parameters found using max-

imum likelihood estimation within the GAMLSS package [25]. The Skew t type

3 is described as a ’scale-spliced’ distribution [10]. Splicing is used to create skew-

ness inside of a symmetric distribution [24]. The ST3 distribution is defined by four

parameters:

1. µ, the location shift parameter, which can take any value −∞ to ∞.

2. σ, the scaling parameter, which can take any value 0 to ∞.

3. ν, the skewness parameter, which can take any value 0 to ∞.

4. τ , the kurtosis parameter, which can take any value 0 to ∞.

The probability density function that defines the ST3 distribution is as follows:
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fY (y|µ, σ, ν, τ) =


c

σ
(1 +

ν2z2

τ
)−(τ+1)/2 if y < µ

c

σ
(1 +

z2

ν2z2
)−(τ+1)/2 if y ≥ µ

 , (2)

where y represents the observations in the data. Also, z = (y−µ)/σ, and c = 2ν[(1+

ν2)B(1/2, τ/2)τ 1/2]−1 [10]. Here, B represents the use of the gamma distribution

inside the PDF of ST3 [10] [24]. Thus, numerical approximation, as opposed to the

use of analytical methods, is the standard approach to estimate parameters in the

PDF of the ST3 distribution, just as the MLE example in Section 1.6 [24]. When

the GAMLSS procedure estimates the model parameters, the fitting method uses

link functions for each of the parameters to ensure that the parameters remain in

the respective intervals [24] [25]. For instance, the log-link function is used for σ in

the ST3 distribution to ensure that the σ parameter is greater than 0 [24]. The link

functions for the ST3 distribution are given in Table 2. Importantly, ν and τ are used

for modeling aspects of the kurtosis of the distribution in question [24].

Table 2: Link Functions for the ST3 Distribution
Parameter Estimate
µ Identity
σ Log Link
ν Log Link
τ Log Link

The summary output for the fitted ST3 distribution, the m0 model, is found in

Table 3.

The summary output is devised into the following columns from left to right:

the parameter in question, the estimate according to the link function used for that

parameter, the standard error for calculating that estimate, the t test statistic for

the hypothesis test, and the p-value for the hypothesis test [24]. The parameters
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Table 3: Summary Output of the Fitted ST3 Distribution
Parameter Estimate Standard Error t-value p-

value
ηµ 0.49013525 0.00180533 271.4934 0
ησ -3.46108206 .03809905 -90.8443 0
ην 0.61461599 0.04022275 15.2803 0
ητ 2.00311813 0.17698011 11.3183 0

are represented as η̂µ, η̂σ, η̂ν , and η̂τ , and to clarify these are parameter estimates

determined by the respective link function [29]. The hypothesis test for each output,

the m0 model and the others, is the asymptotic Wald test, which tests the following

hypotheses:

1. H0 : ηµ = µ = 0, H1 : ηµ ̸= 0

2. H0 : ησ = 0, H1 : ησ ̸= 0

3. H0 : ην = 0, H1 : ην ̸= 0

4. H0 : ητ = 0, H1 : ητ ̸= 0

According to the GAMLSS manual and creators, the t tests above are dubious

when fitting distributions to data, and instead, the Generalized Likelihood Ratio

(GLR) test is a better indicator of parameter significance overall [24] [29]. The GLR

test was performed using the symmetric generalized t (GT) distribution, since the

Skew t distributions are extensions upon the symmetric generalized t distribution

[29]. The null hypothesis for the GLR test is the GT distribution and the alternative

hypothesis is the ST3 distribution [24]. Thus, for them0 model, the GLR test returned

a test statistic of 187.841, which is greater than 3.84 as described in Section 1.6,

confirming parameter significance and confirming that it is appropriate to use an

extension of the GT distribution [24].
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Thus, the fitted parameters, and 95% confidence intervals for each parameter, for

the ST3 distribution are below. These parameters are transformed via the respective

link functions, along with the confidence interval endpoints [24]. The confidence

intervals are calculated using the standardized 95% confidence Z value, 1.96 and the

form:

estimate± 1.96× SEestimate

1. µ̂ = 0.49013525, with a 95% confidence interval [0.4865968, 0.4936737]

2. σ̂ = 0.03139577, with a 95% confidence interval [0.02913672, 0.03382998]

3. ν̂ = 1.848946, with a 95% confidence interval [1.70878, 2.000611]

4. τ̂ = 7.412132 with a 95% confidence interval [5.239557, 10.48546]

Therefore, the fitted probability density function for the m0 model can be written

in the following way:

fY (y|µ, σ, ν, τ) =


c

0.03139577
(1 +

1.8489462z2

7.412132
)−(7.412132+1)/2 if y < 0.49013525

c

0.03139577
(1 +

z2

1.8489462z2
)−(7.412132+1)/2 if y ≥ 0.49013525

 ,

(3)

where z and c are equal to the following values:

z = (y − 0.49013525)/0.03139577

c = 2 ∗ 1.848946 ∗ [(1 + 1.8489462)B(1/2, 7.412132/2)7.4121321/2]−1

[10].

54



4.2 The m1 Fitted Model

The m1 model was determined to be fit with the Skew t Azzalini type 1 distribu-

tion. The fitted distribution is given in Figure 23. The m1 model is based on 2500

observations for each stock with an sn = 1284.

Figure 23: Histogram of α̂1 values with the fitted ST1 distribution

The ST1 distribution is defined by four parameters [3]:

1. µ, the location shift parameter, which can take any value −∞ to ∞.

2. σ, the scaling parameter, which can take any value greater than 0 and to ∞.

3. ν, the skewness parameter, which can take any value −∞ to ∞.

4. τ , the kurtosis parameter, which can take any value greater than 0 and to ∞.

The probability density function that defines the ST1 distribution is as follows:

fY (y|µ, σ, ν, τ) =
2

σ
fZ1(z)FZ1(νz), (4)
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where y is the observations of the data and z = (y − µ)σ [24]. In addition, fZ1

and FZ1 are the probability density function and the cumulative density function of

Z1 ∼ TF (0, 1, τ) = tτ , the t distribution with τ > 0 degrees of freedom, and τ is a

continuous parameter [24] [3].

The link functions for the ST1 distribution are given below in Table 4.

Table 4: Link Functions for the ST1 Distribution
Parameter Estimate
µ Identity
σ Log Link
ν Identity
τ Log Link

The summary output for the fitted ST1 distribution, the m1 model, is found in

Table 5.

Table 5: Summary Output of the Fitted ST1 Distribution
Parameter Estimate Standard Error t-value p-

value
ηµ 0.47743006 0.00149467 319.42231 0
ησ -3.46196753 0.06616602 -52.32244 0
ην 2.93949024 0.45788404 6.41973 0
ητ 1.05352688 0.10474601 10.05792 0

The GLR test was performed with the null hypothesis as the GT distribution,

which is fit on the data using the same GAMLSS procedure, and the alternative

hypothesis as the ST1 distribution, and returned a test statistic of 274.958 which is

greater than 3.84 [24]. The GLR test confirms the signficance of using the extension

of the generalized t distribution, the Skew t type 1, found via GAMLSS [24].

Now, the fitted parameters, and 95% confidence intervals for each parameter in
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the ST1 distribution are below. Just as Section 4.1, the parameters are transformed

via the respective link functions, along with the confidence interval endpoints [24].

1. µ̂ = 0.47743006, with a 95% confidence interval [0.4745005, 0.4803596]

2. σ̂ = 0.03136798, with a 95% confidence interval [0.02755275, 0.03571152]

3. ν̂ = 2.93949024, with a 95% confidence interval [2.042038, 3.836943]

4. τ̂ = 2.867748 with a 95% confidence interval [2.335497, 3.521296]

Therefore, the fitted probability density function for the m1 model is written in

the following way:

fY (y|µ, σ, ν, τ) =
2

0.03136798
fZ1(z)FZ1(2.93949024z), (5)

where z = (y − 0.47743006)/0.03136798, and Z1 ∼ TF (0, 1, 2.867748) = t2.867748

4.3 The m2 Fitted Model

The m2 model, with s0 = 5000 and sn = 905, was determined to be fit using the

Skew t Azzalini type 2 distribution. The fitted histogram is found in Figure 24.
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Figure 24: Histogram of α̂2 values with the fitted ST2 distribution

The ST2 distribution is defined by four parameters [4].

1. µ, the location shift parameter, which can take any value −∞ to ∞.

2. σ, the scaling parameter, which can take any value greater than 0 and to ∞.

3. ν, the skewness parameter, which can take any value −∞ to ∞.

4. τ , the kurtosis parameter, which can take any value greater than 0 and to ∞.

The probability density function of the ST2 distribution is given in Equation 6

[4].

fY (y|µ, σ, ν, τ) =
2

σ
fZ1(z)FZ2(ω), (6)

where y is the data and z = (y − µ)σ, ω = νλ1/2z, and λ = (τ + 1)/(τ + z2)

[24]. Also, fZ1(.) is the PDF of Z1 ∼ TF (0, 1, τ) = tτ , and FZ2(.) is the CDF of

Z2 ∼ TF (0, 1, τ + 1) = tτ+1 [24] [4].
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The link functions for fitting the ST2 distribution are given in Table 6.

Table 6: Link Functions for the ST2 Distribution
Parameter Estimate
µ Identity
σ Log Link
ν Identity
τ Log Link

The summary output for the fitted ST2 distribution, the m2 model, is found in

Table 10.

Table 7: Summary Output of the Fitted ST2 Distribution
Parameter Estimate Standard Error t-value p-

value
ηµ 0.4812267 0.0015055 319.64628 0
ησ -4.0522605 0.0682193 -59.40048 0
ην 1.1554209 0.2057751 5.61497 0
ητ 0.7285679 0.0802370 9.08020 0

The GLR test was performed with the null hypothesis as the GT distribution and

the alternative hypothesis as the ST2 distribution. The GLR test returned a test

statistic of 41.04102 which is greater than 3.84, confirming the significance of the ST2

parameters [24]. The fitted parameters and the 95% SE-based confidence intervals

for each parameter in the fitted ST2 distribution are below. These parameters are

transformed via their respective link functions.

1. µ̂ = 0.4812267, with a 95% confidence interval [0.4782759, 0.4841775]

2. σ̂ = 0.01738304, with a 95% confidence interval [0.01520745, 0.01986987]

3. ν̂ = 1.1554209, with a 95% confidence interval [0.7521017, 1.55874]

4. τ̂ = 2.072111 with a 95% confidence interval [1.770573, 2.425002]
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Therefore, the fitted probability density function for the ST2 distribution is writ-

ten as in equation 7.

fY (y|µ, σ, ν, τ) =
2

0.01738304
fZ1(z)FZ2(ω), (7)

where y is the data and z = (y−0.4812267)/0.01738304, ω = 1.1554209λ1/2z, and λ =

(3.072111)/(2.072111+z2) [24]. Also, fZ1(.) is the PDF of Z1 ∼ TF (0, 1, 2.072111) =

t2.072111, and FZ2(.) is the CDF of Z2 ∼ TF (0, 1, 3.072111) = t3.072111 [24] [4].

4.4 The m3 Fitted Model

The m3 model, with s0 = 10000 and sn = 270 was also determined to be fit using

the Skew t Azzalini type 2 distribution. The fitted histogram is found in Figure 25.

Figure 25: Histogram of α̂3 values with the Fitted ST2 distribution

The parameters are the same as described in Section 4.3. The probability density

function is the same as in equation 6. The link functions are also represented in
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Section 4.3 Table 6. Thus, the summary output of the fitted ST2 distribution is given

in Table 8.

Table 8: Summary Output of the Fitted ST2 Distribution
Parameter Estimate Standard Error t-value p-

value
ηµ 0.54448659 0.00358428 151.90940 0
ησ -3.29159559 0.12303963 -26.75232 0
ην 2.08117642 0.53352565 3.90080 0
ητ 1.19147471 0.23322566 5.10868 0

Again, the GLR test was performed with the null hypothesis as the GT distribu-

tion and the alternative hypothesis as the ST2 distribution. The GLR test returned

a test statistic of 30.75573 which is greater than 3.84, confirming the significance of

the ST2 parameters [24]. The fitted parameters and the 95% SE-based confidence in-

tervals for each parameter in the fitted ST2 distribution are below. These parameters

are transformed via their respective link functions.

1. µ̂ = 0.54448659, with a 95% confidence interval [0.5374614, 0.5515118]

2. σ̂ = 0.03719445, with a 95% confidence interval [0.02922435, 0.04733819]

3. ν̂ = 2.08117642, with a 95% confidence interval [1.035466, 3.126887]

4. τ̂ = 3.291932 with a 95% confidence interval [2.084074, 5.19968]

Therefore, the fitted probability density function for the ST2 distribution in the

m3 model is written as in equation 8.

fY (y|µ, σ, ν, τ) =
2

0.03719445
fZ1(z)FZ2(ω), (8)
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where y is the data and z = (y − 0.54448659)/0.03719445, ω = 2.08117642λ1/2z, and

λ = (4.291932)/(3.291932+z2) [24]. Also, fZ1(.) is the PDF of Z1 ∼ TF (0, 1, 3.291932) =

t3.291932, and FZ2(.) is the CDF of Z2 ∼ TF (0, 1, 4.291932) = t4.291932 [24] [4].

4.5 Comparing Different Fitted m0 and m1 Models

In Section 3.5, the ST2 distribution is floated as a possible candidate for α overall

due to handling smaller sample sizes and sharing a family with the larger sn models.

The m0 and m1 models are fitted with the ST3 and ST1 distributions, while both

the m2 and m3 models are fit with the ST2 distribution. Thus, there is an interest

from Section 3.5 in evaluating the fit of the ST2 distribution on both the α̂0 and α̂1

vectors. These new models were compared to the originalm0 andm1 models using the

Generalized Likelihood Ratio (GLR) test. There are two different GLR test results

below, one for the α̂0 vector and one for α̂1 vector.

The α̂0 vector of values returned a test statistic of 6.874987 when the ST2 model

is the null hypothesis and the ST3 model is the alternative hypothesis. Since this

test statistic is larger than the baseline χ2 = 3.84, the ST3 distribution still seems

appropriate for the α̂0 vector.

The α̂1 vector of values returned a GLR test statistic of 1.408177 when the ST2

model is the null hypothesis and the ST3 model is the alternative hypothesis. The

test statistic fails to cross the baseline χ2 = 3.84 , determining that the parameters

are not different from one another according to the GLR test [24]. Thus, the ST2

distribution may be appropriate for modeling the α̂1 vector.

The histograms of both the α̂0 and α̂1 values fit with the ST2 distribution are

given below in Figure 26 and Figure 27.
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Figure 26: Histogram of α̂0 values with the Fitted ST2 distribution

Figure 27: Histogram of α̂1 values with the Fitted ST2 distribution

The summary output of each fitted model are given below.
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Table 9: Summary Output of the α̂0 Fitted ST2 Distribution
Parameter Estimate Standard Error t-value p-

value
ηµ 0.47337390 0.00146635 322.8243 0
ησ -2.76784764 0.03976934 -69.5975 0
ην 3.69041529 0.33726875 10.9421 0
ητ 2.12429935 0.20668927 10.2777 0

Table 10: Summary Output of the α̂1 Fitted ST2 Distribution
Parameter Estimate Standard Error t-value p-

value
ηµ 0.4766338 0.0012223 389.94717 0
ησ -3.4250096 0.0540141 -63.40955 0
ην 2.7502377 0.3264104 8.42571 0
ητ 1.1065670 0.966680 11.44708 0

Using the link functions, the estimates and the 95% confidence intervals for the

respective models are as follows:

For the α̂1 ST2 model.

1. µ̂ = 0.47337390, with a 95% confidence interval [0.4704999, 0.4762479]

2. σ̂ = 0.06279702, with a 95% confidence interval [0.05808801, 0.06788773]

3. ν̂ = 3.69041529, with a 95% confidence interval [3.029369, 4.351462]

4. τ̂ = 2.12429935 with a 95% confidence interval [1.719188, 2.52941]

For the α̂2 ST2 model.

1. µ̂ = 0.4766338, with a 95% confidence interval [0.4742381, 0.4790295]

2. σ̂ = 0.03254897, with a 95% confidence interval [0.02927923, 0.03618386]

3. ν̂ = 2.7502377, with a 95% confidence interval [2.110473, 3.390002]
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4. τ̂ = 3.023959 with a 95% confidence interval [2.502018, 3.65478]

The fitted PDFs for each model, the α̂0 ST2 model and the α̂1 ST2 model are

below in equation 9 and 10, respectively.

For the α̂0 ST2 model.

fY (y|µ, σ, ν, τ) =
2

0.06279702
fZ1(z)FZ2(ω), (9)

where y is the data and z = (y − 0.47337390)/0.06279702, ω = 3.69041529λ1/2z,

and λ = (3.12429935)/(2.12429935 + z2) [24]. Also, fZ1(.) is the PDF of Z1 ∼

TF (0, 1, 2.12429935) = t2.12429935, and FZ2(.) is the CDF of Z2 ∼ TF (0, 1, 3.12429935) =

t3.12429935 [4] [24].

For the α̂1 ST2 model.

fY (y|µ, σ, ν, τ) =
2

0.03254897
fZ1(z)FZ2(ω), (10)

where y is the data and z = (y−0.4766338)/0.03254897, ω = 2.7502377λ1/2z, and λ =

(4.023959)/(3.023959+z2) [24]. Also, fZ1(.) is the PDF of Z1 ∼ TF (0, 1, 3.023959) =

t3.023959, and FZ2(.) is the CDF of Z2 ∼ TF (0, 1, 4.023959) = t4.023959 [4] [24].

65



5 INTERPRETATIONS AND CONCLUSIONS

This research began by proposing two questions in Section 1.3:

1. Using numerical estimation methods, can estimates for α be obtained, and are

these α’s approximately .50, akin to the Lévy distribution?

2. Can a representative distribution, and the estimated parameters of that distri-

bution, be found that can accurately model α?

In the search for the answers to both of these, many statistical methods were

employed and over 18 R packages are loaded in the finalized R code. For a full list of

packages used, see appendix. In order to provide a setting to explore α, standardized

stock return data were obtained from the CRSP. A frequentist approach was used,

with the approximation of distribution parameters coming directly from the CRSP

data [24]. Ultimately, the ptsuite package provided the framework to estimate the

tail index α using equation 1. The GAMLSS package provided many useful tools for

both parameter estimation and distribution fitting by using the maximum likelihood

estimation methods explained in Section 1.6.

5.1 Discussion of the α̂ Vectors

In the answer to the first question, estimates for α̂ were found successfully using

equation 1. Overall, for both the data with varying s0 values and for each of the

subsets with fixed s0 values, the center of the α̂ vectors fell around the hypothesized

α = 0.50 value. The m0 model used the α̂0, m1 model used the α̂1 vector, the m2

model used the α̂2 vector, and the m3 model used α̂3 vector. The means and medians

for each α̂ vector are summarized in Table 11. Typically, the five number summaries
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are used for skewed distributions, but the means and medians are close in proximity

and provide an adequate description of the center of each vector.

Table 11: Summary of Measures of Center for α̂ Vectors
α̂ Vector Mean Median
α̂0 0.5264747 0.5167716
α̂1 0.5104384 0.5013612
α̂2 0.4989941 0.4936408
α̂3 0.5803399 0.5721385

These values, with an exception of α̂3, are close to the hypothesized value of 0.50

for the tail index α. Again, α̂3 is calculated with sn = 270. Overall, the summary of

these α̂ lend credence to the idea that overall, the tail index α for standardized stock

returns can be described as having a tail index similar to that of a Lévy distribution.

5.2 Finding the Representative Distribution for α

In order to answer the second question, numerical methods had to be employed.

These methods were found inside the GAMLSS package and described in detail in

Section 1.6. Overall, for each of the four α̂ vectors, 29 distributions, 29 distributions,

32 distributions, and 32 distributions, respectively, were fit and AIC values returned

for each. The top three distributions for each model, based on the AIC value, were

singled out and worm plots created for each. This procedure helped determine which

distribution was chosen for each model. Finally, through the model selection proce-

dures detailed in Section 3, a distribution was chosen to model each of the α̂ vectors.

The distributions and AIC values are detailed in Table 1.

The ST3, ST1, and ST2 distributions are all members of the Skew t family of

distributions, with variations on each of the probability density functions. Each of the
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PDFs contain the same four parameters, µ, σ, ν, and τ . The generalized PDFs for the

ST3, ST1, and ST2 distributions can be found in equations 2, 4, and 6, respectively.

The fitted PDFs for modelsm0, m1, m2, andm3 can be found in equations 3, 5, 7, and

8, respectively. Since each of these Skew t distribution variations are extensions of the

Generalized t (GT) distribution, a generalized likelihood ratio (GLR) test was used to

confirm the parameter significance of each model. Although it is reasonable enough to

assume that since the GAMLSS procedure did not return the GT distribution, these

parameters are useful, it is still good practice to confirm that a more generalized

model would be inappropriate [24]. Each of these GLR tests confirmed parameter

significance.

Overall, the Skew t family appears to be a representative family of distributions

to model α for the standardized stock return data. Specifically, it is the ST3 , ST1 ,

and ST2 distributions that are identified respective to the specific data, as in Table 1

[4] [3] [10]. The most favorable AIC values are for the data with varying so values and

the data with so = 2500, which have sn = 1642 and sn = 1284, respectively. Notably,

the so values vary greatly in the α̂0 data, with more than 20 stocks over so = 20000,

compared to the α̂1 data where so is fixed considerably lower at 2500. The conclusion

here is that since these AIC values are close, and the distributions for each are in

the same family, that the sn parameter plays a more important role than so. Thus,

a larger sample size of stocks, sn, seems to lead to a more accurate model, based on

AIC value.

Each set of α̂ values has its own distribution that seems to model that specific

data set the best. If the aim is to find a distribution that can model α̂ regardless

of the sn values, Sections 4.3, 4.4 and 4.5 describe the α̂2, α̂3, α̂0, and α̂1 values
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fitted with the ST2 distribution. The ST2 distribution when taking the AIC values

collectively, seems to be the an accurate distribution to model α. While the Skew t

family is appropriate, the specific Skew t type 2 is robust and accurate in modeling

the tail index of standardized stock returns.

5.3 Relevant Further Research

The results presented above provide a foundation for many future research oppor-

tunities. The most prevalent future research ideas will be summarized below. First,

there are different ways to estimate the tail index, α̂, such as general percentile meth-

ods and modified percentile methods that are different than the geometric percentile

method employed in this paper [5]. The geometric mean is used for data that may not

be independent and data that is specific to stock or economic returns, which is why

the geometric mean percentile method was used here [17]. However, there are other

methods that may change the ultimate estimate of α̂, and it would be of interest if

the Skew t family remains the most appropriate model with different parameters.

The main model selection procedures employed here are AIC values and worm

plots. These are powerful but generous model building methods [24]. It would be

beneficial to test these models, or new models, using more rigorous and definitive

model selection procedures. Further, only three subsets of the standardized stock

return data are described here. There would be an interest in the trade-off between

the sn value and the AIC, or other model selection criteria, that would maximize

model accuracy while maintaining generality for new data.

Finally, some modern quantitative finance models are built using Lévy distribu-

tions and Lévy processes that contain a tail index parameter. Examples of quantita-

69



tive finance models can be found in [31] [27],[6], [12], and [7]. One of the interests, and

ultimate goals, in modeling α is to discover if the models discussed in Section 1.2 and

beyond can be improved by having a Skew t distribution, such as ST2, included in

the financial model. The hope is that the results here can be used to fortify existing

economic models or lead to the creation of new methods for approaching risk.
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APPENDIX: R Code

####################################################

#Packages Loaded

####################################################

library(Rcpp)

library(ptsuite)

library(readxl)

library(MASS)

library(TeachingDemos)

library(extraDistr)

library(fitdistrplus)

library(ggplot2)

library(FAdist)

library(logspline)

library(actuaryr)

library(ExtDist)

library(optimx)

library(actuar)

library(expint)

library(gamlss)

library(gamlss.dist)

library(gamlss.add)

####################################################

#Written Functions

####################################################

lengthfunc <- function(x){

H <- x[-c(which(x == 0))]

G <- H[-c(which(H == -88))]

D <- G[-c(which(G < -30))]

A <- length(D)

return(A)

}

alpha_estimate <- function(x){

H <- x[-c(which(x == 0))]

G <- H[-c(which(H == -88))]

B <- G[-c(which(G < -30))]

74



A <- alpha_geometric_percentile(abs(B))$shape
return(A)

}

alpha_estimate2 <- function(x){

B <- abs(x)

D <- B[-c(which(B == 0))]

A <- alpha_geometric_percentile(D)$shape
return(A)

}

##

####################################################

# Stock Ticker MO, Altria Group Example

####################################################

stockdata2_R <- as.data.frame(stockdata2_R)

example <- stockdata2_R$X0 .019169

example <- example[-c(which(example < -30))]

example <- example[-c(which(example == 0 ))]

example <- abs(example)

alpha_geometric_percentile(example$example)

hist(example , main = "Histogram␣of␣MO,␣Altria␣Group")

example <- data.frame(example)

ggplot(data = example , aes(x = example)) +

geom_histogram(color = ’black ’, fill = ’red’) +

labs(title = "Histogram␣of␣MO ,␣Altria␣Group",

x = "Absolute␣Value␣of␣Stock␣Returns",

y = "Count␣of␣Values")

####################################################

# Data Creation and Cleaning
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####################################################

lengthvec <- lapply(thesis_data , lengthfunc)

lengthvec <- cbind(lengthvec)

rownames(lengthvec) = c()

colnames(lengthvec) = c()

lengthfinal <- as.numeric(lengthvec)

length2500 <- which(lengthfinal < 2500)

length5000 <- which(lengthfinal < 5000)

length10000 <- which(lengthfinal < 10000)

dim(thesis_data)

thesis_data2500 <- thesis_data[,-c(length2500)]

data2500 <- thesis_data2500 [22545:25044 ,]

dim(data2500)

thesis_data5000 <- thesis_data[, -c(length5000)]

data5000 <- thesis_data5000 [20045:25044 ,]

dim(data5000)

thesis_data10000 <- thesis_data[, -c(length10000)]

data10000 <- thesis_data10000 [14045:24044 ,]

dim(data10000)

####################################################

# Alpha Vector Creation and Cleaning

####################################################
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alpha_vec1 <- lapply(thesis_data , alpha_estimate)

alpha_cols1 <- cbind(alpha_vec1)

rownames(alpha_cols1) = c()

colnames(alpha_cols1) = c()

alpha_cols1 <- as.numeric(alpha_cols1)

hist(alpha_cols1)

which(is.nan(alpha_cols1))

alpha_cols1 <- alpha_cols1[-c(which(is.nan(alpha_cols1)))]

alpha_vec2 <- lapply(data2500 , alpha_estimate2)

alpha_cols2 <- cbind(alpha_vec2)

rownames(alpha_cols2) = c()

colnames(alpha_cols2) = c()

alpha_cols2 <- as.numeric(alpha_cols2)

hist(alpha_cols2)

which(is.nan(alpha_cols2))

alpha_cols2 <- alpha_cols2[-c(which(is.nan(alpha_cols2)))]

alpha_vec3 <- lapply(data5000 , alpha_estimate2)

alpha_cols3 <- cbind(alpha_vec3)

rownames(alpha_cols3) = c()
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colnames(alpha_cols3) = c()

alpha_cols3 <- as.numeric(alpha_cols3)

alpha_vec4 <- lapply(data10000 , alpha_estimate2)

alpha_cols4 <- cbind(alpha_vec4)

rownames(alpha_cols4) = c()

colnames(alpha_cols4) = c()

alpha_cols4 <- as.numeric(alpha_cols4)

####################################################

# GAMLSS Model Creation and Relevant Plots

####################################################

# m0 Model and Plots

####################################################

m0 <- gamlssML(alpha_cols1)

model_m0 <- chooseDist(m0 , type = "realline", try.gamlss =

T, trace = F)

getOrder(model_m0)

m0_ST3 <- gamlssML(alpha_cols1 , family = "ST3")

summary(m0_ST3)

resid <- resid(m0_ST3)

resid.df <- as.data.frame(resid)

ggplot(data = resid.df, aes(x = resid)) +

geom_histogram(color = ’black ’, fill = ’forestgreen ’,

binwidth = .2) +
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labs(title = "Histogram␣of␣Residuals ,␣m0␣model",

x = "Residuals",

y = "Count")

wp(m0_ST3 , ylim.all = T)

####################################################

m0_SEP2 <- gamlssML(alpha_cols1 , family = "SEP2")

summary(m0_SEP2)

hist(resid(m0_SEP2))

wp(m0_SEP2 , ylim.all = T)

####################################################

m0_SST <- gamlssML(alpha_cols1 , family = "SST")

summary(m0_SST)

hist(resid(m0_SST))

wp(m0_SST , ylim.all = T)

####################################################

m0_ST2 <- gamlssML(alpha_cols1 , family = "ST2")

summary(m0_ST2)

wp(m0_ST2 , ylim.all = T)

####################################################

histDist(alpha_cols1 , family = "ST3", line.col = "red",

col.hist = "lightblue",

nbins = 47, border.hist = "black",

main = "Histogram␣of␣Alpha␣Values␣with␣the␣Fitted
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␣ST3␣Distribution",

xlab = "Alpha␣Values", ylab = "Count", col.axis =

"black", fg.hist = "black")

histDist(alpha_cols1 , family = "ST2", line.col = "red",

col.hist = "lightblue",

nbins = 47, border.hist = "black",

main = "Histogram␣of␣Alpha␣Values␣with␣the␣Fitted

␣ST2␣Distribution",

xlab = "Alpha␣Values", ylab = "Count", col.axis =

"black", fg.hist = "black")

####################################################

# m1 Model and Plots

####################################################

m1 <- gamlssML(alpha_cols2)

model_m1 <- chooseDist(m1 , type = "realline", try.gamlss =

T, trace = F)

getOrder(model_m1)

m1_ST1 <- gamlssML(alpha_cols2 , family = "ST1")

summary(m1_ST1)

hist(resid(m1_ST1))

resid <- resid(m1_ST1)

resid.df <- as.data.frame(resid)

ggplot(data = resid.df, aes(x = resid)) +

geom_histogram(color = ’black ’, fill = ’forestgreen ’,

binwidth = .2) +

labs(title = "Histogram␣of␣Residuals ,␣m1␣model",

x = "Residuals",

y = "Count")
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wp(m1_ST1 , ylim.all = T)

ST1()

####################################################

m1_ST5 <- gamlssML(alpha_cols2 , family = "ST5")

summary(m1_ST5)

ST5()

wp(m1_ST5 , ylim.all = T)

####################################################

m1_JSUo <- gamlssML(alpha_cols2 , family = "JSUo")

summary(m1_JSUo)

wp(m1_JSUo , ylim.all = T)

####################################################

m1_ST2 <- gamlssML(alpha_cols2 , family = "ST2")

summary(m1_ST2)

wp(m1_ST2 , ylim.all = T)

####################################################

histDist(alpha_cols2 , family = "ST1", line.col = "red",

col.hist = "lightblue",

nbins = 47, border.hist = "black",

main = "Histogram␣of␣Alpha␣Values␣with␣the␣Fitted

␣ST1␣Distribution",

xlab = "Alpha␣Values", ylab = "Count", col.axis =

"black",

fg.hist = "black", ylim = c(0 ,17))
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####################################################

# m2 Model and Plots

####################################################

m2 <- gamlssML(alpha_cols3)

model_m2 <- chooseDist(m2 , type = "realline", try.gamlss =

T, trace = F)

getOrder(model_m2)

m2_ST2 <- gamlssML(alpha_cols3 , family = "ST2")

summary(m2_ST2)

hist(resid(m2_ST2))

resid <- resid(m2_ST2)

resid.df <- as.data.frame(resid)

ggplot(data = resid.df, aes(x = resid)) +

geom_histogram(color = ’black ’, fill = ’forestgreen ’,

binwidth = .2) +

labs(title = "Histogram␣of␣Residuals ,␣m2␣model",

x = "Residuals",

y = "Count")

wp(m2_ST2 , ylim.all = T)

####################################################

m2_ST5 <-gamlssML(alpha_cols3 , family = "ST5")

summary(m2_ST5)

wp(m2_ST5 , ylim.all = 1.5 * sqrt(1/length(resid)))

wp(m2_ST5 , ylim.all = T)
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####################################################

m2_ST3 <- gamlssML(alpha_cols3 , family = "ST3")

summary(m2_ST3)

wp(m2_ST3 , ylim.all = T)

####################################################

m2_SST <- gamlssML(alpha_cols3 , family = "SST")

summary(m2_SST)

wp(m2_SST , ylim.all = T)

####################################################

histDist(alpha_cols3 , family = "ST2", line.col = "red",

col.hist = "lightblue",

nbins = 85, border.hist = "black",

main = "Histogram␣of␣Alpha␣Values␣with␣the␣Fitted

␣ST2␣Distribution",

xlab = "Alpha␣Values", ylab = "Count", col.axis =

"black",

fg.hist = "black")

####################################################

# m3 Model and Plots

####################################################

m3 <- gamlssML(alpha_cols4)

model_m3 <- chooseDist(m3 , type = "realline", try.gamlss =

T, trace = F)

getOrder(model_m3)

m3_ST2 <- gamlssML(alpha_cols4 , family = "ST2")
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summary(m3_ST2)

hist(resid(m3_ST2))

resid <- resid(m3_ST2)

resid.df <- as.data.frame(resid)

ggplot(data = resid.df, aes(x = resid)) +

geom_histogram(color = ’black ’, fill = ’forestgreen ’,

binwidth = .2) +

labs(title = "Histogram␣of␣Residuals ,␣m3␣model",

x = "Residuals",

y = "Count")

wp(m3_ST2 , ylim.all = T)

####################################################

m3_ST3 <- gamlssML(alpha_cols4 , family = "ST3")

summary(m3_ST3)

wp(m3_ST3 , ylim.all = T)

####################################################

m3_ST1 <- gamlssML(alpha_cols4 , family = "ST1")

summary(m3_ST1)

wp(m3_ST1 , ylim.all = T)

####################################################

m3_SST <- gamlssML(alpha_cols4 , family = "SST")

summary(m3_SST)

wp(m3_SST , ylim.all = T)
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####################################################

histDist(alpha_cols4 , family = "ST2", line.col = "red",

col.hist = "lightblue",

nbins = 47, border.hist = "black",

main = "Histogram␣of␣Alpha␣Values␣with␣the␣Fitted

␣ST2␣Distribution",

xlab = "Alpha␣Values", ylab = "Count", col.axis =

"black",

fg.hist = "black")

####################################################

# GLR Tests

####################################################

m0_GT <- gamlssML(alpha_cols1 , family = "GT")

LR.test(m0_GT , m0_ST3)

LR.test(m0_ST2 , m0_ST3)

histDist(alpha_cols2 , family = "ST1", line.col = "red",

col.hist = "lightblue",

nbins = 47, border.hist = "black",

main = "Histogram␣of␣Alpha␣Values␣with␣the␣Fitted

␣ST1␣Distribution",

xlab = "Alpha␣Values", ylab = "Count", col.axis =

"black",

fg.hist = "black", ylim = c(0 ,17))

m1_GT <- gamlssML(alpha_cols2 , family = "GT")

LR.test(m1_GT , m1_ST1)

histDist(alpha_cols2 , family = "ST2", line.col = "red",

col.hist = "lightblue",

nbins = 47, border.hist = "black",

main = "Histogram␣of␣Alpha␣Values␣with␣the␣Fitted

␣ST2␣Distribution",

xlab = "Alpha␣Values", ylab = "Count", col.axis =

"black",
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fg.hist = "black", ylim = c(0 ,17))

LR.test(m1_ST2 , m1_ST1)

m2_GT <- gamlssML(alpha_cols3 , family = "GT")

LR.test(m2_GT , m2_ST2)

LR.test(m2_SST , m2_ST2)

m3_GT <- gamlssML(alpha_cols4 , family = "GT")

LR.test(m3_GT , m3_ST2)

####################################################

# All GAMLSS Models fit

####################################################

getOrder(model_m0)

getOrder(model_m1)

getOrder(model_m2)

getOrder(model_m3)

####################################################
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