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ABSTRACT 

Distinguishing Mustela From Neogale (Mustelidae) Through Both a Qualitative and  

Quantitative Analysis of Skull and Tooth Morphology 

 

by 

Ronald W. Peery 

 

Weasels and mink (Mustela and Neogale) can be difficult to distinguish osteologically due to 

similarities in morphology, thus suggesting the need for an accurate tool in distinguishing among 

taxa. This study utilized a combination of character state and stepwise discriminant function 

(DFA) analyses to examine potential distinguishing features of skull and tooth morphology. 

Measurements and ratios were collected from all 18 extant musteline species, as well as the 

extinct Neovison macrodon, Mustela rexroadensis, Mustela meltoni, Mustela gazini, and Mustela 

jacksoni. Unidentified musteline specimens from the Gray Fossil Site were also included. Results 

of the character state analysis and DFA proved fairly reliable in distinguishing both extant and 

fossil taxa. The character state analysis revealed six useful morphological characters to aid in 

distinguishing between genera while the DFA demonstrated reliable separation of genus, species, 

and clade. For both analyses, morphology of the carnassials (P4, m1) and M1 contributed most to 

distinction.  
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CHAPTER 1. INTRODUCTION 

 

 The mustelid subfamily Mustelinae (weasels, stoats, ferrets, minks, and polecats) 

(Oliveira do Nascimento 2014) are the most species-rich group of carnivorans in the world today 

(King 1989) with a total of 18 extant species between two separate genera (Mustela and 

Neogale) (Wozencraft 2005; Patterson et al. 2021); however, the taxonomic status of taxa within 

the group has long been a subject of debate. Mustela and Neogale can be very difficult to 

distinguish morphologically due to similar skeletal and dental features (Abramov 2000; Patterson 

et al. 2021). Moreover, high degrees of sexual dimorphism and geographic variation, which are 

commonly evident throughout mustelines (King and Powell 2007) may pose further challenges 

for distinguishing these taxa at both the genus- and species-level. Although a considerable 

number of studies have analyzed both phylogenetic and morphological relationships among 

mustelines (e.g., Anderson 1989; Abramov 2000; Heptner et al. 2001; Marmi et al. 2004; Sato et 

al. 2003; Harding and Smith 2009; Law et al. 2017), further analysis is necessary in order to 

understand how readily skull and dental characters could be used to determine their taxonomic 

status. No previous studies have combined both a quantitative and qualitative approach to this 

topic, using both qualitative characters and a wide variety of linear measurements across a large 

dataset including all extant musteline taxa. When considering the fossil record of mustelines, this 

degree of difficulty distinguishing taxa is drastically increased due to their scarce and often 

fragmentary skeletal remains. These challenges call for better tools for distinguishing both 

genera and species of mustelines. The purpose of this study is to compare Mustela and Neogale 

using a combination of linear measurements of the skull and teeth, as well as a qualitative 

assessment of the variability of diagnostic characters, including examination of all 18 extant 
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species and fossil material from five extinct taxa, five extant Pleistocene-aged North American 

taxa, and two unidentified specimens from the Gray Fossil Site. 

Research Questions 

 

• Can Mustela and Neogale be distinguished based on differences in skull and tooth 

morphology alone? 

• If Mustela and Neogale are morphologically distinct, does each species accurately 

correspond with its current generic taxonomic status? 

• If extant taxa within Mustelinae can be distinguished based on skull and tooth morphology, 

can these features be used to identify their fossil remains? 

 

 

 

 

 

 

 

 

  



15 

 

CHAPTER 2. PHYLOGENY AND SYSTEMATICS OF MUSTELINES 

 

 Within Mustelidae, five subfamilies were originally supported by Simpson (1945) and 

included Mustelinae (weasels, stoats, ferrets, mink, martens, and wolverines), Lutrinae (otters), 

Mellivorinae (honey badgers), Melinae (badgers), and Mephitinae (skunks). However, recent 

molecular and phylogenetic studies (Koepfli et al. 2008; Sato et al. 2012; Law et al. 2017) have 

supported a total of eight subfamilies consisting of Mustelinae (weasels, stoats, ferrets, mink), 

Lutrinae (otters), Guloninae (martens, fishers, tayra, and wolverines), Ictonychinae (grisons, 

African polecats), Helictinidinae (ferret-badgers), Melinae (Eurasian badgers), Mellivorinae 

(honey badgers), and Taxidiinae (American badgers) (Figure 1). It is now supported that 

Mephitidae diverged prior to the origin of Mustelidae, forming a discrete family (Koepfli et al. 

2008; Sato et al. 2012; Law et al. 2017). Extant members of Mustelidae are considered to be a 

monophyletic group based on the loss of the carnassial notch on the P4, absence of the M1 

postprotocrista, absence of the M2, absence of alisphenoid canal, and ventral closure of the 

suprameatal fossa (Bryant et al. 1993; Baskin 1998; Marmi et al. 2004; Paterson et al. 2019). 

 As traditionally treated, subfamily Mustelinae is widely considered to be polyphyletic 

(Bryant et al. 1993; Koepfli and Wayne 1998; Hosoda et al. 2000; Koepfli et al. 2003; Sato et al. 

2003; Koepfli et al. 2008), as it has been used as a catchall for many of the early, poorly 

differentiated taxa as well as divergent genera of doubtful affinity, so that determining the 

earliest true members of the subfamily has been nearly impossible (Anderson 1989). Mustelines 

have retained several plesiomorphic characters (Anderson 1989); however, identified 

synapomorphies for the group include an anteroposteriorly reduced M1 with the metacone close 

to the paracone, an anteroposteriorly expanded internal lobe on the M1, a reduced to absent m1 
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metaconid, a single rooted m2, and inflated auditory bullae (Bryant et al. 1993; Wolsan 1993; 

Baskin 1998; Paterson et al. 2019). 
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Figure 1. Phylogenetic tree of superfamily Musteloidea with red box outlining subfamily 

Mustelinae (Modified from Law et al. 2017) 
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Figure 2. Phylogenetic tree of subfamily Mustelinae and their clade designations used throughout 

the analysis (Modified from Law et al. 2017 and Patterson et al. 2021) 

  

 Many studies have examined the phylogenetic relationships among species of Mustela; 

however, there have been significant differences among subgenera classification. Some studies 

have placed Mustela into two (Ellerman and Morrison-Scott 1951; Heptner et al. 2002; Kurose et 

al. 2008), four (Pavlinov et al. 1995), or five subgenera (Youngman 1982; Anderson 1989). 

Abramov (2000) divided the genus into 9 subgenera (Mustela, Gale, Putorius, Lutreola, 

Kolonokus, Pocockictis, Gramogale, Cabreragale, Cryptomustela) and 17 species (Mustela 

erminea, frenata, nivalis, subpalmata, altaica, kathiah, lutreola, putorius, eversmanii, nigripes, 
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sibirica, itatsi, lutreolina, africana, felipei, nudipes, strigidorsa); however, the phylogeny of 

Mustela is still debated and remains unresolved. For instance, Marmi et al. (2004) proposed that 

M. frenata should be excluded from the subgenus Mustela, as that species and M. erminea are 

highly divergent compared with other pairs of Mustela species. They also suggested that M. 

sibirica and M. itatsi (subgenus Kolonokus) be placed together with species in the subgenera 

Putorius (M. putorius, M. eversmanii, M. nigripes) and Lutreola (M. lutreola) in the same 

subgenus (Marmi et al. 2004). Some synapomorphic characters that have been used to 

distinguish Mustela include absence of the P1 and p1, absence of the m1 metaconid, and a very 

reduced m2 (Baskin 1998). Due to similarities in morphological features, all species of 

mustelines have historically been assigned to Mustela; however, recent molecular and 

phylogenetic studies (Koepfli et al. 2008; Harding and Smith 2009; Law et al. 2017; Hassanin et 

al. 2021; Patterson et al. 2021) have indicated the need for significant taxonomic revisions 

among species within this genus. The most recent classification of mustelines, provided by 

Patterson et al. (2021), is followed here and shown in Figure 2. 

 There has been long-standing confusion regarding the phylogenetic and taxonomic 

validity of Neovison vison, which was originally placed into Mustela. Abramov (2000) 

morphologically distinguished M. vison from the remaining species of Mustela by bacular 

structure, presence of a small metaconid on the m1, and slightly less inflated auditory bullae, 

thus placing it into its own genus Neovison. The results of subsequent studies (Koepfli et al. 

2008; Harding and Smith 2009; Sato et al. 2012; Law et al. 2017; Hassanin et al. 2021; Patterson 

et al. 2021); however, contradict the conclusions of Abramov (2000) and revealed that N. vison is 

a sister to all other Mustela only in analyses that do not include its closer relatives, M. africana, 

M. felipei, and M. frenata. In the only recent phylogenetic analyses to include all four of these 
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species, Harding and Smith (2009) and Law et al. (2017) concluded a well-supported grouping of 

N. vison, M. frenata, M. africana, and M. felipei as a distinct New World lineage that is sister to 

the remaining species of Mustela, separated first from the two mustelines in Southeast Asia (M. 

strigidorsa and M. nudipes), and then from a larger divergent lineage of Mustela spanning 

Eurasia. This phylogenetic pattern led Harding and Smith (2009) to suggest recognizing the New 

World clade as the genus Vison Gray, 1843. More recently, the results of Hassanin et al. (2021) 

also supported uniting these four species into a distinct genus, though they recommended that the 

genus be Grammogale Cabrera, 1940. Only four synonyms for Mustela have been applied to the 

New World species: Vison Gray 1843; Neogale Gray 1865; Grammogale Cabrera, 1940; and 

Cabreragale Baryshnikov and Abramov, 1997. Furthermore, each of the four species in the New 

World clade is the type species for a genus-group name: vison for Neovison Baryshnikov and 

Abramov, 1997; frenata for Neogale Gray, 1865; africana for Grammogale Cabrera, 1940; and 

felipei for Cabreragale Baryshnikov and Abramov, 1997. This raises the question of which 

generic synonym should ultimately apply to the New World clade. Harding and Smith (2009) 

suggested that priority in synonymy would render the genus name of the clade as Vison. 

However, since the European mink (M. lutreola) represents the type species for Vison 

(Baryshnikov and Abramov 1997), Patterson et al. (2021) recognized the senior name for the 

group to be Neogale. They further note that the divergence of extant Neogale species (initiated 

by the split between N. vison and M. frenata, ~8.69 Ma) precedes the splits in most polytypic 

mustelid genera (Law et al. 2017), thus arguing the recognition of Neogale as a distinct genus 

and not a subgenus of Mustela (Patterson et al. 2021). 

 To thus rename the members of the New World clade as Neogale (Neogale vison, 

Neogale frenata, Neogale africana, and Neogale felipei) distinct from Mustela, has two major 
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effects on the current understanding of New World musteline biogeography. A new genus 

designation would first recognize a distinct and biogeographically coherent evolutionary lineage 

that diverged from Eurasian/Holarctic Mustela during the late Miocene. Secondly, separating the 

New World clade from its Eurasian counterparts would help to distinguish among musteline taxa 

that radiated within and are endemic to the New World versus taxa that are descended from 

recent immigrations to the Americas (e.g., M. erminea, M. nivalis, M. nigripes) (Harding and 

Smith 2009). Therefore, the most parsimonious way to resolve the phylogenetic dilemma found 

in the relationships within Mustela is to separate the endemic New World clade as Neogale. 
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CHAPTER 3. EVOLUTIONARY HISTORY OF MUSTELINES 

 

Origin of Mustelidae 

 

 The order Carnivora emerged during the Early Eocene Climatic Optimum (53-51 Ma) 

with the two major suborders, Caniformia and Feliformia, radiating throughout the Eocene and 

into the Early Oligocene (Hassanin et al. 2021). The most basal group of the caniform 

carnivorans is the Mustelidae, which are the most diverse and species-rich carnivoran family 

today with 59 extant species within 22 genera (King 1989; Koepfli et al. 2008). 

 A combination of ecological opportunity and rapid diversification occurring right after 

the Eocene-Oligocene transition (33.5 Ma) gave rise to the first members of Mustelidae (Law et 

al. 2017) with the oldest known record in North America (Corumictis wolsani) dating back to 

28.8-25.9 Ma (Paterson et al. 2019). Following the Mid-Miocene Climatic Optimum (~17-15 

Ma), these early mustelids underwent extensive diversification, with most studies describing two 

major bursts of adaptive radiation as being a primary attribution to the incredible ecological and 

phenotypic diversity in Mustelidae (Sato et al. 2009, 2012; Koepfli et al. 2008). These authors 

agree that the early divergences during the Late Miocene (~12.5-8.8 Ma) gave rise to most extant 

lineages while the later divergences during the Pliocene (~5.3-1.8 Ma) resulted in rapid 

diversification at the genus- and species-level (King 1989; Marmi et al. 2004; Koepfli et al. 

2008; Sato et al. 2012).  

Origin of Mustelinae 

 

Most phylogenetic studies have concluded the origins of Mustelinae to have begun during 

the Late Miocene of Eurasia, with dispersal events into North America beginning 6.8-8.6 Ma 

(Harding and Smith 2009). The time and rate of dispersal of these early mustelines have been 

hypothesized by several authors to be correlated with the evolution of body elongation as a 



23 

 

response to the Late Miocene diversification of rodents, permitting some species to enter 

burrows and confined spaces to capture prey (Brown and Lasiewski 1972; King 1989; Koepfli et 

al. 2008; Sato et al. 2012). Towards the end of the Miocene and into the early Pliocene, open 

grasslands began to spread and replace forests across much of Eurasia and North America, as the 

climate cooled and became drier (Retallack 2007; Strömberg 2011). At this time, arvicoline 

cricetids (voles) dispersed to North America and radiated (Samuels and Hopkins 2017). 

Studies such as King (1989), Koepfli et al. (2008) and Sato et al. (2012) suggest it is 

likely that early mustelines descended from larger marten-like mustelids already existing and 

soon discovered the advantage in becoming small enough to exploit a new ecological niche of 

predation via rodent burrows (King 1989; Law et al. 2017). However, additional results from 

Law et al. (2017) suggested that body elongation within this subclade may have served as an 

innovation that allowed the group to escape niche competition and rapidly diversify after the 

onset of ecological opportunity (Law et al. 2017). This hypothesis supported their finding that 

there is a lack of correspondence in patterns of body length and body mass evolutionary rates 

within the decoupled mustelid subclade. The increase in the rate of body length evolution, but 

not body mass evolution, suggested that body elongation might be a key innovation for the 

exploitation of novel Mid-Miocene habitats and resources and subsequent diversification in some 

mustelids (Law et al. 2017). 

Origin of Mustela and Neogale 

 

Based on a combination of fossil and molecular evidence (e.g., Baskin 1998; Koepfli et 

al. 2008; Harding and Smith 2009; Sato et al. 2012; Law et al. 2017), the origin of Mustela in 

Eurasia is estimated to have occurred during the late Miocene, with the oldest fossil evidence of 

a member of Mustela coming from late Miocene deposits of Eurasia (Fortelius 2007; King and 
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Powell 2007). Members of Mustela are believed to have dispersed to North America during the 

late Miocene around this time as well (Heptner et al. 2002; King and Powell 2007; Koepfli et al. 

2008); however, some studies claim that Mustela in North America appeared during the early 

Pliocene due to the oldest fossil evidence of an undoubted species belonging to the genus (M. 

rexroadensis) appearing in North America during the early Blancan (~4.5 Ma) (Tedford et al. 

1987; Baskin 1998). One Eurasian lineage began with M. pliocaenica during the middle 

Pliocene, later gave rise to M. praenivalis during the late Pliocene, and eventually culminated 

with the extant M. nivalis. Through the middle Pliocene (~4 Ma), a separate Eurasian lineage 

dispersed into central and western Europe, giving rise to M. plioerminea and eventually the 

extant M. erminea. By the late middle Pleistocene (~1.2 Ma), M. erminea had spread across 

Eurasia and into North America.  

Members of Neogale represent a lineage endemic to North and South America (Patterson 

et al. 2021). This New World lineage is often represented by the middle Blancan species, 

Mustela rexroadensis, and is believed to be a direct ancestor to N. frenata which first appeared in 

North America during the late Blancan (3.4 Ma) (Kurtén and Anderson 1980; Tedford et al. 

1987; Baskin 1998; King and Powell 2007); however, no studies have examined whether or not 

M. rexroadensis is in fact a member of this lineage. Widespread differentiation between species 

of Neogale occurred rapidly through the Pliocene, with N. africana, N. felipei, and N. vison 

likely originated during this time (Harding and Smith 2009; Law et al. 2017). Further 

partitioning of Mustela species in Eurasia was likely simultaneously occurring during this time 

as well (Harding and Smith 2009). Continuous dispersal events via the Bering land bridge likely 

occurred between the Old World and New World lineages, though the lack of a more complete 

fossil record leaves uncertainty regarding the timing of these events (Koepfli et al. 2008). The 
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earliest fossil remains identified as N. vison are from as far back as the early Pleistocene 

(Anderson 1989; Larivière 1999); however, molecular estimates for their appearance are earlier 

than the fossil record suggests (Marmi et al. 2004; Harding and Smith 2009). Molecular evidence 

across various studies has placed an estimate of the beginning of divergence of Neogale from 

Mustela (initiated by the split of N. vison from remaining taxa) between 9.9-8.5 Ma (Sato et al. 

2003), 9.5-6.6 Ma (Marmi et al. 2004), 14-10 Ma (Hosoda et al, 2000), 6.2-6 Ma (Koepfli et al. 

2008), 7.13 Ma (Sato et al. 2012), 8.69 Ma (Law et al. 2017), and 13.4-11.8 Ma (Hassanin et al. 

2021), respectively. 
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CHAPTER 4. CHARACTERISTICS OF MUSTELINES 

 

Skull and Dental Characters of Mustelidae 

 

Mustelids are very small- to medium-sized arctoid carnivoran mammals, generally with a 

low braincase, short rostrum, wide occiput, short jaw, small orbits, and forwardly placed 

carnassials (Kurtén and Anderson 1980; Hall 1981; Radinsky 1982; Baskin 1998). Being a 

highly ecomorphologically diverse clade of carnivorans, members of this family exhibit diverse 

diets ranging from the generalist diet of badgers to the specialized diets of the hypercarnivorous 

weasels and piscivorous otters (Friscia et al. 2007; Law et al. 2018; Macdonald et al. 2018). In 

addition, they often exhibit a wide range of variation in dental adaptations, though the carnassials 

are typically sectorial with some groups having been secondarily modified for crushing (Kurtén 

and Anderson 1980; Hall 1981). Symplesiomorphic skull and dental features characterizing 

Mustelidae include: a moderately inflated auditory bulla; the presence of a suprameatal fossa in 

the squamosal; the postglenoid process partially encloses the glenoid fossa, and little (and no 

rotary) jaw movement is possible; presence of the alisphenoid canal; the dental formula is I3/3, 

C1/1, P4/4, M2/2; the M1 lacks a postprotocrista and metaconule and has an enlarged parastyle; 

and the m1 has a reduced metaconid (Kurtén and Anderson 1980; Bryant et al. 1993; Wolsan 

1993; Baskin 1998). Additionally, the inner lobe of the M1 is expanded and the M2 is very 

reduced; the m2 is reduced or absent with a short talonid (Kurtén and Anderson 1980; Baskin 

1998). 

Members of the stem lineage of Mustelidae are often informally referred to as 

“Paleomustelidae”, while crown-group (Late Oligocene to Recent) mustelids are referred to as 

“Neomustelidae” (Baskin 1998; Finarelli 2008; Koepfli et al. 2008; Robles et al. 2009). 

Paleomustelids are considered to be paraphyletic and are characterized by the ancestral retention 
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of the P4 carnassial notch, while neomustelids have lost the carnassial notch of the P4 with the 

paracone connecting continuously with the metacone (Baskin 1998). Additional synapomorphies 

of neomustelids include an absent M2, absence of the alisphenoid canal, a posterior carotid 

foramen well anterior of the posterior lacerate foramen, and a very reduced to absent suprameatal 

fossa (Baskin 1998; Paterson et al. 2019). 

Skull and Dental Characters of Mustelinae 

 

Mustelines are the smallest- and most elongate-bodied group of mustelids and are highly 

specialized for hypercarnivory (Kurtén and Anderson 1980). The M1 metacone is small and 

situated close to the paracone with an anteroposteriorly expanded internal cingulum (Bryant et al. 

1993; Baskin 1998). Additionally, the m1 has a trenchant talonid and a metaconid that is either 

absent (Mustela) or incipient (Neogale vison) (Kurtén and Anderson 1980; Bryant et al. 1993; 

Baskin 1998; Patterson et al. 2021); and the m2 is single-rooted (Baskin 1998). 

Skull and Dental Characters of Mustela 

 

 Members of the genus Mustela have retained many of the ancestral characters of 

Mustelidae (Izor and de la Torre 1978), which has led to its use as a catchall genus despite the 

results of phylogenetic studies (Koepfli et al. 2008; Harding and Smith 2009; Sato et al. 2012; 

Law et al. 2018) Nevertheless, Mustela can be distinguished from other mustelids by absence of 

the P1 and p1; a small and anteriorly placed P4 protocone; medial constriction of the M1 with an 

expanded internal lobe forming a figure-eight occlusal outline and a reduced parastyle; a 

trenchant talonid on the m1 that is shorter anteroposteriorly relative to the trigonid; absence of 

the m1 metaconid; a very reduced m2; greatly inflated auditory bullae with paraoccipital 

processes closely appressed to the bullae; and a palate that is situated behind the upper molars 

(Figure 3) (Bryant et al. 1993; Baskin 1998). Additionally, the dental formula is I3/3, C1/1, Pm2-
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3/3-2, M1/2 = 34; no additional cusp is on the inner side of the main crest of the p4; the 

longitudinal axes of the crowns of the P4 lie at a significant angle to each other and with the 

longitudinal axis of the skull; the P2 is very small and corresponds approximately in dimensions 

to the p1 in Martes, but it is not lost, or this occurs only rarely (Hall 1981; Heptner et al. 2001). 

 



29 

 

 

Figure 3. Mustela erminea skull in dorsal (top), ventral (center), and right lateral (bottom) views 

(Museum of Vertebrate Zoology, University of California, Berkeley) 
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Skull and Dental Characters of Neogale 

 

 Members of the genus Neogale were formerly placed into Mustela; however, recent 

molecular and phylogenetic analyses (Flynn et al. 2005; Koepfli et al. 2008; Harding and Smith 

2009; Sato et al. 2012; Law et al. 2018; Hassanin et al. 2021) support placing the members of 

this distinct New World clade (Neogale vison, Neogale frenata, Neogale africana, Neogale 

felipei) into a separate genus (Patterson et al. 2021). 

 Abramov (2000) and Wozencraft (2005) recognized N. vison as a separate genus 

Neovison on the basis of its distinctive morphology. Abramov (2000) distinguished Neovison 

from Mustela primarily on bacular structure, size of the auditory bullae, and presence of the m1 

metaconid; however, this elevation to generic rank was justified by an unsupported phylogenetic 

tree of relationships suggesting that Neovison vison was sister to all species of Mustela, which is 

contradicted by all subsequent phylogenetic studies (Flynn et al. 2005; Koepfli et al. 2008; 

Harding and Smith 2009; Sato et al. 2012; Law et al. 2018). Diagnostic characters that 

distinguish N. vison from other mustelines include: the braincase is shorter and broader than in 

subgenera Kolonokus and Lutreola, but not so strongly built as that of subgenus Putorius; the 

postorbital region of the skull is elongated, and constriction is well marked; and the auditory 

bullae are small and flattened (Abramov 2000). Additionally, the distance between the upper 

canines is less than the width of the basioccipital as measured between foramina situated midway 

along medial sides of the auditory bullae; the teeth are larger and stronger than those of larger 

Putorius; and the P2 has two roots (Figure 4) (Hall 1981; Abramov 2000). Neogale vison 

diagnosis based on skull and dental characters has sometimes be confused with that of M. 

nigripes, but N. vison has a larger inner lobe on the M1, a wider occipital region, a larger 

infraorbital foramen, less inflated auditory bullae, and a wider m1 talonid (Kurtén and Anderson 
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1980). Also, the upper molars are relatively large (compared to Mustela) and the posterior end of 

the P2 contacts the upper carnassial somewhat more medial to the antero-outer corner of the 

carnassial (Heptner et al. 2001). 

 Neogale africana, N. felipei, and N. frenata can be distinguished from one another by the 

shape of the nasals, the mesopterygoid fossa, inflation of the auditory bullae, orientation of the 

P3, and size or presence of the p2 (Izor and de la Torre 1978; Sheffield and Thomas 1997; 

Ramirez-Chavez and Patterson 2014; Ramirez-Chavez et al. 2014). The nasals in N. africana 

form a simple isosceles triangle, whereas in N. felipei and N. frenata the lateral margins are 

subparallel anteriorly; the narrower and anteriorly less flaring nasals of N. felipei distinguish it 

from N. frenata (Izor and de la Torre 1978). In N. felipei, the sides of the mesopterygoid fossa 

are nearly parallel and the fossa is wide in comparison to N. africana and N. frenata (Izor and de 

la Torre 1978; Ramirez-Chavez and Patterson 2014; Ramirez-Chavez et al. 2014). The auditory 

bullae of N. felipei are shorter, broader, and more inflated posteromedially compared to N. 

africana and N. frenata (Ramirez-Chavez and Patterson 2014). In N. felipei, the buccal margin of 

the P3 is convex instead of straight or concave as is in N. africana and N. frenata (Izor and de la 

Torre 1978). The p2 is very reduced in size compared to N. frenata and is absent in N. africana 

(Izor and de la Torre 1978; Ramirez-Chavez and Patterson 2014; Ramirez-Chavez et al. 2014). 

 The phylogenetic studies previously mentioned were incredibly necessary to identify 

which species belong to Neogale since there are such morphological disparities among the group. 

And since this taxonomical revision is so recent, morphological synapomorphies and a robust 

group diagnosis has not yet been identified (Patterson et al. 2021). 
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Figure 4. Neogale vison skull in dorsal (top), ventral (center), and right lateral (bottom) views 

(Museum of Vertebrate Zoology, University of California, Berkeley) 
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CHAPTER 5. ECOLOGY OF MUSTELINES 

 

Habitat and Distribution 

 

 Today mustelines are distributed across a variety of habitats within a wide geographic 

range spanning Europe, northern Africa, Asia (including Java, Sumatra, and Borneo), North 

America, and northern South America (Kurtén and Anderson 1980; Nowak 2005) (Figure 5). 

The northern limit of the New World range includes the whole mainland and the entire Arctic 

Archipelago and the northern and northeastern part of Greenland. The southern limit passes 

along the northern and northwestern parts of South America, spanning Venezuela and 

southwestern Colombia to the south and Peru and Bolivia to the west (Heptner et al. 2002). In 

the Old World, their range occupies all of Europe except Iceland, the Arctic Islands and the 

islands of the Mediterranean Sea. In Asia, the northern limit of their range spans the entire 

mainland, to the south, Palestine, Syria, and Iraq (Heptner et al. 2002). Continuing eastward, 

their range occupies across northern Iran and the entire Himalayas from Kashmir through Nepal, 

Sikkim, Bhutan, and Assam. In southeast Asia, their range includes Myanmar, the Indochinese 

Peninsula, Tenasserim, Mallaca and the islands of Sumatra, Java, and Borneo (Heptner et al. 

2002). Moving eastward, the mainland range reaches the Pacific Ocean and includes the islands 

of Karangin, Kuril, Shantar, Sakhalin, Japan, the Ryukyus, Taiwan, and Hainan (Heptner et al. 

2002). 
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Figure 5. Current world range of Mustelinae (reproduced from Heptner et al. 2001) 
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 Mustelines occupy a wide variety of habitats including tundra, taiga, forest-steppe zones 

(most common), grassy steppes, deserts, tropical forests, and mountain ranges. (Heptner et al. 

2002). Habitat selection is very reliant on prey abundance, and differences in habitat use between 

mustelines and their prey has led to shifts in occupied niches and variation of diet (King and 

Powell 2007; Zub et al. 2008). 

Dietary Ecology 

 

 Mustelines exhibit a hypercarnivorous (>70% vertebrate prey) diet and have evolved as 

specialist predators of small to medium-sized rodents and lagomorphs, although they may 

occasionally prey on some reptiles, birds, and their eggs (Heptner et al. 2002; King and Powell 

2007; Law et al. 2018). The vast and scattered scientific literature on mustelines contains many 

descriptions of their diet; however, the interpretation of diet can often be hazardous due to biases 

toward habitat, season, species, age, and sex (King and Powell 2007). This is evident when 

examining prey abundance in relation to the size of populations of mustelines. They often 

demonstrate an exceptionally interdependent relationship with local rodent populations, although 

levels of dependence can vary significantly among species making it difficult to deduce useful 

information from their diet (Erlinge 1975; Korpimaki et al. 1991; King and Powell 2007). It is 

evident that some populations of musteline species have become more specialized while others 

remain filling a more generalized ecological niche (King and Powell 2007). M. nivalis is 

considered a specialist predator of microtine rodents and other mice (Sheffield and King 1994). 

Due to its usual association with aquatic environments, the diet of N. vison is typically comprised 

mostly of fish, amphibians, and crustaceans with fewer numbers of small mammals; however, its 

diet will nevertheless reflect the local prey base (Larivière 1999). Studies documenting the diets 

of M. nigripes populations provide a close affinity for Cynomys spp. and their predation does not 
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seem to significantly reduce Cynomys populations, because M. nigripes, unlike many other 

species of mustelines, do not often exhibit surplus predation (Hillman and Clark 1980). M. 

erminea are often considered specialist predators of small mammals, though some studies have 

revealed some populations of M. erminea taking a wider variety of prey species in different 

proportions, thus considering them to be more of a ‘semi-generalist’ predator (King 1983; 

Korpimaki et al. 1991). N. frenata is the least-specialized member of the small carnivore guild 

(Rosenzweig 1966). As a generalist predator, they feed on a wide variety of prey and are able to 

switch to alternative prey when normal abundance is low (Sheffield and Thomas 1997; King and 

Powell 2007). 

Sexual Dimorphism 

 

 Sexual dimorphism in body size is a characteristic feature of all mustelines, with males 

always being larger than females (Erlinge 1979; Moors 1980; King and Powell 2007). The extent 

of dimorphism varies between species, as well as geographically within species (Moors 1980). It 

has been hypothesized by Brown and Lasiewski (1972) that the elongate body of mustelines and 

their sexual dimorphism has evolved together and that the energetic cost of their elongate body 

shape has been compensated for by differential food exploitation of the two sexes. The authors’ 

hypothesis expected mustelines to display intra- but not intersexual territoriality, though no field 

data were available to test the hypothesis. Respectively, Erlinge (1979) and Moors (1980) later 

provided evidence suggesting the difference in size between sexes has evolved primarily as an 

adaptation for their different roles in reproduction. It was hypothesized that small females (alone 

rearing the young) are selectively advantageous, as they can exploit small rodent tunnels and 

have low absolute food requirements (Erlinge 1979; Moors 1980). In males, large body size is 

favored by sexual selection, as such males are dominant; by monopolizing areas including 
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several females, or by social dominance, these males will successfully have more mates (Erlinge 

1979; Moors 1980). Considering the evolution of size difference in males and females, the 

opportunity has come for the two sexes to exploit different food and habitats, which has given 

further selective advantages to small-sized females and large-sized males and therefore may have 

enlarged the dimorphism (Erlinge 1979). Moreover, Moors (1980) claimed these patterns 

indicate that the optimum sizes of males and females result from different selective pressures and 

are likely to vary independently. However, Ralls and Harvey (1985) argued that the primary 

factors influencing geographic variation in sexual dimorphism of body size are correlated with 

prey size, prey abundance, and hunting efficiency. Furthermore, they discovered that male and 

female size do covary within each species (Ralls and Harvey 1985). With an indication that these 

factors influence the body size of both male and female North American Mustela spp., Ralls and 

Harvey (1985) rejected the previously stated claim by Moors (1980), suggesting that the 

influencing factors are similar for both sexes. 

 Although these studies are broadly supported, the striking degree of sexual dimorphism 

displayed by mustelines continues to be a controversial topic, as continuing research has resulted 

in a broad array of possible explanations (King and Powell 2007). Dayan and Simberloff (1994) 

further extended this list of possible explanations by arguing based on patterns in canine sizes 

that sexual dimorphism in mustelids evolved to reduce competition between the sexes for food 

(King and Powell 2007). However, Holmes (1988) analyzed both cranial and post-cranial 

measurements from North American Mustela spp. and found almost no significant differences in 

morphology between sexes except that skull morphology was disproportionately more similar in 

size than expected. This indicated that those features most critically involved in mastication, 

particularly the jaws and teeth, showed less sexual dimorphism than did body size (Holmes 
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1988; King and Powell 2007). With all of these patterns in consideration, King and Powell 

(2007) proposed that sexual selection drives the evolution of large body size in males, that 

efficiency of reproduction drives the evolution of small body size in females, and that the diet of 

males and females are more similar than expected from their differences in body size. 

Geographic Variation 

 

 In addition to displaying pronounced sexual dimorphism, mustelines also exhibit a high 

degree of spatial variation in body size (Abramov and Puzachenko 2009). They are particularly 

sensitive to thermal stress at low temperatures due to their small, elongate bodies (King and 

Powell 2007). This metabolic inefficiency may persuade one to suggest that mustelines are very 

likely to follow Bergmann’s Rule, which states that populations found in higher latitudes tend to 

be larger in species of mammals and birds than populations of the same species found in lower 

latitudes (McNab 1971). However, a simple comparison between skull size and latitude indicates 

that mustelines surprisingly often do not follow Bergmann’s Rule (King and Powell 2007); only 

M. erminea in North America has been observed to follow Bergmann’s Rule (Rosenzweig 1966; 

McNab 1971; Ralls and Harvey 1985; Eger 1990). Nevertheless, the northern populations of M. 

erminea in North America displaying this pattern can be said to be so only by comparison with 

their extraordinarily small relatives further south in North America; they are not larger than their 

relatives at the same latitudes in eastern Eurasia (King 1989; King and Powell 2007). 

 Many authors have studied geographic variation in the body size of mammals in an 

attempt to reveal potential spatial patterns, with MacPherson (1965), Rosenzweig (1966), and 

McNab (1971) notably being among the earliest to address this phenomenon in mustelines. 

MacPherson (1965) specifically examined arctic mammals and suggested that the current broad 

patterns of geographic variation among each species are due largely to historical processes of 
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isolation and divergence in refugia of the Wisconsin glaciation. Likewise, Reig (1997) found 

based on statistical analyses that the isolation of M. nivalis in North America during the 

glaciations, rather than ecological factors, seems to be the key determinant of geographic 

variation in skull size. Moreover, the patterns of variation in M. nivalis populations from North 

America, Central Europe, and Siberia, based on skull size and morphology, supported the 

existence of four distinct groups: rixosa, eskimo, vulgaris, and subpalmata (Reig 1997). He 

suggested that rixosa and subpalmata each represent a very distinct taxon and therefore deserve 

consideration as a separate species (Reig 1997). 

 Eger (1990) further evaluated this refugium hypothesis using a statistical analysis of 

geographic variation in the skull size and morphology of M. erminea in North America. She 

suggested that the patterns of geographic variation now exhibited by M. erminea could be 

influenced not only by differentiation in refugia, as hypothesized by MacPherson (1965), but 

also by several other factors, including location prior to postglacial dispersion, current 

geographic barriers to gene flow, isolation by distance, and climate (Eger 1990). Given that skull 

size varies closely with current ecology, as well as the likely ability of M. erminea to adapt 

rapidly to changes in its environment, results found post-Wisconsin ecogeographic adaptation to 

be the primary determinant of geographic variation in skull size in current populations in North 

America (Eger 1990). Conversely, patterns of variation in skull morphology were more 

consistent with divergence in refugia of the Wisconsin glaciation (Eger 1990), as hypothesized 

by MacPherson (1965). 

 Alternatively, Rosenzweig (1966) suggested that hunting strategy, prey size, and 

interspecific competition among carnivoran mammals may contribute to various gradations in 

body size, which allows these sympatric populations of closely related carnivorans to coexist. 
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Contrary to this hypothesis, he observed sympatric populations of M. nivalis, M. erminea, and N. 

frenata in North America and discovered only minuscule differences in prey size among each 

species, consequently leading him to suggest that their successful coexistence may be attributed 

to differential prey specialization (Rosenzweig 1966). He also discovered latitude to be a 

climatic variable accurate at predicting body size in M. erminea only (Rosenzweig 1968). 

Similarly, McNab (1971) observed geographic variation in North American musteline species 

and reported that M. erminea and M. nivalis increase in body size at latitudes above 50 while N. 

frenata and M. nigripes have body sizes independent of latitude in the region from 30 to 50. 

Despite this observation, he proposed an alternative explanation to the increase in size at higher 

latitudes exhibited by M. erminea, challenging the suggestions made by Rosenzweig (1966). 

McNab (1971) stated that M. erminea can increase in size at higher latitudes because of the 

absence of N. frenata; it is no longer under constraints to keep its trophic “distance”, thus 

resulting in character displacement. However, Ralls and Harvey (1985) conducted a statistical 

analysis of variance including North American species of mustelines and determined that M. 

erminea increases in size with latitude regardless of the presence or absence of N. frenata or M. 

nivalis, thus suggesting there is no evidence for character displacement between any pair of 

species. There was no apparent covariation between N. frenata, M. erminea, and M. nivalis body 

size when it is sympatric with either of the other two species; however, both sexes within each 

species did show evidence of covariation in size (Ralls and Harvey 1985). Additionally, they 

discovered that M. nivalis does not increase in size with latitude, contrary to the claim made by 

McNab (1971) (Ralls and Harvey 1985). 

 Despite the analyses of Ralls and Harvey (1985), there have been numerous authors 

report what they view as tentative evidence for character displacement in some populations of M. 
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erminea, particularly in the British Isles (Hutchinson 1959; Williamson 1972; Fairley 1981; 

Dayan et al. 1989; Dayan and Simberloff 1994). Hutchinson (1959) and Williamson (1972) 

mention that M. erminea is smaller in Ireland, where it occurs alone, than on the British 

mainland, where it is sympatric with M. nivalis. However, it later became apparent that M. 

erminea from the south of Ireland are similar in body size to those on the British mainland—it 

was only in the north of Ireland that M. erminea was significantly small (Fairley 1981; Ralls and 

Harvey 1985). Dayan et al. (1989) and Dayan and Simberloff (1994) searched for possible 

community-wide character displacement in musteline species of North America and the British 

Isles, respectively. Both studies suggested evidence of character displacement among sympatric 

Mustela spp. in North America and Great Britain, although not in Ireland. Results that led to this 

conclusion were evidenced by equal size ratios for condylobasal skull length and maximal 

diameter of the upper canine among sympatric populations (Dayan et al. 1989; Dayan and 

Simberloff 1994). However, both groups of authors acknowledge that many critical data remain 

uncollected (Dayan et al. 1989; Dayan and Simberloff 1994). 
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CHAPTER 6. METHODOLOGY 

 

Measurements and Statistical Analyses 

 

 Linear measurements from 311 skulls of all 18 extant species of Mustela and Neogale 

were collected from the Smithsonian Natural History Museum (USNM) and the East Tennessee 

State University Museum of Natural History (ETMNH) (Table 1, Figure 6a, 6b; Appendix). An 

even ratio of adult males and females, as well as an even spatial distribution of specimens 

covering the entirety of each one’s current range, were attempted to account for intraspecific 

differentiation accounted by high degrees of sexual dimorphism and geographic variation. No 

juvenile specimens were selected for this study; specimens were determined to be adult based on 

examination of tooth eruption. Each specimen used in the analysis can be found in the Appendix 

on pp. 135-143. 

 Specimens of the extinct sea mink (‘Neovison’ macrodon) were also studied from the 

USNM collection. The sea mink specimens are the most complete known of a fossil musteline 

and provide an excellent opportunity for evaluating classification of fossil specimens based on 

their morphology. Note that the sea mink is referred to as ‘Neovison’, since the name Neovison is 

considered invalid according to the Patterson et al. (2021) taxonomy used here. Additional 

measurements compiled from literary sources were taken of fossil specimens of extinct taxa, 

including: M. gazini (from Hibbard 1958), M. jacksoni (from Storer 2004), M. meltoni (from 

Bjork 1973), and M. rexroadensis (from Hibbard 1950; Hibbard 1952; Bjork 1970). 

Measurements from Pleistocene fossil specimens of extant species include M. erminea (from 

Getz 1960; Harris 1993a; Anderson 1977; Baryshnikov and Alekseeva 2017), N. frenata (from 

Harris 1993b), M. nivalis (from Baryshnikov and Alekseeva 2017), M. nigripes (from Anderson 

et al. 1986; Harris 1993b; Owen et al. 2000; Fox 2014), and N. vison (from Gidley and Gazin 
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1938; Anderson 1977), which were compiled to examine potential morphological differences 

between Pleistocene and Holocene individuals of the same species. Measurements from two 

Blancan-aged fossils labeled Mustela sp. were also taken to examine potential classification. 

Lastly, measurements from the left P4 and M1 of a taxonomically unknown musteline recently 

uncovered from the early Pliocene (late Hemphillian or early Blancan) Gray Fossil Site (GFS) in 

eastern Tennessee were collected to attempt classification of its taxonomic status. 

Table 1. Definitions of Osteological Measurements Used in the Analysis and Their 

Abbreviations 

Definition Abbreviation 

Length of upper third premolar P3L 

Width of upper third premolar P3W 

Length of upper carnassial P4L 

Width of upper carnassial at protocone P4ProW 

Width of upper carnassial at paracone P4ParW 

Width of upper first molar M1W 

Length of upper first molar at lingual lobe M1LinL 

Length of upper first molar at buccal lobe M1BucL 

Upper grinding area (occlusal surface area of upper first molar) UGA 

Length of lower fourth premolar p4L 

Width of lower fourth premolar p4W 

Length of lower carnassial m1L 

Length of trigonid of lower carnassial m1TriL 

Length of talonid of lower carnassial m1TalL 

Width of lower carnassial m1W 

Lower grinding area (occlusal surface area of talonid of lower carnassial 

and m2) 
LGA 

Mandibular depth between p4 and m1 MD 

Moment arm of temporalis muscle (distance between mandibular 

condyle and apex of coronoid process) 
MAT 

Moment arm of masseter muscle (distance between mandibular condyle 

and ventral border of mandibular angle 
MAM 

Condylobasal length of skull CBL 

Maximum cranial width MCW 
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Figure 6a. Linear measurements of skull used in the analysis. Image is not to scale. 

Measurements modified from Friscia et al. 2007. 
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Figure 6b. Linear measurements of mandible used in the analysis. Image is not to scale. 

Measurements modified from Friscia et al. 2007. 

  

 Measurements chosen for this analysis were modified from Anderson et al. (1986) and 

Friscia et al. (2007) and recorded to the nearest 0.01 mm using either digital calipers or from 

digital photographs of the specimens. Photographs were taken in dorsal, lateral, and ventral 

views, and positioned with the palate parallel to the photographic plane with a scale bar included. 

Measurements from the photographs were scaled and obtained using ImageJ image processing 

and analysis software (Rasband 1997-2018). When available, scaled photographs of the fossil 

specimens were also analyzed using ImageJ to collect any additional measurements not already 

provided in the literature. Selected raw measurements were then combined and calculated into 

ratios to interpret proportional differentiation (Table 2). Measurements were averaged across the 

individuals of each species and a geometric mean (GM) transformation was applied to each 
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individual to correct for body size, examine allometry, and allow for potential strong 

relationships to become more interpretable (Friscia et al. 2007). A separate GM transformation 

was applied to each extinct taxon analysis to separately examine the classification of the specific 

target variable being analyzed. Each extinct taxon was run as an ungrouped case in the analysis. 

Due to the fragmentary nature of the fossil specimens, an averaged composite score of 

measurements for each extinct species was calculated to allow for each measurement to be run in 

the analysis. A stepwise discriminant function analysis (DFA) was used to classify each 

individual at the genus- and species-level. Additionally, a third DFA was used to classify each 

individual by clade (Table 3). Bivariate scatterplots of the log-transformed variables were used 

for visual interpretation of data. All analyses were performed using IBM SPSS Statistical 

Package, Version 28. 

 

Table 2. Definitions of Ratios Used in the Analysis and Their Abbreviations (modified from 

Friscia et al., 2007) 

Definition Abbreviation 

Length divided by width of upper carnassial P4L/W 

Width of parastyle divided by width of protocone of upper carnassial P4PastW/ProW 

Length divided by width of upper first molar M1L/W 

Length of lingual lobe divided by length of buccal lobe of upper first 

molar 
M1LinL/BucL 

Length of upper carnassial divided by width of upper first molar P4L/M1W 

Length divided by width of lower fourth premolar p4L/W 

Length divided by width of lower carnassial m1L/W 

Length of trigonid divided by length of talonid of lower carnassial m1TriL/TalL 

Length of lower carnassial divided by length of lower fourth premolar m1L/p4L 

Condylobasal length of skull divided by maximum cranial width CBL/MCW 
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Table 3. Evolutionary Clades of Mustelines (from Harding and Smith 2009 and Law et al. 2018) 

Clade # Taxa 

1 N. africana, N. felipei, N. frenata, N. vison 

2 M. nudipes, M. strigidorsa 

3 M. kathiah 

4 M. erminea 

5 M. altaica, M. nivalis, M. subpalmata 

6 M. itatsi 

7 M. lutreolina, M. sibirica 

8 M. lutreola 

9 M. eversmanii, M. nigripes, M. putorius 

 

Character State Analysis 

 In addition to a statistical analysis, a qualitative analysis was conducted to potentially 

distinguish Mustela and Neogale using a total of 43 skull and tooth morphological characters 

(Table 4). An additional analysis targeting N. vison was completed to examine for potential 

characters distinguishing it from other mustelines due to its well-known semi-aquatic ecology 

(Larivière 1999). Characters used in the analysis are listed and defined below and were compiled 

from Bryant et al. (1993) and Wolsan (1993) to assess phylogenetic relationships between both 

extant and extinct groups within Mustelidae. A “state” of each character was scored for each 

individual and organized into a data matrix to observe potential distinguishing characters at the 

genus- and species-level and to examine intraspecific variation in expression of these traits. 

 

 

 



48 

 

Table 4. Definitions of Skull and Tooth Characters Used in the Analysis (modified from Bryant 

et al. 1993 and Wolsan 1993) 

Character a b c d e 

(1) Form of 

postorbital region 

postorbital 

region not 

elongated in 

adults, shorter 

than its greatest 

width 

postorbital 

region greatly 

elongated in 

adults 

   

(2) Pattern of 

dorsal cranial 

crests 

Y-shaped in 

adults, sagittal 

crest present 

crests parallel to 

X-shaped in 

adults, strong 

parasagittal 

crests present 

   

(3) Occurrence of 

postlateral sulcus 

of brain 

present absent    

(4) Anterior 

opening of 

palatine canal 

at maxilla-

palatine suture 

more anterior 

through maxilla 
   

(5) Posterior 

margin of 

secondary palate 

well posterior of 

posterior margin 

of M1 

level with the 

posterior margin 

of M1 

   

(6) Sagittal 

partition of nasal 

cavity by the 

vomer 

posterior edge 

well-forward of 

posterior end of 

the horizontal 

lamina of the 

vomer 

posterior edge at 

or adjacent to 

posterior end of 

horizontal 

lamina 

   

(7) Caliber of 

infraorbital canal 
small intermediate large   

(8) Orientation of 

anterior opening 

of infraorbital 

canal 

faces anteriorly 
faces 

anteroventrally 
   

(9) Positional 

relationship 

between 

sphenopalatine 

canal and 

posterior palatine 

foramina 

in a distinct, 

common fossa 

not in a common 

fossa 
   

(10) Occurrence 

of alisphenoid 

canal 

present absent    

(11) Position of 

posterior carotid 

foramen 

joined to fossa 

leading to 

posterior lacerate 

foramen 

separated from 

fossa leading to 

posterior lacerate 

foramen 
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(12) Size of 

posterior lacerate 

foramen 

not enlarged, 

smaller than 

lateral opening 

of external 

auditory meatus 

greatly enlarged, 

greater than 

lateral opening 

of external 

auditory meatus 

   

(13) Posterior 

extension of 

caudal 

entotympanic 

smallest width of 

auditory bulla 

between 

stylomastoid 

foramen and 

fossa leading to 

posterior lacerate 

foramen smaller 

than greatest 

diameter of 

stylomastoid 

foramen 

smallest width of 

auditory bulla 

between 

stylomastoid 

foramen and 

fossa leading to 

posterior lacerate 

foramen greater 

than greatest 

diameter of 

stylomastoid 

foramen, 

posterior border 

of caudal 

entotympanic 

situated in front 

of that of fossa 

leading to 

posterior lacerate 

foramen 

smallest width 

of auditory 

bulla between 

stylomastoid 

foramen and 

fossa leading 

to posterior 

lacerate 

foramen 

greater than 

greatest 

diameter of 

stylomastoid 

foramen, 

posterior 

border of 

caudal 

entotympanic 

situated behind 

that of fossa 

leading to 

posterior 

lacerate 

foramen 

  

(14) Lateral 

extension of 

ectotympanic 

meatal trough of 

ossified 

ectotympanic not 

differentiated 

meatal trough of 

ossified 

ectotympanic 

short, its smallest 

mediolateral 

dimension 

smaller than one-

third of bullar 

width 

meatal trough 

of ossified 

ectotympanic 

long, its 

smallest 

mediolateral 

dimension 

greater than 

one-third of 

bullar width 

  

(15) Hamulus 
not connected to 

auditory bulla 

with bony 

connection to 

auditory bulla 

   

(16) Stylomastoid 

foramen 

tympanohyal in a 

common fossa 

with, or 

immediately 

posteromedial to, 

the foramen 

tympanohyal 

separated from 

foramen by a 

bridge of bone 

   

(17) Lateral 

extension of 

epitympanic 

recess 

epitympanic 

recess anterior to 

fossa for incudal 

processus brevis 

not floored by 

squamosal 

lateral part of 

epitympanic 

recess anterior to 

fossa for incudal 

processus brevis 

floored by 

squamosal 
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(18) Paroccipital 

process 

moderately to 

strongly 

developed, 

projecting 

posteriorly or 

posteroventrally 

absent    

(19) Lateral 

swelling of 

cranium dorsal to 

mastoid process 

absent present    

(20) Condyloid 

canal 
present absent    

(21) Osseous 

tentorium 
present absent    

(22) Auditory 

bulla 

restricted to 

immediately 

medial to the 

external auditory 

meatus, probably 

involving only 

the ectotympanic 

inflation 

increased, 

medially, 

anteriorly and 

especially 

posteriorly, 

involving 

primarily the 

caudal 

entotympanic 

   

(23) Suprameatal 

fossa 

well-developed 

but closed 

ventrally 

moderately to 

extremely 

reduced 

   

(24) Pm1 

occurrence 
present absent    

(25) pm1 

occurrence 
present absent    

(26) Pm2 

occurrence 
present absent    

(27) pm2 

occurrence 
present absent    

(28) Pm4 

carnassial notch 

occurrence 

present absent    

(29) Pm4 medial 

shelf 
absent 

moderately 

developed, 

especially 

anteriorly 

extensive, 

projecting 

strongly 

medially and 

extending 

posteriorly to 

the end of the 

metastylar 

blade, or 

nearly so 

  

(30) Pm4 

protocone 

no prominent 

cusp, but a raised 

ridge or cuspule 

present, smaller 

in width than the 

parastyle 

small cusp, 

larger in width 

than the 

parastyle 

large, high 

cusp 
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(31) Pm4 

hypocone 
absent present    

(32) Pm4 shape 

large with size 

similar to that of 

M1, with 

metastyle well-

developed 

large with size 

similar to that of 

M1, with 

metastyle 

reduced 

anteroposterior 

length 

reduced, much 

shorter than 

M1, with 

metastyle 

reduced 

  

(33) Pm4 

accessory cusp 
present absent    

(34) Size relation 

of M1 to Pm4 

M1 clearly larger 

than Pm4 

M1 subequal in 

size to Pm4 

M1 clearly 

smaller than 

Pm4 

  

(35) Pattern of M1 

lingual half of 

M1 crown 

shorter than 

buccal half, 

anterior and 

posterior borders 

of lingual half 

not parallel to 

each other 

lingual half of 

M1 crown 

shorter than 

buccal half, 

anterior and 

posterior borders 

of lingual half 

parallel to each 

other 

lingual half of 

M1 crown 

subequal in 

length to 

buccal half, 

both halves 

separated from 

each other by 

anteroposterior 

constriction 

lingual half of 

M1 crown 

longer than 

buccal half, 

both halves 

separated from 

each other by 

anteroposterior 

constriction 

lingual half of 

M1 crown 

subequal in 

length to 

buccal half, no 

anteroposterior 

constriction 

(36) M1 lingual 

cingulum 

anterior and 

posterior cingula 

of M1 not 

continuous 

around lingual 

lobe 

anterior and 

posterior cingula 

of M1 

continuous 

around lingual 

lobe 

   

(37) m1 talonid 

morphology 

rim complete 

with strong 

hypoconid, 

poorly developed 

lingual cusps and 

shallow basin 

lingual rim 

absent and 

prominent 

hypoconid 

no basin, 

strong central 

hypoconid, 

entoconid, and 

buccal 

cingulum 

strong rim and 

basin, cusps 

poorly 

developed 

prominent 

basin and rim, 

hypoconid and 

entoconid 

well-

developed 

(38) Pattern of m1 

talonid 

entoconid and 

entoconulid 

poorly 

differentiated 

(ridge-like or 

cuspule-like), 

anterior and 

posterior halves 

of lingual wall of 

talonid subequal 

in height to each 

other 

entoconid and 

entoconulid 

poorly 

differentiated 

(ridge-like or 

cuspule-like) or 

not 

differentiated, 

anterior half of 

lingual wall of 

talonid distinctly 

lower than 

posterior half 

entoconid 

prominent 

(cusp-like) 

  

(39) m1 

metaconid 
large 

much smaller 

than the other 

trigonid cusps 

and often 

positioned 

posteriorly 

absent   
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(40) Relation of 

m1 trigonid to 

talonid 

trigonid less than 

three times as 

long as talonid 

trigonid more 

than three times 

as long as talonid 

   

(41) M1 

postprotocrista 

present, may be 

weak 

posterobuccally 

absent or 

minimally 

developed 

   

(42) M1 

preprotocrista 

extends lingually 

to 

posterolingually 

from the 

parastyle region 

to the protocone 

extends mostly 

posteriorly, 

elongated and 

divided into 

cuspules 

   

(43) m2 

occurrence 
present absent    
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CHAPTER 7. RESULTS 

 

Character State Analysis 

 A character state analysis using 43 skull and tooth morphological characters was 

conducted to qualitatively identify potential distinguishing characters within Mustela and 

Neogale. Two characters, #27 (pm2 occurrence) and #40 (relation of m1 trigonid to talonid), 

showed consistent differences that can aid in distinguishing between the two genera (Table 5). 

For #27, 192 (100%) of Mustela showed a (present); 61 (97%) of Neogale showed a and 2 (3%) 

showed b (absent) (Table 6). For #40, 157 (84%) of Mustela showed a (trigonid less than three 

times as long as talonid) and 29 (16%) showed b (trigonid more than three times as long as 

talonid); 62 (100%) of Neogale showed a (Table 6). 

 A total of four characters, #30 (P4 protocone), #34 (size relation of M1 to P4), #35 

(pattern of M1), and #39 (m1 metaconid), proved successful in distinguishing N. vison and N. 

macrodon from all other musteline taxa (Table 7). For #30, 151 (87%) of Mustela showed a (no 

prominent cusp, but a raised ridge or cuspule present, smaller in width than the parastyle) and 22 

(13%) showed b (small cusp, larger in width than the parastyle); 26 (84%) of Neogale (excluding 

N. vison) showed a and 5 (16%) showed b; 29 (100%) of N. vison showed b; and 5 (100%) of N. 

macrodon showed b (Table 7). For #34, 56 (30%) of Mustela showed b (M1 subequal in size to 

P4) and 128 (70%) showed c (M1 clearly smaller than P4); 14 (44%) of Neogale (excluding N. 

vison) showed b and 18 (56%) showed c; 23 (82%) of N. vison showed b and 5 (18%) showed c; 

and 3 (100%) of N. macrodon showed b (Table 7). For #35, 101 (55%) of Mustela showed c 

(lingual half of M1 crown subequal in length to buccal half, both halves separated from each 

other by anteroposterior constriction) and 84 (45%) showed d (lingual half of M1 crown longer 

than buccal half, both halves separated from each other by anteroposterior constriction); 18 
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(56%) of Neogale (excluding N. vison) showed c and 14 (44%) showed d; 4 (14%) of N. vison 

showed c and 24 (86%) showed d; and 3 (100%) of N. macrodon showed c. For #39, 188 (100%) 

of Mustela showed c (absent); 32 (100%) of Neogale (excluding N. vison) showed c; 31 (100%) 

of N. vison showed b (much smaller than the other trigonid cusps and often positioned 

posteriorly); and 21 (100%) of N. macrodon showed c (Table 7). 

 

Table 5. Character State Distribution Among Mustela, Neogale, and Neogale vison With 

Distinguishing Characters Highlighted 

Character state Mustela Neogale N. vison 

(1) Form of postorbital region a a a 

(2) Pattern of dorsal cranial crests a a a 

(3) Occurrence of postlateral sulcus of brain b b b 

(4) Anterior opening of palatine canal b b b 

(5) Posterior margin of secondary palate a a a 

(6) Sagittal partition of nasal cavity by the vomer a a a 

(7) Caliber of infraorbital canal a a a 

(8) Orientation of anterior opening of infraorbital canal  a a a 

(9) Positional relationship between sphenopalatine canal and posterior palatine 

foramina 
a a a 

(10) Occurrence of alisphenoid canal b b b 

(11) Position of posterior carotid foramen b b b 

(12) Size of posterior lacerate foramen a a a 

(13) Posterior extension of caudal entotympanic c c c 

(14) Lateral extension of ectotympanic b b b 

(15) Hamulus a a a 

(16) Stylomastoid foramen a a a 

(17) Lateral extension of epitympanic recess b b b 

(18) Paroccipital process b b b 

(19) Lateral swelling of cranium dorsal to mastoid process a a a 

(20) Condyloid canal a a a 

(21) Osseous tentorium a a a 

(22) Auditory bulla b b b 

(23) Suprameatal fossa a a a 

(24) P1 occurrence b b b 

(25) p1 occurrence b b b 

(26) P2 occurrence a a a 
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(27) p2 occurrence a ab a 

(28) P4 carnassial notch occurrence b b b 

(29) P4 medial shelf a a a 

(30) P4 protocone ab ab b 

(31) P4 hypocone a a a 

(32) P4 shape a a a 

(33) P4 accessory cusp b b b 

(34) Size relation of M1 to P4 bc bc bc 

(35) Pattern of M1 cd cd cd 

(36) M1 lingual cingulum b b b 

(37) m1 talonid morphology b b b 

(38) Pattern of m1 talonid b b b 

(39) m1 metaconid c c b 

(40) Relation of m1 trigonid to talonid ab a a 

(41) M1 postprotocrista b b b 

(42) M1 preprotocrista a a a 

(43) m2 occurrence a a a 

 

Table 6. Percentages of Distinguishing Characters Between Mustela and Neogale 
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Table 7. Percentages of Distinguishing Characters Among Holocene Musteline Taxa. Species of 

Mustela are highlighted in green, Neogale in blue, and ‘Neovison’ macrodon in orange. 

 

Taxon 
27 30 34 35 39 40 

a b a b b c c d b c a b 

M. altaica 
16 

(100%) 
– 

15 

(94%) 
1 (6%) 1 (6%) 

15 

(94%) 
11 

(69%) 
5 

(31%) 
– 

16 

(100%) 
11 

(69%) 
5 

(31%) 

M. erminea 
31 

(100%) 
– 

20 

(71%) 
8 

(29%) 
26 

(93%) 
2 (7%) 

9 

(31%) 
20 

(69%) 
– 

33 

(100%) 
26 

(84%) 
5 

(16%) 

M. eversmanii 
11 

(100%) 
– 

9 

(100%) 
– 

2 

(22%) 
7 

(78%) 
8 

(89%) 
1 

(11%) 
– 

10 

(100%) 
8 

(80%) 
2 

(20%) 

M. itatsi 
17 

(100%) 
– 

17 

(100%) 
– 1 (6%) 

16 

(94%) 
3 

(18%) 
14 

(82%) 
– 

17 

(100%) 
17 

(100%) 
– 

M. kathiah 
5 

(100%) 
– 

5 

(100%) 
– 

3 

(60%) 
2 

(40%) 
3 

(60%) 
2 

(40%) 
– 

5 

(100%) 
5 

(100%) 
– 

M. lutreola 
4 

(100%) 
– 

4 

(100%) 
– 

2 

(50%) 
2 

(50%) 
2 

(50%) 
2 

(50%) 
– 

4 

(100%) 
4 

(100%) 
– 

M. lutreolina 
2 

(100%) 
– 

1 

(100%) 
– 

2 

(100%) 
– 

1 

(50%) 
1 

(50%) 
– 

2 

(100%) 
2 

(100%) 
– 

M. nigripes 
13 

(100%) 
– 

10 

(100%) 
– 1 (7%) 

13 

(93%) 
12 

(86%) 
2 

(14%) 
– 

13 

(100%) 
13 

(100%) 
– 

M. nivalis 
27 

(100%) 
– 

20 

(83%) 
4 

(17%) 
5 

(21%) 
19 

(79%) 
11 

(46%) 
13 

(54%) 
– 

26 

(100%) 
23 

(88%) 
3 

(12%) 

M. nudipes 
5 

(100%) 
– 

5 

(100%) 
– 

2 

(40%) 
3 

(60%) 
5 

(100%) 
– – 

5 

(100%) 
5 

(100%) 
– 

M. putorius 
19 

(100%) 
– 

18 

(95%) 
1 (5%) 

6 

(32%) 
13 

(68%) 
10 

(53%) 
9 

(47%) 
– 

19 

(100%) 
15 

(79%) 
4 

(21%) 

M. sibirica 
22 

(100%) 
– 

16 

(94%) 
1 (6%) 1 (5%) 

20 

(95%) 
9 

(43%) 
12 

(57%) 
– 

18 

(100%) 
18 

(100%) 
– 

M. strigidorsa 
1 

(100%) 
– 

1 

(100%) 
– 

1 

(100%) 
– 

1 

(100%) 
– – 

1 

(100%) 
1 

(100%) 
– 

M. subpalmata 
19 

(100%) 
– 

10 

(59%) 
7 

(41%) 
3 

(16%) 
16 

(84%) 
16 

(84%) 
3 

(16%) 
– 

19 

(100%) 
9 

(47%) 
10 

(53%) 

N. africana – 
2 

(100%) 
1 (50%) 

1 

(50%) 

2 

(100%) 
– 

2 

(100%) 
– – 

2 

(100%) 

2 

(100%) 
–  

N. felipei 
2 

(100%) 
– 

2 

(100%) 
– 

2 

(100%) 
– 

1 

(50%) 

1 

(50%) 
– 

2 

(100%) 

1 

(100%) 
– 

N. frenata 
28 

(100%) 
– 

23 

(85%) 

4 

(15%) 

10 

(36%) 

18 

(64%) 

15 

(54%) 

13 

(46%) 
– 

28 

(100%) 

28 

(100%) 
– 

N. vison 
31 

(100%) 
– – 

29 

(100%) 
23 

(82%) 
5 

(18%) 
4 

(14%) 
24 

(86%) 
31 

(100%) 
– 

31 

(100%) 
– 

‘Neovison’ 

macrodon 
21 

(100%) 
– – 

5 

(100%) 
3 

(100%) 
– 

3 

(100%) 
– 

21 

(100%) 
– 

20 

(100%) 
– 
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Extant Taxa Analysis 

 A stepwise DFA of genus, species, and clade classification was performed using the 

ratios and GM-transformed linear measurements for each extant musteline taxon. Additionally, 

Pleistocene-aged specimens of each North American taxon (M. erminea, N. frenata, M. nigripes, 

M. nivalis, and N. vison) were included in the analysis as unclassified cases. 

Genus Classification 

 For genus classification, a total of nine of the 31 indices are included in the stepwise 

discriminant model (Table 8). The DFA separated each genus fairly well (Wilks’ 𝛌 = 0.513, p < 

0.001) and yielded one discriminant function with an eigenvalue of 0.948 and a canonical 

correlation of 0.698. The discriminant function (DF1) was positively correlated with 

P4PastW/ProW, CBL, m1TriL/TalL, m1L/W, and P3W, and negatively correlated with LGA, 

M1W, m1TalL, and p4L. Members of Mustela had both negative and positive scores with most 

cases scoring slightly to moderately positive, while nearly all members of Neogale had 

moderately to highly negative scores (Figure 7). Boxplots and bivariate plots showed significant 

differences in indices between genera and are illustrated in Figure 8. The ability of the 

discriminant model to separate musteline taxa into genus was determined using the classification 

matrix (Table 9). The classification showed 94.6% correct classification of Mustela and 82.5% 

correct classification of Neogale. When cross-validated, the classification showed 94% correct 

classification of Mustela and 80.7% correct classification of Neogale. Regarding the Pleistocene 

specimens, M. erminea, N. frenata, M. nigripes, and M. nivalis were classified as Mustela and N. 

vison was classified as Neogale (Table 14). 
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Table 8. Extant Genus Structure Matrix, Eigenvalue, Percent Variance Explained, and Wilks’ 𝛌 

for Discriminant Function 1 

Index DF 1 

P4PastW/ProW 0.462 

CBL 0.448 

m1TriL/TalL 0.382 

LGA -0.291 

m1L/W 0.259 

P3W 0.177 

M1W -0.093 

m1TalL -0.085 

p4L -0.027 

Eigenvalue 0.948 

% variance explained 100 

Canonical correlation 0.698 

Wilks' 𝛌 0.513 

p-value < 0.001 

 

 

Figure 7. Discriminant scores from DF1 for extant genus analysis 
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Figure 8. Bivariate plots comparing P4PastW/ProW and CBL and P4PastW/ProW and 

m1TriL/TalL. The y-axis represents the numerator and x-axis represents the denominator. Units 

are in mm. 

 

Table 9. Extant Genus Analysis Classification Matrix 

 

      Predicted genus   

    % Correct Mustela Neogale Total 

Original 
Mustela 94.6 141 8 149 

Neogale 82.5 10 47 57 

Cross-

validated 

Mustela 94 140 9 149 

Neogale 80.7 11 46 57 
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Species Classification 

 For species classification, a total of 12 of the 31 indices are included in the stepwise 

discriminant model (Table 10 ). Overall, the DFA separated each species well and was 

significant (Wilks’ 𝛌 = 0.000, P < 0.001). The classification showed all but seven species (M. 

erminea, M. eversmanii, N. frenata, M. lutreola, M. nivalis, M. subpalmata, and N. vison) being 

100% correctly classified, with M. erminea and M. nivalis particularly showing notable overlap 

(Table 11; Figure 9 ). Only two Pleistocene specimens were correctly classified (N. vison and M. 

nigripes); M. erminea was classified as M. subpalmata, N. frenata was classified as M. nigripes, 

and M. nivalis was classified as M. subpalmata (Table 14). The analysis yielded four 

discriminant functions with eigenvalues >1 and accounted for 85.9% of the variance in the data 

set. 
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Table 10. Extant Species Analysis Structure Matrix, Eigenvalue, Percent Variance Explained, 

and Wilks’ 𝛌 for Discriminant Functions 1, 2, 3, and 4 

 

Index DF 1 DF 2 DF 3 DF 4 

UGA 0.778 -0.049 -0.083 0.381 

LGA 0.703 0.055 -0.125 -0.030 

m1L -0.545 0.553 0.171 0.056 

CBL/MCW -0.082 0.527 -0.551 0.195 

M1W -0.336 0.008 0.067 0.624 

P4WPar -0.079 -0.079 0.363 0.115 

M1L/W 0.332 -0.001 -0.466 -0.015 

P4WPro -0.068 -0.273 -0.103 0.246 

P4PastW/ProW -0.070 0.316 0.181 -0.457 

m1TriL/TalL -0.086 -0.034 0.384 -0.133 

p4L/W -0.113 0.340 -0.132 0.114 

P3W 0.030 -0.276 -0.087 -0.331 

Eigenvalue 8.562 2.861 2.420 1.908 

% variance explained 46.7 15.6 13.2 10.4 

Canonical correlation 0.946 0.861 0.841 0.810 

Wilks' 𝛌 0.000 0.003 0.012 0.042 

p-value < 0.001 < 0.001 < 0.001 < 0.001 
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Table 11. Extant Species Analysis Classification Matrix. Taxa with 100% correct classification 

not listed. 
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Figure 9. Extant species analysis scatterplot comparing DF1 vs. DF2 

 

 

 



65 

 

 

Figure 10. Pleistocene specimens of extant species analysis scatterplot comparing DF1 vs. DF2 

 

 DF1 accounted for 46.7% of the variance, was positively correlated with UGA, LGA, 

M1L/W, and P3W, and negatively correlated with m1L, CBL/MCW, M1W, P4WPar, P4WPro, 

P4PastW/ProW, m1TriL/TalL, and p4L/W. N. africana had slightly positive to slightly negative 

scores, M. altaica had slightly negative to moderately negative scores, M. erminea had slightly to 

highly negative scores, M. eversmanii had slightly to moderately positive scores, N. felipei had 

slightly positive scores, N. frenata had slightly to highly negative scores, M. itatsi had 

moderately positive to slightly negative scores, M. kathiah had slightly positive to moderately 

negative scores, M. lutreola had moderately to highly positive scores, M. lutreolina had 
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moderately positive scores, M. nigripes had slightly to moderately positive scores, M. nivalis had 

slightly to highly negative scores, M. nudipes had slightly positive scores, M. putorius had 

moderately to highly positive scores, M. sibirica had slightly to moderately positive scores, M. 

strigidorsa had moderately positive scores, M. subpalmata had slightly to moderately negative 

scores, and N. vison had slightly to highly positive scores. 

 DF2 accounted for 15.6% of the variance, was positively correlated with LGA, m1L, 

CBL/MCW, M1W, P4PastW/ProW, and p4L/W, and negatively correlated with UGA, P4WPar, 

M1L/W, P4WPro, m1TriL/TalL, and P3W. N. africana had moderately negative scores, M. 

altaica had moderately to highly positive scores, M. erminea had moderately positive to 

moderately negative scores, M. eversmanii had slightly positive to moderately negative scores, 

N. felipei had slightly negative scores, N. frenata had moderately positive to highly negative 

scores, M. itatsi had moderately positive to slightly negative scores, M. kathiah had moderately 

to highly positive scores, M. lutreola had slightly positive to moderately negative scores, M. 

lutreolina had slightly positive scores, M. nigripes had moderately positive to slightly negative 

scores, M. nivalis had moderately positive to highly negative scores, M. nudipes had moderately 

positive to slightly negative scores, M. putorius had slightly positive to moderately negative 

scores, M. sibirica had slightly to highly positive scores, M. subpalmata had moderately to 

highly negative scores, and N. vison had moderately positive to moderately negative scores. 

 DF3 accounted for 13.2% of the variance, was positively correlated with m1L, M1W, 

P4WPar, P4PastW/ProW, and m1TriL/TalL, and negatively correlated with UGA, LGA, 

CBL/MCW, M1L/W, P4WPro, p4L/W, and P3W. N. africana had slightly positive to slightly 

negative scores, M. altaica had slightly to highly positive scores, M. erminea had moderately 

positive to highly negative scores, M. eversmanii had moderately to highly positive scores, N. 
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felipei had slightly negative scores, N. frenata had moderately positive to moderately negative 

scores, M. itatsi had moderately to highly negative scores, M. kathiah had slightly positive to 

highly negative scores, M. lutreola had moderately positive to moderately negative scores, M. 

lutreolina had moderately negative scores, M. nigripes had moderately to highly positive scores, 

M. nivalis had moderately positive to moderately negative scores, M. nudipes had slightly 

positive to slightly negative scores, M. putorius had moderately to highly positive scores, M. 

sibirica had slightly to highly negative scores, M. strigidorsa had highly negative scores, M. 

subpalmata had moderately positive to slightly negative scores, and N. vison had slightly 

positive to moderately negative scores. 

 DF4 accounted for 10.4% of the variance, was positively correlated with UGA, m1L, 

CBL/MCW, M1W, P4WPar, P4WPro, p4L/W, and negatively correlated with LGA, M1L/W, 

P4PastW/ProW, m1TriL/TalL, and P3W. N. africana had slightly positive scores, M. altaica had 

moderately positive to moderately negative scores, M. erminea had highly positive to moderately 

negative scores, M. eversmanii had moderately negative scores, N. felipei had slightly negative 

scores, N. frenata moderately positive to moderately negative scores, M. itatsi had slightly to 

highly negative scores, M. kathiah had slightly to moderately positive scores, M. lutreola had 

slightly to moderately negative scores, M. lutreolina had moderately negative scores, M. nigripes 

had moderately to highly negative scores, M. nivalis had moderately positive to slightly negative 

scores, M. nudipes had moderately positive to slightly negative scores, M. putorius had slightly 

positive to moderately negative scores, M. sibirica had slightly positive to moderately negative 

scores, M. strigidorsa had slightly positive scores, M. subpalmata had slightly positive to 

moderately negative scores, and N. vison had slightly to highly positive scores. 
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Clade Classification 

 For clade classification, a total of 11 of the 31 indices are included in the stepwise 

discriminant model (Table 12). The DFA separated each clade fairly well and was significant 

(Wilks’ 𝛌 = 0.015, P < 0.001); however, there was notable overlap among Clades #4 and #5 

(Table 13; Figure 11). Three of the Pleistocene specimens (M. nigripes, M. nivalis, and N. vison) 

were correctly classified; M. erminea was assigned to Clade #5 and N. frenata was assigned to 

Clade #9; however, the analysis yielded correct classification for both taxa when predicting the 

second most likely clade (Table 14). The analysis yielded three discriminant functions with 

eigenvalues >1 and accounted for 84.6% of the variance in the data set. 

 

Table 12. Extant Clade Structure Matrix, Eigenvalue, Percent Variance Explained, and Wilks’ 𝛌 

for Discriminant Functions 1, 2, and 3 
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Table 13. Extant Clade Classification Matrix 
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Figure 11. Extant clade analysis scatterplot comparing DF1 vs. DF2. Clade 1 = N. africana, N. 

felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. strigidorsa; Clade 3 = M. kathiah; Clade 4 

= M. erminea; Clade 5 = M. altaica, M. nivalis, M. subpalmata; Clade 6 = M. itatsi; Clade 7 = M. 

lutreolina, M. sibirica; Clade 8 = M. lutreola; and Clade 9 = M. eversmanii, M. nigripes, M. 

putorius. 
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Figure 12. Pleistocene specimens of extant species clade analysis scatterplot comparing DF1 vs. 

DF2. Clade 1 = N. africana, N. felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. 

strigidorsa; Clade 3 = M. kathiah; Clade 4 = M. erminea; Clade 5 = M. altaica, M. nivalis, M. 

subpalmata; Clade 6 = M. itatsi; Clade 7 = M. lutreolina, M. sibirica; Clade 8 = M. lutreola; and 

Clade 9 = M. eversmanii, M. nigripes, M. putorius. 
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Table 14. Summary of Pleistocene Specimens of Extant Species Classification Matrix 

 

Pleistocene 

specimens 

Predicted 

genus 

Predicted 

species 

2nd most likely 

species 

Predicted 

clade 

2nd most 

likely clade 

N. vison Neogale N. vison N. africana 1 2 

M. erminea Mustela M. subpalmata M. nivalis 5 4 

N. frenata Mustela M. nigripes M. eversmanii 9 1 

M. nigripes Mustela M. nigripes M. eversmanii 9 7 

M. nivalis Mustela M. subpalmata M. nivalis 5 4 

 

 DF1 accounted for 35.8% of the variance, was positively correlated with CBL/MCW, 

CBL, MCW, M1W, P4PastW/ProW, P4WPro, m1TalL, and M1LinL/BucL, and negatively 

correlated with m1TriL/TalL, P4WPar, and P3W. Clade #1 had slightly positive to moderately 

negative scores, Clade #2 had slightly to moderately negative scores, Clade #3 had highly 

positive to slightly negative scores, Clade #4 had moderately positive to slightly negative scores, 

Clade #5 had moderately positive to slightly negative scores, Clade #6 had slightly to highly 

positive scores, Clade #7 had slightly to highly positive scores, Clade #8 had slightly to highly 

negative scores, and Clade #9 had moderately to highly negative scores. 

 DF2 accounted for 32.1% of the variance, was positively correlated with CBL/MCW, 

P4PastW/ProW, P4WPro, m1TalL, and M1LinL/BucL, and negatively correlated with CBL, 

MCW, M1W, m1TriL/TalL, P4WPar, and P4WPro. Clade #1 had moderately positive to 

moderately negative scores, Clade #2 had slightly negative to moderately positive scores, Clade 

#3 had slightly to highly positive scores, Clade #4 had slightly positive to highly negative scores, 

Clade #5 had moderately positive to highly negative scores, Clade #6 had moderately to highly 
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positive scores, Clade #7 had slightly to highly positive scores, Clade #8 had slightly to 

moderately positive scores, and Clade #9 had moderately positive to moderately negative scores. 

 DF3 accounted for 16.7% of the variance, was positively correlated with CBL, MCW, 

m1TriL/TalL, P4PastW/ProW, P4WPar, and P3W, and negatively correlated with CBL/MCW, 

M1W, P4WPro, m1TalL, and M1LinL/BucL. Clade #1 had moderately positive to highly 

negative scores, Clade #2 had moderately positive to highly negative scores, Clade #3 had 

slightly to highly negative scores, Clade #4 had moderately positive to moderately negative 

scores, Clade #5 had highly positive to moderately negative scores, Clade #6 had highly positive 

to slightly negative scores, Clade #7 had moderately positive to slightly negative scores, Clade 

#8 had slightly positive to slightly negative scores, and Clade #9 had moderately positive to 

slightly negative scores. 

‘Neovison’ macrodon Analysis 

 A stepwise DFA of genus and clade classification was performed using the ratios and 

GM-transformed linear measurements for each extant musteline taxon, as well as a composite of 

‘Neovison’ macrodon included as an unclassified case. 

Genus Classification 

 A total of seven of the 26 indices are included in the stepwise discriminant model (Table 

15). The DFA separated each genus fairly well (Wilks’ 𝛌 = 0.608, P < 0.001). and yielded one 

discriminant function with an eigenvalue of 0.643 and a canonical correlation of 0.626. The 

discriminant function (DF1) was positively correlated with P4L/M1W, P4PastW/ProW, 

m1TriL/TalL, p4L, and m1TalL, and negatively correlated with UGA and M1L/W. The 

classification showed 95.8% correct classification of Mustela and 59.3% correct classification of 

Neogale, with N. macrodon being classified as Neogale (Table 16). When cross-validated, the 
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classification showed 95.2% correct classification of Mustela and 57.6% correct classification of 

Neogale. 

 

Table 15. ‘Neovison’ macrodon Genus Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Function 1 

Index DF 1 

P4L/M1W 0.517 

UGA -0.513 

P4PastW/ProW 0.511 

m1TriL/TalL 0.407 

M1L/W -0.193 

p4L 0.020 

m1TalL 0.004 

Eigenvalue 0.643 

% variance explained 100 

Canonical correlation 0.626 

Wilks' 𝛌 0.608 

p-value < 0.001 

 

Table 16. ‘Neovison’ macrodon Genus Analysis Classification Matrix 

      Predicted genus   

    % Correct Mustela Neogale Total 

Original 

Mustela 95.8 161 7 168 

Neogale 59.3 24 35 59 

N. macrodon - - 1 1 

Cross-

validated 

Mustela 95.2 160 8 168 

Neogale 57.6 25 34 59 
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Clade Classification 

 A total of 11 of the 26 indices are included in the stepwise discriminant model (Table 

17). The DFA separated each clade fairly well and was significant (Wilks’ 𝛌 = 0.031, P < 0.001). 

The classification showed N. macrodon being assigned to Clade #1 (Table 18). The analysis 

yielded two discriminant functions with eigenvalues >1 and accounted for 71.1% of the variance 

in the data set. DF1 accounted for 41.7% of the variance, was positively correlated with UGA, 

M1L/W, P4PastW/ProW, and P3W, and negatively correlated with M1W, mlL, m1TriL/TalL, 

p4L/W, P4WPar, P4WPro, and M1LinL. DF2 accounted for 29.4% of the variance, was 

positively correlated with m1L, M1L/W, p4L/W, P4PastW/ProW, P3W, and M1LinL, and 

negatively correlated with M1W, UGA, m1TriL/TalL, P4WPar, and P4WPro. N. macrodon had 

a moderately positive score for DF1 and a moderately negative score for DF2 (Figure 13). 
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Table 17. ‘Neovison’ macrodon Clade Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Functions 1 and 2 

Index DF 1 DF 2 

M1W -0.646 -0.063 

UGA 0.526 -0.289 

m1L -0.484 0.180 

M1L/W 0.342 0.271 

m1TriL/TalL -0.170 -0.160 

p4L/W -0.116 0.168 

P4WPar -0.300 -0.274 

P4PastW/ProW 0.145 0.039 

P3W 0.060 0.060 

P4WPro -0.198 -0.084 

M1LinL -0.023 0.225 

Eigenvalue 2.317 1.631 

% variance explained 41.7 29.4 

Canonical correlation 0.836 0.787 

Wilks' 𝛌 0.031 0.103 

p-value < 0.001 < 0.001 

 

 

Table 18. ‘Neovison’ macrodon Clade Analysis Classification Matrix 

    Predicted Clade 

Clade % Correct 1 2 3 4 5 6 7 8 9 Total 

N. macrodon - 1 - - - - - - - - 1 

1 (N. africana, N. felipei, N. frenata, N. vison) 77.2 44 - - 1 9 - 2 - 1 57 

2 (M. nudipes, M. strigidorsa) 0 5 - - - - - - - 1 6 

3 (M. kathiah) 80 - - 4 - 1 - - - - 5 

4 (M. erminea) 66.7 - - - 18 9 - - - - 27 

5 (M. altaica, M. nivalis, M. subpalmata) 76.8 2 - 1 8 43 - - - 2 56 

6 (M. itatsi) 88.2 1 - - - - 15 1 - - 17 

7 (M. lutreolina, M. sibirica) 77.8 2 - - - - 1 14 - 1 18 

8 (M. lutreola) 80 1 - - - - - - 4 - 5 

9 (M. eversmanii, M. nigripes, M. putorius) 81.3 3 - - - 1 - 2 - 26 32 
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Figure 13. ‘Neovison’ macrodon clade analysis scatterplot comparing DF1 vs. DF2. Clade 1 = N. 

africana, N. felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. strigidorsa; Clade 3 = M. 

kathiah; Clade 4 = M. erminea; Clade 5 = M. altaica, M. nivalis, M. subpalmata; Clade 6 = M. 

itatsi; Clade 7 = M. lutreolina, M. sibirica; Clade 8 = M. lutreola; and Clade 9 = M. eversmanii, 

M. nigripes, M. putorius. 

 

Mustela rexroadensis Analysis 

 A stepwise DFA of genus and clade classification was performed using the ratios and 

GM-transformed linear measurements for each extant musteline taxon, as well as a composite of 

Mustela rexroadensis included as an unclassified case. 
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Genus Classification 

 A total of four of the 18 indices are included in the stepwise discriminant model (Table 

19). The DFA separated each genus fairly well (Wilks’ 𝛌 = 0.674, P < 0.001) and the analysis 

yielded one discriminant function with an eigenvalue of 0.485 and a canonical correlation of 

0.571. DF1 was positively correlated with P4PastW/ProW, m1L/p4L, and m1TriL/TalL, and 

negatively correlated with m1TalL. The classification showed 94.6% correct classification of 

Mustela and 55.9% correct classification of Neogale, with M. rexroadensis being classified as 

Neogale (Table 20). When cross-validated, the classification showed 93.4% correct classification 

of Mustela and 55.9 % correct classification of Neogale. 

 

Table 19. Mustela rexroadensis Genus Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Function 1 

Index DF 1 

P4PastW/ProW 0.589 

m1L/p4L 0.530 

m1TriL/TalL 0.468 

m1TalL -0.024 

Eigenvalue 0.485 

% variance explained 100 

Canonical correlation 0.571 

Wilks' 𝛌 0.674 

p-value < 0.001 
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Table 20. Mustela rexroadensis Genus Analysis Classification Matrix 

      Predicted genus   

    % Correct Mustela Neogale Total 

Original 

Mustela 94.6 158 9 167 

Neogale 55.9 26 33 59 

M. rexroadensis - - 1 1 

Cross-

validated 

Mustela 93.4 156 11 167 

Neogale 55.9 26 33 59 

 

Clade Classification 

 For clade classification, a total of six of the 18 indices are included in the stepwise 

discriminant model (Table 21). The DFA separated most clades fairly well and was significant 

(Wilks’ 𝛌 = 0.137, P < 0.001). The classification showed M. rexroadensis being assigned to 

Clade #4 (Table 22). The analysis yielded one discriminant function with an eigenvalue >1 and 

accounted for 65.4% of the variance in the data set. DF1 was positively correlated with m1L, 

P4L, P4WPar, and p4W, and negatively correlated with P4PastW/ProW, and MD. DF2 had an 

eigenvalue of 0.536, accounted for 17.6% of the variance, was positively correlated with 

P4WPar, P4PastW/ProW, MD, and p4W, and negatively correlated with m1L, and P4L. M. 

rexroadensis had a moderately positive score for DF1 and a moderately negative score for DF2 

(Figure 14). 
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Table 21. Mustela rexroadensis Clade Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Functions 1 and 2 

Index DF 1 DF 2 

m1L 0.577 -0.426 

P4L 0.531 -0.274 

P4WPar 0.264 0.610 

P4PastW/ProW -0.119 0.191 

MD -0.138 0.515 

p4W 0.084 0.401 

Eigenvalue 1.986 0.536 

% variance explained 65.4 17.6 

Canonical correlation 0.816 0.591 

Wilks' 𝛌 0.137 0.408 

p-value < 0.001 < 0.001 

 

Table 22. Mustela rexroadensis Clade Analysis Classification Matrix 

    Predicted Clade 

Clade % Correct 1 2 3 4 5 6 7 8 9 Total 

M. rexroadensis - - - - 1 - - - - - 1 

1 (N. africana, N. felipei, N. frenata, N. vison) 69 40 - - 2 9 - 2 - 5 58 

2 (M. nudipes, M. strigidorsa) 0 4 - - - 1 - 1 - - 6 

3 (M. kathiah) 60 1 - 3 - 1 - - - - 5 

4 (M. erminea) 66.7 1 - - 18 6 - 2 - - 27 

5 (M. altaica, M. nivalis, M. subpalmata) 75 5 - 1 6 42 - - - 2 56 

6 (M. itatsi) 52.9 4 - - - - 9 2 1 1 17 

7 (M. lutreolina, M. sibirica) 38.9 7 - - 1 - 2 7 - 1 18 

8 (M. lutreola) 80 - - - - - - - 4 1 5 

9 (M. eversmanii, M. nigripes, M. putorius) 65.6 6 - - - 2 3 - - 21 32 
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Figure 14. Mustela rexroadensis clade analysis scatterplot comparing DF1 vs. DF2. Clade 1 = N. 

africana, N. felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. strigidorsa; Clade 3 = M. 

kathiah; Clade 4 = M. erminea; Clade 5 = M. altaica, M. nivalis, M. subpalmata; Clade 6 = M. 

itatsi; Clade 7 = M. lutreolina, M. sibirica; Clade 8 = M. lutreola; and Clade 9 = M. eversmanii, 

M. nigripes, M. putorius. 

 

Mustela meltoni Analysis 

 A stepwise DFA of genus and clade classification was performed using the ratios and 

GM-transformed linear measurements for each extant musteline taxon, as well as a composite of 

M. meltoni included as an unclassified case. 
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Genus Classification 

 A total of three of the 12 indices are included in the stepwise discriminant model (Table 

23). The analysis yielded one discriminant function with an eigenvalue of 0.350 and a canonical 

correlation of 0.509. The discriminant function (DF1) was positively correlated with m1L/p4L 

and m1TriL/TalL, and negatively correlated with m1TalL. The DFA correctly classified Mustela 

well (91.7%); however, only 45.9% of Neogale were correctly classified (Wilks’ 𝛌 = 0.741, p < 

0.001). M. meltoni was classified as Mustela (Table 24). When cross-validated, the classification 

still showed 91.7% correct classification of Mustela and 45.9% correct classification of Neogale. 

 

Table 23. Mustela meltoni Genus Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Function 1 

Index DF 1 

m1L/p4L 0.638 

m1TriL/TalL 0.541 

m1TalL -0.008 

Eigenvalue 0.350 

% variance explained 100 

Canonical correlation 0.509 

Wilks' 𝛌 0.741 

p-value < 0.001 

 

Table 24. Mustela meltoni Genus Analysis Classification Matrix 

      Predicted genus   

    % Correct Mustela Neogale Total 

Original 

Mustela 91.7 166 15 181 

Neogale 45.9 33 28 61 

M. meltoni - 1 - 1 

Cross-

validated 

Mustela 91.7 166 15 181 

Neogale 45.9 33 28 61 
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Clade Classification 

 A total of five of the 12 indices are included in the stepwise discriminant model (Table 

25). The DFA did not separate most clades well except for Clades #1, #5, and #9 (Wilks’ 𝛌 = 

0.215, P < 0.001). The classification showed M. meltoni being assigned to Clade #1 (Table 26). 

The analysis yielded one discriminant function with an eigenvalue >1 and accounted for 61.1% 

of the variance in the data set. DF1 was positively correlated with all indices. DF2 had an 

eigenvalue of 0.513, accounted for 24.2% of the variance, was positively correlated with 

m1L/p4L, m1TriL/TalL, and p4W, and negatively correlated with m1L and m1L/W. M. meltoni 

had a slightly negative score for DF1 and a slightly positive score for DF2 (Figure 15). 

 

Table 25. Mustela meltoni Clade Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Functions 1 and 2 

Index DF 1 DF2 

m1L 0.826 -0.167 

m1L/W 0.390 -0.100 

m1L/p4L 0.325 0.356 

m1TriL/TalL 0.316 0.572 

p4W 0.189 0.167 

Eigenvalue 1.295 0.513 

% variance explained 61.1 24.2 

Canonical correlation 0.751 0.582 

Wilks' 𝛌 0.215 0.495 

p-value < 0.001 < 0.001 
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Table 26. Mustela meltoni Analysis Clade Classification Matrix 

    Predicted Clade 

Clade % Correct 1 2 3 4 5 6 7 8 9 Total 

M. meltoni - 1 - - - - - - - - 1 

1 (N. africana, N. felipei, N. frenata, N. vison) 73.3 44 - - - 10 4 1 - 1 60 

2 (M. nudipes, M. strigidorsa) 0 3 - - - 2 - 1 - - 6 

3 (M. kathiah) 0 1 - - - 2 - 1 - 1 5 

4 (M. erminea) 40 1 - - 12 16 - 1 - - 30 

5 (M. altaica, M. nivalis, M. subpalmata) 62.1 6 - - 11 36 - 1 - 4 58 

6 (M. itatsi) 17.6 11 - - - 2 3 1 - - 17 

7 (M. lutreolina, M. sibirica) 42.1 7 - - - 2 1 8 - 1 19 

8 (M. lutreola) 0 5 - - - - - - - - 5 

9 (M. eversmanii, M. nigripes, M. putorius) 62.5 8 - - - 5 1 1 - 25 40 
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Figure 15. Mustela meltoni clade analysis scatterplot comparing DF1 vs. DF2. Clade 1 = N. 

africana, N. felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. strigidorsa; Clade 3 = M. 

kathiah; Clade 4 = M. erminea; Clade 5 = M. altaica, M. nivalis, M. subpalmata; Clade 6 = M. 

itatsi; Clade 7 = M. lutreolina, M. sibirica; Clade 8 = M. lutreola; and Clade 9 = M. eversmanii, 

M. nigripes, M. putorius. 

 

GFS Musteline Analysis 

 A stepwise DFA of genus, species, and clade classification was performed using the 

ratios and GM-transformed linear measurements for each extant musteline taxon, as well as the 

GFS musteline included as an unclassified case.  
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Genus Classification 

 A total of three of the 11 indices are included in the stepwise discriminant model (Table 

27). Overall, The DFA correctly classified Mustela well (97.7%); however, only 53.2% of 

Neogale were correctly classified (Wilks’ 𝛌 = 0.533, P < 0.001). When cross-validated, the 

classification showed 96.6% correct classification of Mustela and 54.8% correct classification of 

Neogale. The analysis yielded one discriminant function with an eigenvalue of 0.396 and a 

canonical correlation of 0.533. DF1 was positively correlated with UGA and negatively 

correlated with P4PastW/ProW and M1W. The GFS musteline was classified as Neogale (Table 

28). 

 

Table 27. GFS Musteline Genus Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Function 1 

Index DF 1 

P4PastW/ProW -0.638 

UGA 0.581 

M1W -0.158 

Eigenvalue 0.404 

% variance explained 100 

Canonical correlation 0.396 

Wilks' 𝛌 0.533 

p-value < 0.001 
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Table 28. GFS Musteline Genus Analysis Classification Matrix 

      Predicted genus   

    % Correct Mustela Neogale Total 

Original 

Mustela 97.7 170 4 174 

Neogale 53.2 29 33 62 

GFS Musteline - - 1 1 

Cross-

validated 

Mustela 96.6 168 6 174 

Neogale 54.8 28 34 62 

 

Clade Classification 

 A total of six of the 11 indices are included in the stepwise discriminant model (Table 

29). The DFA did not separate some clades well; however, Clades #1, #3, #5, #6, and #9 were 

separated fairly well (Wilks’ 𝛌 = 0.116, P < 0.001). The classification showed the GFS musteline 

being assigned to Clade #4; however, Clade #4 was only 46.6% correctly classified (Table 30). 

The analysis yielded one discriminant function with an eigenvalue >1 (1.666) and accounted for 

53.5% of the variance in the data set. DF1 was positively correlated with P4WPar, M1W, and 

M1LinL, and negatively correlated with UGA, M1L/W, and P4PastW/ProW. DF2 had an 

eigenvalue of 0.705, accounted for 22.6% of the variance, was positively correlated with UGA, 

M1L/W, P4PastW/ProW, and M1LinL, and negatively correlated with P4WPar and M1W. The 

GFS musteline had a slightly positive score for both DF1 and DF2 (Figure 16). 
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Table 29. GFS Musteline Clade Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Function 1 

Index DF 1 DF2 

UGA -0.699 0.332 

M1L/W -0.110 0.660 

P4WPar 0.145 -0.556 

P4PastW/ProW -0.145 0.239 

M1W 0.494 -0.492 

M1LinL 0.355 0.411 

Eigenvalue 1.666 0.705 

% variance explained 53.5 22.6 

Canonical correlation 0.791 0.643 

Wilks' 𝛌 0.116 0.310 

p-value < 0.001 < 0.001 

 

 

Table 30. GFS Musteline Clade Analysis Classification Matrix 

    Predicted Clade 

Clade % Correct 1 2 3 4 5 6 7 8 9 Total 

GFS musteline - - - - 1 - - - - - 1 

1 (N. africana, N. felipei, N. frenata, N. vison) 72.1 44 - - - 13 - 1 - 3 61 

2 (M. nudipes, M. strigidorsa) 0 5 - - - - - - - 1 6 

3 (M. kathiah) 60 1 - 3 - 1 - - - - 5 

4 (M. erminea) 46.4 2 - - 13 13 - - - - 28 

5 (M. altaica, M. nivalis, M. subpalmata) 73.7 1 - 2 9 42 1 - - 2 57 

6 (M. itatsi) 58.8 2 - - - - 10 5 - - 17 

7 (M. lutreolina, M. sibirica) 27.8 4 - - 1 3 4 5 - 1 18 

8 (M. lutreola) 40 - 1 - - - - 1 2 1 5 

9 (M. eversmanii, M. nigripes, M. putorius) 89.2 2 - - - 1 - 1 - 33 37 
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Figure 16. GFS musteline clade analysis scatterplot comparing DF1 vs. DF2. Clade 1 = N. 

africana, N. felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. strigidorsa; Clade 3 = M. 

kathiah; Clade 4 = M. erminea; Clade 5 = M. altaica, M. nivalis, M. subpalmata; Clade 6 = M. 

itatsi; Clade 7 = M. lutreolina, M. sibirica; Clade 8 = M. lutreola; and Clade 9 = M. eversmanii, 

M. nigripes, M. putorius. 

 

Extinct Pleistocene Taxa Analysis 

 A stepwise DFA of genus and clade classification was performed using the ratios and 

GM-transformed linear measurements for each extant musteline taxon, as well as two extinct 

Pleistocene taxa, Mustela gazini and Mustela jacksoni, as unclassified cases. 
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Genus Classification 

 A total of three of the 12 indices are included in the stepwise discriminant model (Table 

31). The analysis yielded one discriminant function with an eigenvalue of 0.350 and a canonical 

correlation of 0.509. DF1 was positively correlated with m1L/p4L and m1TriL/TalL, and 

negatively correlated with m1TalL. The DFA separated members of Mustela well but not 

Neogale (Wilks’ 𝛌 = 0.741, P < 0.001); classification showed 91.7% correct classification of 

Mustela and 45.9% correct classification of Neogale, with both M. gazini and M. jacksoni being 

classified as Mustela (Table 32). When cross-validated, the classification showed 91.7% correct 

classification of Mustela and 45.9% correct classification of Neogale. 

 

Table 31. Extinct Pleistocene Genus Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Function 1 

Index DF 1 

m1L/p4L 0.638 

m1TriL/TalL 0.541 

m1TalL -0.008 

Eigenvalue 0.350 

% variance explained 100 

Canonical correlation 0.509 

Wilks' 𝛌 0.741 

p-value < 0.001 
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Table 32. Extinct Pleistocene Genus Analysis Classification Matrix 

      Predicted genus   

    % Correct Mustela Neogale Total 

Original 

Mustela 91.7 166 15 181 

Neogale 45.9 33 28 61 

M. gazini - 1 - 1 

 M. jacksoni - 1 - 1 

Cross-

validated 

Mustela 91.7 166 15 181 

Neogale 45.9 33 28 61 

 

 

Species Classification 

 

 A total of seven of the 12 indices are included in the stepwise discriminant model (Table 

33). The DFA separated each species fairly well and was significant (Wilks’ 𝛌 = 0.021, P < 

0.001). M. gazini was classified as M. itatsi and M. jacksoni was classified as M. subpalmata. 

The analysis yielded two discriminant functions with eigenvalues >1 and accounted for 71% of 

the variance in the data set. DF1 accounted for 50.8% of the variance, was positively correlated 

with MD, and negatively correlated with m1L, m1L/W, m1L/p4L, m1TriL/TalL, p4L, and p4W. 

M. gazini had a highly positive score for DF1 while M. jacksoni had a moderately negative score. 

DF2 accounted for 20.2% of the variance, was positively correlated with m1L, m1L/p4L, 

m1TriL/TalL, MD, and p4W, and negatively correlated with m1L/W and p4L. M. gazini had a 

highly positive score for DF2 while M. jacksoni had a moderately positive score (Figure 17). 
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Table 33. Extinct Pleistocene Species Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Functions 1 and 2 

Index DF 1 DF 2 

m1L -0.910 0.090 

m1L/W -0.578 -0.218 

m1L/p4L -0.274 0.243 

m1TriL/TalL -0.098 0.306 

p4L -0.317 -0.133 

MD 0.187 0.562 

p4W -0.003 0.451 

Eigenvalue 3.361 1.334 

% variance explained 50.8 20.2 

Canonical correlation 0.878 0.756 

Wilks' 𝛌 0.021 0.091 

p-value < 0.001 < 0.001 
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Figure 17. Extinct Pleistocene species analysis scatterplot comparing DF1 vs. DF2 

 

Clade Classification 

 A total of five of the 12 indices are included in the stepwise discriminant model (Table 

34). The DFA did not separate most clades well; however, Clades #1, #5, and #9 were separated 

fairly well (Wilks’ 𝛌 = 0.215, P < 0.001). The classification showed M. gazini being assigned to 

Clade #1 and M. jacksoni being assigned to Clade #5 (Table 35). The analysis yielded one 

discriminant function with an eigenvalue >1 and accounted for 61.1% of the variance in the data 

set. DF1 was positively correlated with all indices (m1L, p4W, m1L/W, m1L/p4L, and 
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m1TriL/TalL). DF2 had an eigenvalue of 0.513, accounted for 24.2% of the variance, was 

positively correlated with p4W, m1L/p4L, and m1TriL/TalL, and negatively correlated with m1L 

and m1L/W. M. gazini had a slightly negative score for both DF1 and DF2. M. jacksoni had a 

moderately positive score for DF1 and a slightly negative score for DF2 (Figure 18). 

 

Table 34. Extinct Pleistocene Clade Analysis Structure matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Functions 1 and 2 

Index DF 1 DF2 

m1L 0.826 -0.167 

p4W 0.189 0.167 

m1L/W 0.390 -0.100 

m1L/p4L 0.325 0.356 

m1TriL/TalL 0.316 0.572 

Eigenvalue 1.295 0.513 

% variance explained 61.1 24.2 

Canonical correlation 0.751 0.582 

Wilks' 𝛌 0.215 0.495 

p-value < 0.001 < 0.001 
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Table 35. Extinct Pleistocene Clade Analysis Classification Matrix 

    Predicted Clade 

Clade % Correct 1 2 3 4 5 6 7 8 9 Total 

M. gazini - 1 - - - - - - - - 1 

M. jacksoni - - - - - 1 - - - - 1 

1 (N. africana, N. felipei, N. frenata, N. vison) 73.3 44 - - - 10 4 1 - 1 60 

2 (M. nudipes, M. strigidorsa) 0 3 - - - 2 - 1 - - 6 

3 (M. kathiah) 0 1 - - - 2 - 1 - 1 5 

4 (M. erminea) 40 1 - - 12 16 - 1 - - 30 

5 (M. altaica, M. nivalis, M. subpalmata) 62.1 6 - - 11 36 - 1 - 4 58 

6 (M. itatsi) 17.6 11 - - - 2 3 1 - - 17 

7 (M. lutreolina, M. sibirica) 42.1 7 - - - 2 1 8 - 1 19 

8 (M. lutreola) 0 5 - - - - - - - - 5 

9 (M. eversmanii, M. nigripes, M. putorius) 62.5 8 - - - 5 1 1 - 25 40 
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Figure 18. Extinct Pleistocene clade analysis scatterplot comparing DF1 vs. DF2. Clade 1 = N. 

africana, N. felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. strigidorsa; Clade 3 = M. 

kathiah; Clade 4 = M. erminea; Clade 5 = M. altaica, M. nivalis, M. subpalmata; Clade 6 = M. 

itatsi; Clade 7 = M. lutreolina, M. sibirica; Clade 8 = M. lutreola; and Clade 9 = M. eversmanii, 

M. nigripes, M. putorius. 

 

Mustela sp. Analysis 

 A stepwise DFA of genus, species, and clade classification was performed using the 

ratios and GM-transformed linear measurements for two Blancan-aged specimens labeled 

Mustela sp. aff. M. rexroadensis as unclassified cases. In addition to each extant taxon, N. 

macrodon, M. rexroadensis, and M. meltoni, were also included in the analysis for comparison. 
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Genus Classification 

A total of two of the seven indices are included in the stepwise discriminant model (Table 36). 

The DFA separated Mustela well but did not perform as well at separating Neogale (Wilks’ 𝛌 = 

0.829, P < 0.001). The analysis yielded one discriminant function with an eigenvalue of 0.206 

and a canonical correlation of 0.413. DF1 was positively correlated with both indices, p4L and 

m1L. The classification showed 93.3% correct classification of Mustela and 25.4% correct 

classification of Neogale, with both specimens of Mustela sp. being classified as Mustela (Table 

37). When cross-validated, the classification showed 93.3% correct classification of Mustela and 

25.4% correct classification of Neogale. 

 

Table 36. Mustela sp. Genus Analysis Structure Matrix, Eigenvalue, Percent Variance Explained, 

and Wilks’ 𝛌 for Discriminant Function 1 

Index DF 1 

p4L 0.892 

m1L 0.395 

Eigenvalue 0.206 

% variance explained 100 

Canonical correlation 0.413 

Wilks' 𝛌 0.829 

p-value < 0.001 
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Table 37. Mustela sp. Genus Analysis Classification Matrix 

      Predicted genus   

    % Correct Mustela Neogale Total 

Original 

Mustela 93.3 168 12 180 

Neogale 25.4 44 15 59 

Mustela sp. (#7559) 

 

- 1 - 1 

 Mustela sp. (#12861) - 1 - 1 

Cross-

validated 

Mustela 93.3 168 12 180 

Neogale 25.4 44 15 59 

 

Species Classification 

 A total of five of the seven indices are included in the stepwise discriminant model 

(Table 38). The DFA separated each species fairly well and was significant (Wilks’ 𝛌 = 0.018, P 

< 0.001). #7559 was classified as N. frenata and #12861 was classified as M. subpalmata. The 

second-highest predicted species for #7559 was M. rexroadensis and for #12861 the second-

highest species was N. frenata. The analysis yielded two discriminant functions with eigenvalues 

>1 and accounted for 87.1% of the variance in the data set. DF1 accounted for 74.1% of the 

variance, was positively correlated with m1L, p4L, m1W, and p4W, and negatively correlated 

with m1L/W. #7559 had a slightly negative score and #12861 had a moderately negative score 

for DF1. DF2 accounted for 13% of the variance, was positively correlated with p4L, m1W, and 

p4W, and negatively correlated with m1L and m1L/W. #7559 had a slightly negative score and 

#12861 had a moderately positive score for DF2 (Figure 19). 
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Table 38. Mustela sp. Species Analysis Structure Matrix, Eigenvalue, Percent Variance 

Explained, and Wilks’ 𝛌 for Discriminant Functions 1 and 2 

Index DF 1 DF 2 

m1L 0.812 -0.292 

p4L 0.666 0.382 

m1W 0.659 0.468 

p4W 0.550 0.430 

m1L/W -0.256 -0.792 

Eigenvalue 7.518 1.320 

% variance explained 74.1 13 

Canonical correlation 0.939 0.754 

Wilks' 𝛌 0.018 0.151 

p-value < 0.001 < 0.001 
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Figure 19. Mustela sp. species analysis scatterplot comparing DF1 vs. DF2 

 

Clade Classification 

 A total of three of the seven indices are included in the stepwise discriminant model 

(Table 39). The DFA did not separate most clades well; however, Clades #1, #5, and #9 were 

separated fairly well (Wilks’ 𝛌 = 0.214, P < 0.001). The classification showed #7559 being 

assigned to Clade #1 and #12861 being assigned to Clade #5 (Table 40). The analysis yielded 

one discriminant function with an eigenvalue >1 and accounted for 82.6% of the variance in the 

data set. DF1 was positively correlated with all indices (m1L, p4L, and p4W). DF2 had an 
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eigenvalue of 0.254, accounted for 9.9% of the variance, was positively correlated with p4L and 

p4W, and negatively correlated with m1L. #7559 had a slightly negative score for both DF1 and 

a moderately positive score for DF2. #12861 had a moderately negative score for DF1 and a 

highly positive score for DF2 (Figure 20). 

 

Table 39. Mustela sp. Clade Analysis Structure Matrix, Eigenvalue, Percent Variance Explained, 

and Wilks’ 𝛌 for Discriminant Functions 1 and 2 

Index DF 1 DF2 

m1L 0.925 -0.373 

p4L 0.784 0.590 

p4W 0.673 0.047 

Eigenvalue 2.125 0.254 

% variance explained 82.6 9.9 

Canonical correlation 0.825 0.450 

Wilks' 𝛌 0.214 0.667 

p-value < 0.001 < 0.001 
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Table 40. Mustela sp. Clade Analysis Classification Matrix 

    Predicted Clade 

Clade % Correct 1 2 3 4 5 6 7 8 9 Total 

Mustela sp. (#7559) - 1 - - - - - - - - 1 

Mustela sp. (#12861) - - - - - 1 - - - - 1 

1 (N. africana, N. felipei, N. frenata, N. vison) 62.7 37 - - - 12 - - 8 9 59 

2 (M. nudipes, M. strigidorsa) 0 6 - - - - - - - - 6 

3 (M. kathiah) 0 1 - - - 3 - 1 - - 5 

4 (M. erminea) 13.3 1 - - 4 24 - 1 - - 30 

5 (M. altaica, M. nivalis, M. subpalmata) 77.2 5 - - 3 44 - 5 - - 57 

6 (M. itatsi) 0 12 - - - - - 9 - 1 17 

7 (M. lutreolina, M. sibirica) 45 10 - - - - - 9 - 1 20 

8 (M. lutreola) 0 5 - - - - - - - - 5 

9 (M. eversmanii, M. nigripes, M. putorius) 60 13 - - - - - 3 - 24 40 
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Figure 20. Mustela sp. clade analysis scatterplot comparing DF1 vs. DF2. Clade 1 = N. africana, 

N. felipei, N. frenata, N. vison; Clade 2 = M. nudipes, M. strigidorsa; Clade 3 = M. kathiah; 

Clade 4 = M. erminea; Clade 5 = M. altaica, M. nivalis, M. subpalmata; Clade 6 = M. itatsi; 

Clade 7 = M. lutreolina, M. sibirica; Clade 8 = M. lutreola; and Clade 9 = M. eversmanii, M. 

nigripes, M. putorius. 
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CHAPTER 8. DISCUSSION 

 

Character State Analysis 

 The results of the character state analysis revealed a total of six characters that may assist 

in potentially distinguishing Mustela from Neogale (#27, #30, #34, #35, #39, #40), although 

significant overlap between genera was observed (Tables 5 and 6). While no single trait can 

easily distinguish genera, a combination of traits can allow diagnosis of genera. Most traits 

useful in diagnosis are seen in the P4, M1, and m1, which are commonly found in fossil 

specimens. 

 For #27 (p2 occurrence), 100% of Mustela showed a (present) and 97% of Neogale 

showed a with N. africana being the only member of Neogale to show b (absent). N. africana is 

the only musteline known to exhibit absence of the p2 (Ramirez-Chavez et al. 2014) which 

indicates that character #27 is only reliable in distinguishing N. africana and not the remaining 

members of Neogale.  

 For #30 (P4 protocone), 87% of Mustela specimens showed a (no prominent cusp, but a 

raised ridge or cuspule present, smaller in width than the parastyle) and 57% of Neogale showed 

b (small cusp, larger in width than the parastyle); however, N. vison was the only member of 

Neogale to have a majority of specimens showing b. This indicates that character #30 is only 

significantly reliable in distinguishing N. vison from the remaining mustelines. 

 For #34, both genera exhibited b (M1 subequal in size to P4) and c (M1 clearly smaller 

than P4); however, the majority of Mustela (70%) showed c while the majority of Neogale (62%) 

showed b. The only member of Neogale that did not have a majority of specimens showing b 

was N. frenata. M. erminea had 93% of specimens showing b; and since N. frenata and M. 
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erminea are known to often exhibit significant morphological overlap (King and Powell 2007), 

character #34 may assist in potentially distinguishing the two species. 

 For #35, both genera exhibited c (lingual half of M1 crown subequal in length to buccal 

half, both halves separated from each other by anteroposterior constriction) and d (lingual half of 

M1 crown longer than buccal half, both halves separated from each other by anteroposterior 

constriction). The majority of Mustela (55%) showed c while the majority of Neogale (63%) 

showed d; however, N. vison was the only member of Neogale with a majority of specimens 

showing d (86%). This indicates that M1 morphology is significant in distinguishing N. vison 

from the remaining musteline taxa. Furthermore, 100% of N. macrodon showed c, thus 

suggesting the two species of mink could potentially be distinguished from each other based on 

relation of anteroposterior length of the lingual half to that of the buccal half of the M1. 

 For #39, 100% of Mustela and 51% of Neogale showed c (absent). N. vison and N. 

macrodon were the only mustelines to show c (much smaller than the other trigonid cusps and 

often positioned posteriorly) with 100% of specimens of each species exhibiting this character 

state. This indicates that the presence or absence of the m1 metaconid is crucial when 

distinguishing the two mink species from the remaining mustelines. 

 Character #40 (relation of m1 trigonid to talonid) showed both genera favoring a 

(trigonid less than three times as long as talonid) (84% of Mustela and 100% of Neogale). The 

16% of Mustela specimens that showed b (trigonid three times as long as talonid) include M. 

altaica, M. erminea, M. eversmanii, M. nivalis, M. putorius, and M. subpalmata. Of these 

species, M. subpalmata was the only one to have a majority of the sample showing b (53%). And 

because only 12% of M. nivalis showed b, character #40 could assist in further distinguishing M. 

subpalmata as a separate species from M. nivalis as originally postulated by van Zyll de Jong 
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(1992) and later supported by Reig (1997). van Zyll de Jong (1992) conducted an analysis of 

cranial variation in M. nivalis and found that of all the subspecific groups used in the study, M. n. 

subpalmata was the only group that did not form part of the M. nivalis morphological 

continuum, thus supporting the distinction of M. subpalmata as a separate species. The study 

revealed that M. subpalmata differs from M. nivalis in basal skull width, interorbital width, and 

greatest width of P4 (van Zyll de Jong 1992). Additionally, Reig (1997) examined geographic 

variation in the skulls of M. nivalis and also concluded M. subpalmata to be a distinct taxon 

deserving of species status. 

Extant Taxa Analysis 

 The results of the DFA revealed significant separation of genus, species, and clade which 

indicates the measurements and ratios used in the analysis are reliable when distinguishing the 

extant taxa. 

Genus Classification 

 Members of Mustela generally had positive DF1 scores while the majority of Neogale 

scores were negative. Size of the P4 parastyle relative to the protocone, condylobasal skull 

length, and m1 trigonid length relative to talonid length are most useful when distinguishing 

between genera. Bivariate scatterplots indicate that members of Mustela overall have a greater 

P4PastW/ProW, CBL, and m1TriL/TalL compared to Neogale (Figure 8). This indicates that, in 

Neogale, the P4 protocone is more often larger in width than the parastyle. Additionally, the ratio 

of m1 trigonid to talonid is generally slightly smaller in Neogale, thus indicating that the m1 

talonid is relatively larger in Neogale compared to Mustela. The upper grinding surface area, the 

size of the P4 parastyle relative to the protocone, and the size of the M1 lingual and buccal lobes 

are most significant when distinguishing N. vison from all other mustelines. N. vison generally 
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has a larger upper grinding area, a wider P4 protocone relative to the parastyle, and a longer M1 

lingual lobe than those of Mustela. Park and Nowosielski-Slepowron (1980) examined tooth 

morphology of N. vison and noted that the P4 paracone was larger than the parastyle and the M1 

lingual lobe was more expanded than the buccal lobe, thus supporting the results of this analysis. 

Butler (1946) showed that in mustelines the upper premolars are specialized for shearing and the 

M1 for crushing. Although N. vison is considered an opportunistic feeder and its diet will 

ultimately reflect the local prey base (Ben-David et al. 1997), it is often associated with aquatic 

environments with a diet typically comprised mostly of fish, amphibians, crustaceans, muskrats, 

and small mammals (Larivière 1999). 

Species Classification 

 The upper and lower grinding surface areas, measurements of the upper and lower 

carnassials, and condylobasal skull length relative to maximum cranial width are most useful 

when separating species. Only seven of the 18 extant musteline species were not 100% correctly 

classified in the analysis. Although at least some overlap was expected, scatter plots comparing 

DF1 vs. DF2 and DF1 vs. DF3 clearly demonstrate a clustering for each species, thus supporting 

the ability of the DFA to accurately separate each taxon at the species-level. When comparing 

DF1 vs. DF2 in Figure #, notable overlap among M. lutreola, and M. putorius, M. strigidorsa, 

and N. vison occurred. Additionally, M. eversmanii, M. itatsi, M. lutreolina, M. nigripes, and M. 

nudipes showed some overlap. Of the seven species not 100% correctly classified, M. erminea, 

M. nivalis, and N. frenata exhibited the most variation, with these species showing more overlap 

with each other than any other given grouping of species (Table 11). Several authors have 

recognized the striking degree of variation in size and sexual dimorphism of M. erminea, N. 

frenata, and M. nivalis throughout their respective ranges (Hall 1951; King 1980; Ralls and 
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Harvey 1985). The results of this study not only support these observations, but also indicate that 

all 18 species of extant mustelines can in fact reliably be distinguished from one another using 

the aforementioned measurements within a large sample size. 

Clade Classification 

 Measurements and ratios involving condylobasal skull length, maximum cranial width, 

M1, and upper and lower carnassials are most useful when separating musteline clades. Of the 

nine clades used in the analysis, only two (clades 2 and 4) had <75% correct classification (Table 

#). Clade 2 (M. nudipes, M. strigidorsa) showed the lowest correct classification (50%); 

however, only six total specimens were available for this analysis. M. nudipes and M. strigidorsa 

are two of the rarest and least-recorded mustelids in the world, therefore very little is known 

about their morphology (Duckworth et al. 2006; Abramov et al. 2008). A larger sample size may 

eventually provide more reliable results when examining potential distinguishing morphological 

features of this poorly known musteline clade. Clade 4 (M. erminea) had the second-lowest 

correct classification (59.3%) and expectedly showed a considerable degree of overlap with 

clade 5 (M. altaica, M. nivalis, M. subpalmata) (Figure #). Additionally, clades 6 (M. itatsi) and 

7 (M. lutreolina, M. sibirica) showed slight overlap, as did clade 8 (M. lutreola) with clades 1 

(N. africana, N. felipei, N. frenata, N. vison) and 9 (M. eversmanii, M. nigripes, M. putorius). 

Despite this overlap, the scatter plots revealed group clustering, thus supporting the ability of the 

DFA to reliably separate each clade based on skull and tooth morphology. 

Extant Pleistocene Taxa Classification 

 Regarding the extant North American Pleistocene specimens, all were correctly predicted 

at the genus-level. M. nigripes and N. vison were the only specimens to be correctly classified at 

the species-level; however, M. nivalis was correctly classified during the 2nd most likely species 
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prediction. N. frenata was the only specimen not correctly classified during the 1st and 2nd most 

likely species predictions. All specimens, except for N. frenata, were correctly classified to 

clade; however, N. frenata was correctly classified to clade during the 2nd most likely clade 

prediction. Nevertheless, Figure # shows the Pleistocene N. frenata specimen clearly occupying 

the same cluster as Holocene M. frenata. Overall, the clade analysis showed better correct 

classification compared to species classification. This suggests when attempting to identify an 

unknown Pleistocene specimen, classifying it to clade may yield more reliable results than 

attempting to classify species. The results indicate not only that the Pleistocene specimens can 

reliably be classified to genus, species, and clade, but also that Pleistocene North American 

mustelines are likely relatively indistinguishable morphologically when compared to their 

Holocene counterparts. 

‘Neovison’ macrodon Analysis 

 ‘Neovison’ macrodon, known as the sea mink, was first described by Prentiss (1903) who 

noted a significant morphological resemblance between the skull and that of N. vison; however, 

he pointed out that the teeth are decidedly larger and the carnassials are situated at a more acute 

angle with the long axis of the skull (Manville 1966). In contrast, Manville (1966) examined the 

type cranial material of N. macrodon and concluded there to be no substantial morphological 

differences when compared to N. vison, thus suggesting it to be a subspecies of N. vison. Still, N. 

macrodon remained inadequately described until Mead et al. (2000) compared measurements 

from a large archaeological sample of N. macrodon specimens to five subspecies of N. vison. 

They discovered N. macrodon to be morphologically distinct from all subspecies of N. vison, 

thus suggesting its designation as a separate species. They noted that the P4 exhibits a relatively 

longer paracone and the junction of the anterior margin of the zygomatic with the cranium is 
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over the P4 on N. macrodon (versus between the P3 and P4 in N. vison) (Mead et al. 2000). 

Similarly, Sealfon (2007) quantitatively examined dental measurements of N. macrodon and also 

concluded it to be sufficiently distinct from N. vison, further supporting recognition as a separate 

species. She observed N. macrodon as having a relative reduction in length of the upper 

carnassial blade and a relative increase in width of the upper carnassial and suggested an 

adaptation for consuming aquatic prey that are harder-bodied than those consumed by N. vison 

(Sealfon 2007). Both Mead et al. (2000) and Sealfon (2007) agree that diet likely played a major 

role in the divergence of N. macrodon and N. vison. 

 The results of this analysis support the findings of Mead et al. (2000) and Sealfon (2007) 

that N. macrodon can be distinguished from N. vison using skull and tooth measurements from 

an adequate comparative sample size. The DFA showed N. macrodon having a higher DF1 score 

than any N. vison specimen. N. macrodon showed larger averages for both UGA and LGA 

(UGA=31.43 mm; LGA=19.05) compared to N. vison (UGA=18.79 mm; LGA=8.86) with no 

size overlap between species. Additionally, N. macrodon had an average M1LinL of 5.54 mm 

while N. vison had an average of 4.05 mm with no overlap between species, thus aligning with 

the results of the character state analysis which showed all N. macrodon specimens having the 

lingual half of the M1 crown subequal in length to the buccal half while all N. vison specimens 

showed a longer lingual half relative to the buccal half (character #36). This study also supports 

the observation by Mead et al. (2000) that the P4 of N. macrodon has a more lingually elongated 

paracone when compared to N. vison. N. macrodon had an average P4WPar of 4.1 mm while that 

of N. vison was just 2.9 mm (with only slight overlap), thus indicating the presence of a 

relatively larger P4 paracone for N. macrodon. Clade classification placed N. macrodon into 

Clade #1 which consists of the newly designated genus Neogale. And with all of the New World 
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musteline taxa (including N. vison) recently being placed into this genus (Patterson et al. 2021), 

it is recommended that N. macrodon deserves generic revision to this group. 

Mustela rexroadensis Analysis 

 Mustela rexroadensis, often referred to as the Rexroad weasel, is known from a single 

Late/Upper Hemphillian locality of Nebraska (5.9 – 4.9 Ma) (Voorhies 1990) as well as Blancan 

localities of Kansas (4.9 – 2.6 Ma) (Hibbard 1950; 1952; 1954), Idaho (4 – 3.2 Ma) (Bjork 

1970), Texas (4.9 – 2.6 Ma) (Dalquest 1978), and Washington (4.9 – 2.6 Ma) (Morgan and 

Morgan 1995). A medium-sized musteline, it was originally described by Hibbard (1950) who 

distinguished it from recent mustelines by an open lower carnassial notch, a low, compressed m1 

paraconid, and a P4 paracone that does not extend as far anteriorly in relation to the anterior root. 

Bjork (1970) subsequently described topotype material from the Hagerman local fauna and 

distinguished it from N. frenata by a more compressed and acuminate p3 and p4 (Kurtén and 

Anderson 1980). Additionally, he mentioned that the distinctly open lower carnassial notch of 

the holotype specimen described by Hibbard (1950) is peculiar when compared to the topotype 

material from Hagerman. He suggested the discrepancy is in part due to a lower m1 paraconid in 

the holotype potentially caused by differential wear, further noting the presence of similar 

variations seen in N. frenata (Bjork 1970). Anderson (1989) commented that N. frenata likely 

descended from M. rexroadensis; however, M. rexroadensis continues to be inadequately 

understood as a result of its osteological description being restricted solely to the characters 

observed in the Fox Canyon and Hagerman specimens (Hibbard 1950; Bjork 1970). 

 The results of this analysis showed characters of the upper and lower carnassial, p4, and 

mandible being most useful when classifying M. rexroadensis to genus and clade (Table 19, 21). 

Although the descriptions made by Bjork (1970) suggest close affinity to N. frenata, clade 
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classification yielded M. rexroadensis being assigned to Clade #4 (M. erminea) with the 2nd most 

likely clade being #5 (M. altaica, M. nivalis, M. subpalmata), thus contradicting the hypothesis 

of a New World origin made by previous authors (Bjork 1970; Anderson 1989). This presents 

the possibility that the ancestry of M. rexroadensis is of Eurasian origin despite fossil 

distribution being restricted to North America (Kurtén and Anderson 1980). 

 Additionally, the clade analysis showed M. rexroadensis having a moderately positive 

score for DF1 and a moderately negative score for DF2 while N. frenata had slightly negative to 

slightly positive scores for both DF1 and DF2. This indicates that M. rexroadensis can 

potentially be distinguished from N. frenata by the P4, p4, and m1. The results of this analysis 

support the claim by Bjork (1970) that the p4 of M. rexroadensis is more compressed relative to 

N. frenata; however, it simultaneously contradicts his indication that the P4 of M. rexroadensis is 

very similar in appearance to that of N. frenata. As only one M. rexroadensis specimen 

containing a P4 was available for this analysis, a larger sample would be necessary in order to 

better understand distinguishing characters between the two species. 

Mustela meltoni Analysis 

 Only one occurrence of Mustela meltoni (“Melton’s mink”), a left lower mandible from 

the Blancan-aged Fox Canyon local fauna of Kansas, has been recorded from the fossil record. 

Bjork (1973) described the holotype specimen as being a “mink-like mustelid” and noted it 

having a robust mandible, crowded premolars with well-developed posterior cingula on the p3 

and p4, a metaconid crest on the m1, and a highly reduced m2. When compared to N. vison, the 

mandible is relatively deeper, the m1 is slightly broader, and the m2 is significantly more 

reduced yet still retains the small anteroposterior crest seen in N. vison (Bjork 1973). He 

hypothesized that M. meltoni was more derived and unlikely ancestral to N. vison due to the 
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significant reduction of the m2 (Bjork 1973). M. meltoni is the only known Pre-Pleistocene 

occurrence of a mink-like musteline in North America, with records of N. vison extending only 

as far back as the Irvingtonian (1.8 – 0.3 Ma) (Gidley and Gazin 1938; Paulson 1961; Hibbard 

1963; Barnosky and Rasmussen 1988). 

 The results of this analysis predicted M. meltoni as a member of Mustela; however, only 

45.9% of Neogale specimens were correctly classified to genus (Table #). The reason for the 

relatively lower eigenvalue of the M. meltoni genus analysis is primarily due to the fact that no 

upper tooth measurements were available for M. meltoni. The N. vison specimens were decidedly 

larger than M. meltoni, with minimal overlap in range sizes. The lower grinding surface area 

(LGA) of M. meltoni is especially smaller when compared to N. vison, supporting the m2 

comparisons by Bjork (1973). However, neither mandibular depth (MD) nor m1 width for M. 

meltoni was larger compared to N. vison, thus conflicting with the descriptions of Bjork (1973). 

 Clade classification yielded M. meltoni being assigned to Clade #1 (N. africana, N. 

felipei, N. frenata, and N. vison). And since all members of Clade #1 comprise the New World 

genus Neogale, it is possible that M. meltoni may potentially deserve generic reassignment to 

Neogale. Nevertheless, a larger sample size containing additional measurements is ultimately 

necessary in order to more adequately understand M. meltoni. It is possible that, with more 

sample data, future studies may support classification within Neogale. 

GFS Musteline Analysis 

 A left P4 and M1 consistent with the morphological characteristics of Mustelinae were 

recently recovered from the early Pliocene age (4.9 – 4.5 Ma) Gray Fossil Site (GFS) in 

northeastern Tennessee and is first documented here. This find represents the first reported pre-

Pleistocene occurrence of a musteline in the eastern United States. The specimen appears distinct 
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from the well-known Miocene ischyrictine mustelid Plionictis but falls within the size range of 

Mustela and Neogale. The P4 is missing both the parastyle and protocone, with significant wear 

visible on the occlusal surface. The M1 is noticeably larger than that of N. frenata and has three 

roots. Moreover, the parastyle is pronounced, the metacone is small, and the talon is relatively 

deep (compared to N. frenata). Compared to N. vison, the M1 shows similar morphology; 

however, the anteroposterior constriction extends further lingually, and the parastyle appears 

slightly more pronounced with a more distinct cingulum. 

 

 

Figure 21. GFS musteline left M1 (ETMNH 22420) (A) and left P4 (ETMNH 22419) (B) in 

occlusal view. 
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 These characteristics allow the hypothesis that this individual may have been more semi-

aquatic in ecology similar to N. vison. This hypothesis is consistent with the paleoenvironment 

surrounding GFS during the Early Pliocene. Both fauna (e.g., Pristinailurus, Tapirus) and flora 

(e.g., Caryra, Pinus, Quercus) at GFS are characteristic of densely forested climates (Wallace 

and Wang 2004; Hulbert et al. 2009; Samuels et al. 2018). In addition, the occurrence of 

Taxodium and Nyssa leaves and pollen, as well as fauna indicative of aquatic environments (e.g., 

Alligator, Ambystoma, Sternotherus, Trachemys), suggest the presence of a perennial body of 

water (Wallace and Wang 2004; Boardman and Schubert 2011; Brandon 2013; Worobiec et al. 

2013; Samuels et al. 2018). The absence of grassland-adapted taxa and the predominance of 

forest-adapted taxa suggest that GFS likely contrasts greatly with most of the continent where 

there was expansion of grassland environments through the late Miocene-early Pliocene 

(Wallace and Wang 2004; DeSantis and Wallace 2008). 

 Both DFA analyses for the GFS musteline support indication of a mink-like morphology. 

The genus analysis (eigenvalue = 0.404) classified the specimen as Neogale, with 53.2% of 

Neogale specimens being correctly classified. The clade analysis predicted the GFS musteline to 

most likely belong to Clade #4 (M. erminea) and predicted Clade #1 (N. africana, N. felipei, N. 

frenata, and N. vison) for the 2nd most likely clade. With Clade #4 likely originating from 

Eurasia, combined with the knowledge of fauna from GFS representing a unique combination of 

North American and Eurasian taxa, it is certainly possible that the GFS musteline descended 

from a Eurasian ancestor (Wallace and Wang 2004; Law et al. 2017). Although, it is worth 

noting that Clade #4 showed only 46.4% correct classification while Clade #1 showed 72.1% 

correct classification. A larger comparative sample is necessary in order to better understand the 

origin of the GFS musteline. 
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Extinct Pleistocene Taxa Analysis 

 Two poorly known extinct Pleistocene musteline taxa, M. gazini and M. jacksoni, were 

included in the analysis for genus, species, and clade classification. The findings of this analysis 

raise the question of whether these are valid taxa or simply samples of extant species. Only two 

specimens of M. gazini have been described by Hibbard (1958) and Eshelman (1975) from Early 

Pleistocene sites of Idaho and Kansas respectively. The holotype, a left dentary bearing the p3 – 

m2, was distinguished from N. frenata by having a lesser transverse width of the heel of the p3 

and p4, and a more centrally located principal cusp of the p3 and p4 (Hibbard 1958). The 

anterior portion of the p3 and p4 is also not as reduced as in recent mustelines (Hibbard 1958). In 

additionally, Hibbard (1958) distinguished M. gazini from M. rexroadensis by its larger size, a 

more developed anterior base of the p3 and p4, and a more tightly closed m1 carnassial notch. 

However, Bjork (1970) noted that the discrepancy of the m1 carnassial notch between the M. 

gazini and M. rexroadensis holotypes is due to differential wear of the m1 of M. rexroadensis, 

thus resulting in the carnassial notch to appear more distinctly open. He subsequently noted that 

the M. gazini holotype is actually more typical of M. rexroadensis topotype material, thus 

leading it to be considered synonymous under M. rexroadensis (Bjork 1970; Eshelman 1975). 

 The results of this analysis seem to support the original descriptions by Hibbard (1958) of 

M. gazini being distinguishable from M. rexroadensis. The DF1 vs. DF2 species analysis 

scatterplot (Figure 17) shows M. gazini being clearly separated from M. rexroadensis. M. gazini 

showed highly positive scores for both DF1 and DF2 while M. rexroadensis exhibited slightly 

negative scores for both. This indicates that M. gazini can possibly be distinguished from M. 

rexroadensis based on measurements and ratios of the p4 and m1. The results suggest that M. 
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gazini does seem to have a relatively more robust dentary with a longer and wider p4 and m1, as 

noted by Hibbard (1958). 

 Only two specimens of M. jacksoni, a left dentary with the p3 – m1 and a right dentary 

with the p2 – m1, have been described from Fort Selkirk local fauna (Early Pleistocene, 1.55 – 

1.6 Ma) of Yukon Territory, Canada (Storer 2004). Storer (2004) described M. jacksoni as being 

a small musteline similar to M. nivalis, but slightly larger in size. The most apparent features 

distinguishing it from M. nivalis are the premolars, which are more robust, higher-crowned, and 

more expanded and broader posteriorly (Storer 2004). The m1 is similar to that of M. nivalis, 

although the talonid is broader buccolingually with a better developed lingual basin and a more 

rounded posterior margin on the heel (Storer 2004). Storer (2004) suggested that M. jacksoni is 

likely not directly ancestral to M. nivalis due to the specialization in the degree of expansion of 

the lower premolars. 

 The results of this analysis show M. jacksoni exhibiting considerable overlap with M. 

nivalis (Figure 17), thus suggesting close affinity between the two species. M. jacksoni does 

appear to be larger than most specimens of M. nivalis used in this study; however, it did not fall 

outside of the size range of M. nivalis, contrary to the results of Storer (2004). Clade 

classification assigned M. jacksoni to #5 (most likely clade) and #4 (2nd most likely clade), 

suggesting that it is likely very closely related to M. nivalis, if not simply a larger-than-average 

specimen of M. nivalis. It may also be possible that M. jacksoni actually belongs to M. 

praenivalis, an ancestor of M. nivalis known from Early – Middle Pleistocene sites of Eurasia 

(Kurtén 1968). There seems to be a slight decrease in overall size and robustness throughout the 

gradual yet continuous succession of the M. nivalis lineage from the Early Pliocene to present 

day (Stach 1959; Kurtén 1968). Among the characters distinguishing M. praenivalis from M. 
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nivalis, Kormos (1934) described M. praenivalis as having a more robust mandible with larger, 

wider, and higher-crowned premolars and m1. The measurements for M. jacksoni fall within the 

size range of M. praenivalis measurements taken by Kormos (1934). 

Mustela sp. Analysis 

 Two specimens classified as Mustela sp. aff. rexroadensis (IMNH 7559 and IMNH 

12861) by Hearst (1999) from the Blancan-aged Birch Creek local fauna of Idaho were included 

in the analysis to examine the reliability of classification for specimens not previously given a 

complete taxonomic status. IMNH 7559 includes a right dentary with the p2 – m2 and IMNH 

12861 includes a right dentary with the p4 – m2. The dentaries are described as being 

morphologically similar to M. rexroadensis with IMNH 7559 being approximately 28% larger 

than IMNH 12861 (Hearst 1999). IMNH 7559 appears to be very similar in size compared to M. 

rexroadensis, although IMNH 12861 was noted to be slightly smaller than the mandible of M. 

rexroadensis (Hibbard 1950; Bjork 1970; Hearst 1999). 

 The results of this analysis showed both specimens of Mustela sp., especially IMNH 

#7559, having close affinity to M. rexroadensis (Figure #). IMNH #12861 was likely not 

assigned to M. rexroadensis for neither 1st nor 2nd most likely species due its slightly smaller size 

compared to the M. rexroadensis specimens available. Despite this, the 2nd most likely species 

for IMNH #12861 was N. frenata, which has been observed to share significant morphological 

similarities with M. rexroadensis (Bjork 1970). Overall, the analysis indicated that the 

unclassified fossil Mustela sp aff. rexroadensis specimens can fairly reliably be assigned to 

genus, species, and clade, even with fragmentary remains and a small sample size of M. 

rexroadensis. 
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CHAPTER 9. CONCLUSIONS 

 

 Mustela and Neogale can be difficult to distinguish osteologically due to similarities in 

skull and tooth morphology (Abramov 2000), with morphological synapomorphies between the 

two genera remaining unresolved. High degrees of sexual dimorphism and geographic variation 

within Mustelinae (King and Powell 2007) introduce additional obstacles for distinguishing 

among taxa. Several studies have examined phylogenetic and morphological relationships among 

mustelines (e.g., Anderson 1989; Abramov 2000; Heptner et al. 2001; Marmi et al. 2004; Sato et 

al. 2003; Harding and Smith 2009; Law et al. 2018); however, no study has aimed to distinguish 

all 18 extant taxa at genus-, species-, and clade-level using a combination of qualitative and 

quantitative analyses. Furthermore, no study has used such a large dataset that also includes 

extinct fossil musteline taxa for classification. 

 For this study, a combination of qualitative and quantitative analyses was conducted to 

maximize the potential for distinguishing Mustela and Neogale using skull and tooth characters. 

A primary goal was to examine for potential classification from not only a research setting with a 

large dataset, but especially from a paleontological setting where scarce and/or fragmentary 

fossil remains may limit the amount of collectable data. Both the character state analysis and 

DFA proved reliable in distinguishing Mustela from Neogale based on skull and tooth 

morphology. Additionally, the DFA further demonstrated reliable separation of species and 

clade. When utilized, measurements and ratios involving the P4, M1, and m1 contributed most to 

distinction. Overall, 91.3% of all extant specimens were correctly classified to genus, 89.9% 

were correctly classified to species, and 81.9% were correctly classified to clade. 
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 This study indicates that Mustela and Neogale can fairly accurately be distinguished 

based on skull and tooth morphology, although a larger sample size of all Neogale species is 

necessary to more accurately identify potential morphological synapomorphies for the genus. On 

the other hand, clade analyses suggest that certain phylogenetic groups of species contained 

within Mustela are also in themselves morphologically distinct, thus raising the question of 

whether or not those groups deserve separate generic status. A larger sample size of poorly 

known taxa (e.g., M. strigidorsa) is necessary to aid in better understanding the morphological 

distinctions within Mustela. Additionally, greater consideration and assessment of geographic 

variation and sexual dimorphism in species, as well as what morphological differences among 

taxa may mean regarding their ecology, are important next steps to take when addressing future 

work surrounding this topic. 

 Since all extant musteline taxa can be distinguished morphologically, it is possible to 

reliably propose genus, species, and clade classification of fossil mustelines, even if the available 

material is scarce and/or fragmentary. It is important to understand, however, what the 

responsible level is to which fragmentary musteline remains should be identified. Based on 

results of the analyses of fossil taxa, identification to species-level from a paleontological 

perspective will likely yield the least informative results when compared to identification to 

genus or clade. And as previously mentioned, since the phylogenetic groups within Mustela are 

indeed morphologically distinct themselves, identification to clade may actually serve more 

useful than identification to genus when attempting to better understand the fossil remains of 

extinct mustelines. 
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APPENDIX: Examined Specimens of Mustela and Neogale Utilized in the Analyses 

 

Museum Catalog # Species Sex Location 

USNM 255119 Neogale africana M Peru 

AMNH 37475 Neogale africana M Brazil 

USNM 62110 Mustela altaica M China 

USNM 270534 Mustela altaica M China 

USNM 270608 Mustela altaica F China 

USNM 198473 Mustela altaica F India 

USNM 84059 Mustela altaica F India 

USNM 84058 Mustela altaica F India 

USNM 198476 Mustela altaica M India 

USNM 198475 Mustela altaica M India 

USNM 198477 Mustela altaica M India 

USNM 198478 Mustela altaica M India 

USNM 198479 Mustela altaica M India 

USNM 176034 Mustela altaica F Pakistan 

USNM 176035 Mustela altaica F Pakistan 

USNM 176037 Mustela altaica M Pakistan 

USNM 354421 Mustela altaica M Pakistan 

USNM 354422 Mustela altaica M Pakistan 

ZIN 37923 Mustela altaica   Bliznets Cave, Russia 

USNM 155161 Mustela eversmanii M China 

USNM 240710 Mustela eversmanii M China 

USNM 240709 Mustela eversmanii F China 

USNM A22192 Mustela eversmanii   Russia 

USNM 259792 Mustela eversmanii     

USNM 188448 Mustela eversmanii F Russia 

USNM 188449 Mustela eversmanii M Russia 

USNM 269134 Mustela eversmanii     

USNM 001452/A38365 Mustela eversmanii   Russia 

ZIN 37928-11 Mustela eversmanii   Bliznets Cave, Russia 

ZIN 37928-30 Mustela eversmanii   Bliznets Cave, Russia 

USNM 188444 Mustela kathiah   India 

USNM 254587 Mustela kathiah F China 

USNM 258180 Mustela kathiah M China 
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USNM 254411 Mustela kathiah   China 

UMMZ 112553 Mustela kathiah M India 

USNM 007772/A38466 Mustela lutreola   Russia 

NMC 27534 Mustela lutreola M Russia 

SZM 6878 Mustela lutreola M Russia 

  89060001 Mustela lutreola   Spain 

BZM 1.9.36 Mustela lutreolina M Indonesia 

RMNH   Mustela lutreolina   Indonesia 

USNM 301102 Mustela nudipes   Malaysia 

USNM 489386 Mustela nudipes M Malaysia 

USNM 489385 Mustela nudipes M Malaysia 

USNM 267386 Mustela nudipes M Indonesia 

USNM 151878 Mustela nudipes M Indonesia 

USNM 277283 Mustela subpalmata M Egypt 

USNM 277262 Mustela subpalmata F Egypt 

USNM 277284 Mustela subpalmata F Egypt 

USNM 283266 Mustela subpalmata F Egypt 

USNM 283267 Mustela subpalmata F Egypt 

USNM 283268 Mustela subpalmata F Egypt 

USNM 317100 Mustela subpalmata M Egypt 

USNM 317099 Mustela subpalmata M Egypt 

USNM 317098 Mustela subpalmata M Egypt 

USNM 317097 Mustela subpalmata M Egypt 

USNM 317095 Mustela subpalmata F Egypt 

USNM 317096 Mustela subpalmata M Egypt 

USNM 300294 Mustela subpalmata   Egypt 

USNM 300293 Mustela subpalmata   Egypt 

USNM 317101 Mustela subpalmata M Egypt 

USNM 317102 Mustela subpalmata M Egypt 

USNM 317103 Mustela subpalmata M Egypt 

USNM 317106 Mustela subpalmata F Egypt 

USNM 350094 Mustela subpalmata M Egypt 

USNM 140895 Mustela itatsi M Japan 

USNM 140892 Mustela itatsi M Japan 

USNM 01384/A20942 Mustela itatsi M Japan 

USNM 140890 Mustela itatsi M Japan 

USNM 140893 Mustela itatsi M Japan 
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USNM 140894 Mustela itatsi F Japan 

USNM 140897 Mustela itatsi M Japan 

USNM 140896 Mustela itatsi M Japan 

USNM 140898 Mustela itatsi M Japan 

USNM 140899 Mustela itatsi M Japan 

USNM 140900 Mustela itatsi M Japan 

USNM 140902 Mustela itatsi F Japan 

USNM 140911 Mustela itatsi M Japan 

USNM 140904 Mustela itatsi M Japan 

USNM 140908 Mustela itatsi M Japan 

USNM 140905 Mustela itatsi M Japan 

USNM 140906 Mustela itatsi M Japan 

USNM 155114 Mustela sibirica M China 

USNM 155113 Mustela sibirica M China 

USNM 172537 Mustela sibirica F China 

USNM 172536 Mustela sibirica F China 

USNM 173320 Mustela sibirica M India 

USNM 173319 Mustela sibirica F India 

USNM 020400/A37532 Mustela sibirica M India 

USNM 173322 Mustela sibirica M India 

USNM 173318 Mustela sibirica M India 

USNM 00145/A37848 Mustela sibirica   Russia 

USNM 270532 Mustela sibirica M China 

USNM 270533 Mustela sibirica M China 

USNM 270607 Mustela sibirica F China 

USNM 298999 Mustela sibirica F Korea 

USNM 333165 Mustela sibirica M Taiwan 

USNM 333164 Mustela sibirica M Taiwan 

USNM 333163 Mustela sibirica F Taiwan 

ZIN 38049 Mustela sibirica   Bliznets Cave, Russia 

ZIN 37924-3 Mustela sibirica   Bliznets Cave, Russia 

ZIN 37924-7 Mustela sibirica   Bliznets Cave, Russia 

ZIN 37924-2 Mustela sibirica   Bliznets Cave, Russia 

ZIN 37928-13 Mustela sibirica   Bliznets Cave, Russia 

KIZ 760256 Mustela strigidorsa   China 

USNM 548396 Neogale felipei M Ecuador 

USNM 545050 Neogale felipei   Ecuador 
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USNM 319222 Mustela putorius M Italy 

USNM 152675 Mustela putorius M Italy 

USNM 348113 Mustela putorius M Netherlands 

USNM 115213 Mustela putorius M Switzerland 

USNM 152668 Mustela putorius M Germany 

USNM 188447 Mustela putorius F Germany 

USNM 152676 Mustela putorius F Spain 

USNM 115214 Mustela putorius F Switzerland 

USNM 319223 Mustela putorius F Italy 

USNM 123629 Mustela putorius F Switzerland 

USNM 021959/A36838 Mustela putorius F   

USNM 260373 Mustela putorius F   

USNM 152669 Mustela putorius F Germany 

USNM 123629 Mustela putorius F Switzerland 

USNM 154158 Mustela putorius F Spain 

USNM 174958 Mustela putorius M   

USNM 188446 Mustela putorius M Germany 

USNM 257966 Mustela putorius M   

USNM 267593 Mustela putorius   France 

USNM 56973 Neogale vison M British Columbia 

USNM 56975 Neogale vison F British Columbia 

USNM 80292 Neogale vison M Yukon 

USNM 135112 Neogale vison F Yukon 

USNM 75626 Neogale vison M Alberta 

USNM 235963 Neogale vison F Alberta 

USNM 136339 Neogale vison M Alaska 

USNM 136342 Neogale vison F Alaska 

USNM A49324 Neogale vison M California 

USNM 50966 Neogale vison F California 

USNM 025268/A32678 Neogale vison M Kansas 

USNM 172896 Neogale vison M Maine 

USNM 188351 Neogale vison M Connecticut 

USNM 035909/A48218 Neogale vison M Colorado 

USNM 136276 Neogale vison M New Mexico 

USNM 215866 Neogale vison M Illinois 

USNM 77136 Neogale vison M Oregon 

USNM 180801 Neogale vison M Alabama 
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USNM 234380 Neogale vison M Florida 

USNM 188340 Neogale vison F Wyoming 

USNM 76598 Neogale vison F Maryland 

USNM 210966 Neogale vison F Alabama 

USNM 188357 Neogale vison F South Carolina 

USNM 64437 Neogale vison F Indiana 

USNM 264616 Neogale vison F North Dakota 

USNM 66231 Neogale vison F Washington 

USNM 035912/A48221 Neogale vison F Colorado 

USNM 170141 Neogale vison F Montana 

F:AM 30821 Neogale vison   Alaska 

USNM 8156 Neogale vison M Cumberland Cave, Maryland 

UMMP 38341 Neogale vison   Kansas 

USNM 119831 Mustela erminea M Alaska 

USNM 119751 Mustela erminea F Alaska 

USNM 92240 Mustela erminea F Oregon 

USNM 266451 Mustela erminea M South Dakota 

USNM 526670 Mustela erminea F South Dakota 

USNM 118301 Mustela erminea M Maine 

USNM 64686 Mustela erminea M Massachusetts 

USNM 242638 Mustela erminea F Massachusetts 

USNM 96947 Mustela erminea M Massachusetts 

USNM 240712 Mustela erminea M China 

USNM 152654 Mustela erminea M Germany 

USNM 152655 Mustela erminea M Germany 

USNM 152650 Mustela erminea M Ireland 

USNM 152649 Mustela erminea F Ireland 

USNM 99735 Mustela erminea M British Columbia 

USNM 75373 Mustela erminea F British Columbia 

USNM 314859 Mustela erminea M Northwest Territories 

USNM 264360 Mustela erminea F Northwest Territories 

USNM  000382/A37421 Mustela erminea M Sweden 

USNM 188442 Mustela erminea M Sweden 

USNM 174068 Mustela erminea F India 

USNM 174067 Mustela erminea M India 

USNM 354423 Mustela erminea M Pakistan 

USNM 354424 Mustela erminea F Pakistan 
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USNM 200699 Mustela erminea M Russia 

USNM 200700 Mustela erminea M Russia 

USNM 133431 Mustela erminea M New Mexico 

USNM 554484 Mustela erminea F New Mexico 

ZIN 37925 Mustela erminea   Bliznets Cave, Russia 

ZIN 37922 Mustela erminea   Bliznets Cave, Russia 

F:AM 49340 Mustela erminea   Alaska 

UMMP 38339 Mustela erminea   Kansas 

UMMP 38340 Mustela erminea   Kansas 

UMMP 38338 Mustela erminea   Kansas 

UTEP 12-240 Mustela erminea F Dry Cave, New Mexico 

USNM 251910 Neogale frenata M Columbia 

USNM 000601/A01724 Neogale frenata M Mexico 

USNM 363345 Neogale frenata M Panama 

USNM 392237 Neogale frenata F Mexico 

USNM 137513 Neogale frenata M Peru 

USNM 565508 Neogale frenata F Honduras 

USNM 143812 Neogale frenata M Venezuela 

USNM 137515 Neogale frenata F Venezuela 

USNM 194329 Neogale frenata F Peru 

USNM 188373 Neogale frenata M California 

USNM 188374 Neogale frenata F California 

USNM 72767 Neogale frenata M Montana 

USNM 261845 Neogale frenata M Montana 

USNM 169978 Neogale frenata F Montana 

USNM 209410 Neogale frenata F Montana 

USNM 021778/A36483 Neogale frenata M Texas 

USNM 017319/A24240 Neogale frenata F Texas 

USNM 024679/A32071 Neogale frenata M Arizona 

USNM 177679 Neogale frenata M Connecticut 

USNM 64344 Neogale frenata F Connecticut 

USNM 253922 Neogale frenata M New York 

USNM 253920 Neogale frenata F New York 

USNM 147375 Neogale frenata M Nebraska 

USNM 171559 Neogale frenata F Alabama 

USNM 147762 Neogale frenata F Nebraska 

USNM 261655 Neogale frenata M Georgia 
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USNM 261658 Neogale frenata F Georgia 

UTEP 120-191 Neogale frenata   Big Manhole Cave, New Mexico 

UTEP 120-169 Neogale frenata F Big Manhole Cave, New Mexico 

USNM 319221 Mustela nivalis M Italy 

USNM 197780 Mustela nivalis M China 

USNM 299250 Mustela nivalis M Korea 

USNM 476026 Mustela nivalis M Morocco 

USNM 476025 Mustela nivalis F Morocco 

USNM 152632 Mustela nivalis F Italy 

USNM 363980 Mustela nivalis M North Carolina 

USNM 245843 Mustela nivalis F North Carolina 

USNM 332422 Mustela nivalis M Tennessee 

USNM 545049 Mustela nivalis F Tennessee 

USNM 554486 Mustela nivalis M Missouri 

USNM 554489 Mustela nivalis F Missouri 

USNM 271829 Mustela nivalis M Alaska 

USNM 225628 Mustela nivalis F Alaska 

USNM 288573 Mustela nivalis M North Dakota 

USNM 288574 Mustela nivalis F North Dakota 

USNM 200767 Mustela nivalis M Russia 

USNM 200760 Mustela nivalis M Russia 

USNM 327731 Mustela nivalis M Turkey 

USNM 327730 Mustela nivalis F Turkey 

USNM 265614 Mustela nivalis M Montana 

USNM 152631 Mustela nivalis M United Kingdom 

USNM 232787 Mustela nivalis F United Kingdom 

USNM 000385/A37787 Mustela nivalis M Sweden 

ZIN 37927-3 Mustela nivalis   Bliznets Cave, Russia 

ZIN 37929-5 Mustela nivalis   Bliznets Cave, Russia 

ZIN 37929-3 Mustela nivalis   Bliznets Cave, Russia 

USNM 247073 Mustela nigripes F Colorado 

USNM 234972 Mustela nigripes F Montana 

USNM 228233 Mustela nigripes M Arizona 

USNM 188458 Mustela nigripes M Kansas 

ETVP 10028 Mustela nigripes F Wyoming 

ETVP 3887 Mustela nigripes     

NVPL 7072 Mustela nigripes M Wyoming 
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NVPL 7009 Mustela nigripes M Wyoming 

ETVP 18215 Mustela nigripes M Colorado 

UMMZ 103451 Mustela nigripes M North Dakota 

DMNH 2248 Mustela nigripes M Colorado 

UTEP 46-16 Mustela nigripes   Isleta Cave, New Mexico 

UTEP 120-98 Mustela nigripes   Big Manhole Cave, New Mexico 

NAUQSP 8711/116B Mustela nigripes   Snake Creek Burial Cave, Nevada 

NAUQSP 8711/195B Mustela nigripes   Snake Creek Burial Cave, Nevada 

NAUQSP 8711/197B Mustela nigripes   Snake Creek Burial Cave, Nevada 

NAUQSP 11140 Mustela nigripes   Cathedral Cave, Nevada 

USNM 395193 Neovison macrodon   Maine 

USNM 395194 Neovison macrodon   Maine 

USNM 395195 Neovison macrodon   Maine 

USNM 395196 Neovison macrodon   Maine 

USNM 395197 Neovison macrodon   Maine 

USNM 359199 Neovison macrodon   Maine 

USNM 395187 Neovison macrodon   Maine 

USNM 395200 Neovison macrodon   Maine 

USNM 395202 Neovison macrodon   Maine 

USNM 395203 Neovison macrodon   Maine 

USNM 395206 Neovison macrodon   Maine 

USNM 395207 Neovison macrodon   Maine 

USNM 395184 Neovison macrodon   Maine 

USNM 395185 Neovison macrodon   Maine 

USNM 395188 Neovison macrodon   Maine 

USNM 395189 Neovison macrodon   Maine 

USNM 395190 Neovison macrodon   Maine 

USNM 395208 Neovison macrodon   Maine 

USNM 395209 Neovison macrodon   Maine 

USNM 395210 Neovison macrodon   Maine 

USNM 395211 Neovison macrodon   Maine 

USNM 395213 Neovison macrodon   Maine 

USNM 395227 Neovison macrodon   Maine 

USNM 395228 Neovison macrodon   Maine 

USNM 395235 Neovison macrodon   Maine 

USNM 395230 Neovison macrodon   Maine 

UMMP 25767 Mustela rexroadensis   Kansas 
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UMMP 25768 Mustela rexroadensis   Kansas 

UMMP 28432 Mustela rexroadensis   Kansas 

UM-Ida V55950 Mustela rexroadensis   Idaho 

UM-Ida V50089 Mustela rexroadensis   Idaho 

UMMP 30243 Mustela rexroadensis     

UMMP V45457 Mustela meltoni   Wendell Fox Pasture, Kansas 

USNM 21824 Mustela gazini   Idaho 

YG 95.4 Mustela jacksoni   Yukon Territory, Canada 

IMNH 7559 Mustela sp.   Owyhee Co., Idaho 

IMNH 12861 Mustela sp.   Owyhee Co., Idaho 

IMNH 124355 Mustela sp.   Owyhee Co., Idaho 

IMNH 124354 Mustela sp.   Owyhee Co., Idaho 

KUMVP 5750 Mustela sp.   Meade Co., Kansas 

ETMNH 22419/22420 GFS musteline   Gray Fossil Site, Tennessee 
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