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ABSTRACT

Functional Mixed Data Clustering with Fourier Basis Smoothing

by

Ishmael Amartey

Clustering is an important analytical technique that has proven to affect human

life positively through its application in cancer research, market segmentation, city

planning etc. In this time of growing technological systems, mixed data has seen

another face of longitudinal, directional and functional attributes which is worth

paying attention to and analyzing. Previous research works on clustering relied largely

on the inverse weight technique and B-spline in smoothing data and assessing the

performance of various clustering algorithms. In 1971, Gower proposed a method of

clustering for mixed variable types which has been extended to include functional and

directional variables by Hendrickson (2014). In this study, we will do a comparative

analysis of the performance of the hierarchical clustering mechanism using a simulated

Functional data with mixed structure. We will adopt the Fourier basis smoothing

procedure and use the Rand index (Rand 1971) and adjusted Rand index for the

comparison of the various clustering algorithms.
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1 INTRODUCTION

Over the years data acquisition has experienced tremendous improvement due to

technological advancements. Now, what would have been a tiring and time-consuming

procedure to gather data has been reduced to significantly lower levels with just

a single click on a computer through emails and internet participation. This new

advanced way of getting data has largely reduced cost but like any other process

this has its own drawbacks. Some of these drawbacks include non-participation,

non-response or missing data, amongst others. Data mining has become a strong

component affecting every sphere of life as it is the basic source of a majority of

decision making in the world at large. Because of the significance of data, in medicine,

real estate, media, education, policy making et. al., it is prudent that data and its

characteristics are understood to unearth the unknown. Data comes in different forms

and types and has been traditionally classified under two main forms, quantitative or

categorical, but within these two general classifications, there might be some unique

characteristics within data sets which, when ignored, can misinform an analyst.

Hendrickson [18] acknowledged that most real data have different characteristics

and variables. As a result, data types cannot be limited to the traditional two types,

especially when one is dealing with mixed data. So, in order to study the unique

characteristics of groups in data, clustering must be adopted. Mixed data is one that

comprises of both categorical (color, sex, blood group) and quantitative (height, age,

weight).

According to Chapman and Hall/CRC [15], Aristotle’s classification of living and

non-living things constituted the first known clustering. Aristotle classified animals
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into two main groups, vertebrates and invertebrates and went further to classify how

these animals reproduce [31]. In medicine, the collection of such data and its analysis

is used in cancer research, vaccinations adaptation and the creation of life tables

in survival analysis for cohort groups [15]. In business, these data inform decision

making such as which stocks an investor must invest in to maximize profit or diversify

portfolio shocks and market segmentation [16].

In modern technologies, facial and pattern recognition are widely used to provide

robust security systems and data protection for users [17]. Also, search engines and

social media platforms use a similarity matrix to continually suggest content to users

of the internet depending on the searches they make [30]. These platforms collect

data on the interest of users to make accurate group suggestions.

Other applications of clustering includes determining temperaments [27] in be-

havioural science and soil type in agriculture [25]. There are different types of clus-

tering methods which can be adopted depending on the data set to be used for

research. The various kinds of clustering will be discussed in detail in chapter two.
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2 LITERATURE REVIEW

2.1 Introduction to Clustering

Clustering is way of determining groups in multivariate data. This is done by iden-

tifying data with similar characteristics and grouping them. With clustering, a large

data set becomes convenient to work with and can be summarized and understood

easily. What needs to be checked for a good clustering is that data within a cluster

should be homogeneous (i.e highly similar in attributes) and data between clusters

should be heterogeneous or highly dissimilar. There are different techniques in clus-

tering data, these includes the hierarchical method, k-means method, model based

method and centroid based clustering [31]. Figure (2.7) shows the various techniques

in clustering data.

In hierarchical clustering, data sets are not subdivided into a certain number of

clusters in a single step. Rather, the classifications are done in series of partitions

from a cluster containing all possible individuals to n clusters containing just a single

individual [31]. The hierarchical clustering technique can be categorized further into

agglomerative method, which is continued by successive fusions of the n individuals

into groups, and divisive methods which categorizes the individuals into successive

distinct groups [31]. How hierarchical clustering works is by finding the least distance

between data points and grouping them to form a cluster. Considering two points

on a plane with each point being a cluster on its own, the measurement of the least

distance between each point can be calculated using the Euclidean distance measure,

the squared Euclidean distance measure, the Manhattan distance measure or the
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Cosine distance measure [29]. The most commonly used distance measure is the

Euclidean distance which is given by

Figure 2.1: Euclidean distance

d =

√√√√ n∑
i=1

(qi − pi)2 (2.1)

where pi and qi are the Euclidean vectors starting from the origin of the space (initial

point) or

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xp − yp)2 (2.2)

where x and y, are the points in the euclidean n− space. To further understand how

this works, we will use the data from Kaufmann and Rousseeuw [21] in Table 2.1.
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Table 2.1: Data from Kaufmann and Rousseeuw [21] of Seven Measured Objects for
Two Variables.

Object Variable 1 Variable 2
1 2.00 2.00
2 5.50 4.00
3 5.00 5.00
4 1.50 2.50
5 1.50 1.00
6 1.00 5.00
7 7.00 6.50

The dissimilarity between the objects can be obtained as follows. For objects 1

and 2 the squared difference between 5.50 and 2.00 for variable 1 is 12.25 and the

squared difference between 2 and 4 for variable 2 is 4. Using Equation (2.2) we get

d(1, 2) =
√

12.25 + 4 = 4.03. Similarly, the squared differences between objects 1 and

3 for variable 1 is 9 and that of variable 3 is also 9. Again using Equation (2.2) we get

the dissimilarity between object 1 and 3 for variable 1 and variable 2 as d(1, 3) =

√
9 + 9 = 4.24. We continue this procedure to obtain the dissimilarity between

the objects combinations (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), ..., (6, 7). The dissimilarity

between objects of the same kind is zero, so its suffices that the diagonal elements of

the matrix are zero. The dissimilarity matrix for the seven objects from Kaufmann

and Rousseeuw [21] is given by

0.0
4.03 0.0
4.24 1.12 0.0
0.71 4.27 4.30 0.0
1.41 5.41 5.66 1.58 0.0
5.83 1.80 2.00 6.04 7.21 0.0
5.86 2.51 1.68 5.84 7.27 1.95 0.0


Figure (2.2) depicts how the data points from Kaufmann and Rousseeuw [21] were

merged together to form the cluster dendogram in Figure (2.3). To start the merging

process, we first do a scatter plot of the data and combine closest points to form a
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cluster. In Figure (2.2), objects 1 and 4 were joined to form a cluster. Same was done

for objects 2 and 3, and objects 6 and 7. After this process we locate the nearest data

point to the formed clusters and merge them like we did in the previous process to form

another cluster. In Figure (2.2), we merged objects 5 to that of the cluster containing

objects 1 and 4 to form a new cluster and merged the two clusters containing objects

2 and 3, and objects 6 and 7 to form another single cluster. We stop the merging

process when there are no more data points to add to a cluster. Then, we merge

all the created clusters to form one cluster containing all the objects. Figure (2.3)

depicts the final hierarchical cluster dendogram after the merging process. Here, we

see that objects 1 and 4 are much more similar to each other than they are to object

5. Same applies to objects 2 and 3, and objects 6 and 7. Though the dendogram is a

good way to visualize the distance between objects, it can lead to loss of information.

For instance in Figure (2.3), it appears the distance from object 4 to 2 is shorter than

the distance from object 4 to 5 but this is false and it can clearly be noticed in the

scatter plot of Figure (2.2).
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Figure 2.2: Cluster dendogram set up for the seven measured objects

Figure 2.3: Cluster dendogram for the seven measured objects from Kaufmann and
Rousseeuw
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With the Manhattan distance, the measurement of the distance between two

points along different axes at right angles is the point of interest, more formally

it is written as

d =
n∑
i=1

|qi − pi| (2.3)

Figure 2.4 depicts the graph of the Manhattan distance.

Figure 2.4: Manhattan distance

Figure 2.5 is the cosine distance between two vectors pi and qi. As the two vectors

get further apart the cosine distance gets larger. The cosine distance is given as

d =

∑n−1
i=0 (qi − pi)∑n−1

i=0 (qi)2
∑n−1

i=0 (pi)2
(2.4)

.
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Figure 2.5: Cosine distance

Other measure of distances include the Minkowski measure of order g defined as

d(x, y) = (|x1 − y1|g + |x2 − y2|g + |x3 − y3|g + ...+ |xi − yi|g)
1
g , (2.5)

the Canberra metric which is define as

d(x, y) =
n∑
i=0

|xi − yi|
|xi|+ |yi|

, (2.6)

and the Kulczynski distance

d(x, y) =

∑n
i=0 |xi − yi|∑n

i=0min(xi, yi)
(2.7)

The k−means clustering method groups data into k groups. This procedure fol-

lows an easy way to classify a given data set into k clusters [20]. The main objective is

to set up centroids for each cluster by partitioning them in a well structured manner

to get accurate results. This is important because placing a centriod in a different lo-
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cation can affect the clustering outcome [20], so the best way to begin is to randomly

place centroids far away from the given data points. In Figure 2.6(A) the randomly

placed centroid is denoted with (F). Next is to determine the distance from each

data point to the upper and lower centroid (F) and place each data point in a lower

or upper group. For instance, if the distance between a point and the upper assigned

centroid is shorter than the distance between the same point and the lower centroid,

then that point will be placed above the Euclidean line to form part of the upper

group and vice versa. Next is to find the centroid (center) of the formed groups and

continue placing points in each group using their distances from the centroid using

the same approach above. In Figure 2.6(B) we assigned (N) as the new centroid

and in Figure2.6(C) we assigned (�). This process is continued until the data points

converge, i.e there is no overlapping of points into another group.

18



Figure 2.6: K-Means algorithm steps

In k−means method, the aim is to minimize the error function given as

W (S,C) =
n∑
k=1

∑
i∈sk

||yi − ck||2, (2.8)

where S is a k−cluster partition which is represented by vectors yi(i ∈ I), Sk is a

non-overlapping cluster with a centroid ck within.

The model-based clustering method is an alternative to the k−means method. It

19



comes with the assumption that the data comes from a distribution that is made up

of two or more clusters. Unlike the above mentioned clustering methods, the model-

based method uses probabilistic distributions to create clusters using the Gaussian

distributions with their mean and covariance. Fraley and Raftery [12] did an exten-

sive work on model-based clustering; we will discuss that in detail in section 2.3 of

this chapter. Figure (2.7) shows the various types of clustering algorithms used in

clustering.
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Figure 2.7: Clustering algorithms

2.2 Binary, Nominal and Ordinal variables

There are several approaches to clustering mixed data depending on the nature

of data points. For instance in 2018, M.V et al clustered three mixed data sets and

concluded that there is not a single cluster method that is absolute for all data sets

[24]. In most cases variables are of the form binary, nominal, ordinal and interval or

a combination of two or more. When a data set is binary, it is usually assigned a

number value of 1 or 0 and can be measured using a contingency table.

In Table (2.2) a is the number of variables for which the assigned binary value

of 1 was recorded for object 1 and object 2 and b being the number of variables for

21



Table 2.2: Contingency Table for Binary Data

Object 2
1 0

Object 1 1 a b
0 c d

which an object combination is (1,0), (0,1) for c and (0,0) for d. Binary variables can

be symmetric (for instance male or female) where equal weight is assigned with no

preference given over the other or asymmetric (if its states are not equally important).

Zubin, J [36] adopted a simple matching coefficient method to measure the similarity

in the way people behave. The simple matching coefficient for dissimilar objects in

binary data is given as

d(x, y) =
b+ c

a+ b+ c+ d
(2.9)

When binary objects are similar their similarity is given as

s(x, y) =
a+ d

a+ b+ c+ d
(2.10)

This is called the Jaccard coefficient [26]. In cases where there are more than two

states, the data becomes nominal. For instance, when one is studying the nationality

of people, each country can be coded as 1,2,3,...,M where M denotes the total number

of states. It should be noted that the assigned values are only for coding purposes, and

that the states are not ordered in any particular way. Sometimes nominal variables

can be broken down to only two states to form a binary variable, but this procedure

can cause loss of information [25].

The simple matching approach can be used to measure the similarity or dissimilar-
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ity between objects that takes the form of a nominal variable. The similarity measure

for such objects is defined as

s(x, y) =
u

p
(2.11)

and the dissimilarity is defined as

d(x, y) =
p− u
p

(2.12)

where u = a+ d, the number of matches for which the objects are in the same state

and p = a+ b+ c+ d, the total number of variables as defined in Table 2.2 [33].

Unlike nominal variables, ordinal variables place emphasis on the asssigned values

or states. For instance, in a study to determine how satisfied customers are after

using a certain product the scale values could be: 1-Very dissatisfied, 2- Dissatisfied,

3- Fair, 4- Satisfied and 5-Very satisfied. For such ordinal variables we map the range

between 0 and 1 such that each variable achieves an equal weighing. This is defined

as

zin =
rin − 1

Mn − 1
(2.13)

where zin is the standardized value for object i in variable n, rin is the rank of the

ith object in the nth variable and Mn is the highest rank for variable n [21].

2.3 Review on Mixed Variables

While binary, ordinal, and nominal variables are very common, in real life applications

its very common that several kinds of variables are present in the data set. Table
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(2.3) is a table of the characteristics of a garden flower (Taken from Kauffman and

Rousseeuw, 1990.pg 33) where W represents winter (Yes=1, No=0), S for shadow

(Yes=1, No=0), T for tubers (Yes=1, No=0), Col for colour of flowers (White=1,

Yellow=2, Pink=3, Red=4, Blue=5), Soil (Dry=1, Normal=2, Humid=3), Pr for

preference (Low=1, High=18), H is height in centimeters and PD is planting distance

in centimeters.

Table 2.3: Characteristics of Some Garden Flowers

Garden Flower W S T Col Soil Pr H PD
1 Begonia (Bertinii bolivieness) 0 1 1 4 3 15 25 15
2 Broom (Cytisus praecox) 1 0 0 2 1 3 150 50
3 Carnellia (Japonica) 0 1 0 3 3 1 150 50
4 Dahlia (Tartini) 0 0 1 4 2 16 125 50
5 Forget-me-Not (Myosotis sylvatica) 0 1 0 5 2 2 20 25
6 Fuchsia (Marinka) 0 1 0 4 3 12 50 40
7 Geranium (Rubin) 0 0 0 4 3 12 50 40
8 Gladiolus (Flowersong) 0 0 1 2 2 7 100 15
9 Heather (Erica carnea) 1 1 0 3 1 4 25 15
10 Hydrangea (Hortensis) 1 1 0 5 2 14 100 60
11 Iris (Versicolor) 1 1 1 5 3 8 45 10
12 Lily (Lilium regale) 1 1 1 1 2 9 90 25
13 Lily-of-the-valley (Convallaria) 1 1 0 1 2 6 20 10
14 Peony (Paeonia lactiflora) 1 1 1 4 2 11 80 30
15 Pink Carnation (Dianthus) 1 0 0 3 2 10 40 20
16 Red Rose (Rosa rugosa) 1 0 0 4 2 18 200 60
17 Scotch Rose (Rossa pimpinella) 1 0 0 2 2 17 150 60
18 Tulip (Tulipia sylvestris) 0 0 1 2 1 5 25 10

In dealing with mixed variables one can treat each variable as a single cluster

rather than mixing them, this procedure is only accepted when the conclusions from

the single variables agree. The drawback of treating each variable as a cluster is that

when different results are obtained it becomes difficult to reconcile them [21]. So it is

prudent to treat the mixed data together and proceed to do a single cluster analysis.

The focus on clustering analysis has largely been on finding the dissimilarity be-

tween mixed data variables, but Gower [14] proposed a coefficient to find the similarity
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between mixed data. This is of the form

S ij =

∑p
t=1 s ijtδijt∑p
ijt δijt

(2.14)

Gower assigned weights where δijt represent when there is possibility in comparisons

between the individual characters i and j at t and assigned scores for sijt as follows:

i) For characters with exactly two outcomes, a presence of a character is assigned +

and - otherwise. When there is an unknown value, a 2X2 contingency table is used

to assign weights as shown in the table below.

Table 2.4: Scores for Characters with Two Outcomes

Values of t
Individual i + +−−
Individual j +−+−

sijt 1 0 0 0
δijt 1 1 1 0

ii) In the case of a qualitative character

sijt =

{
1, if there is an agreement between i and j at t
0, otherwise

}

iii) When characters are quantitative

sijt = 1− |xi − yj|
Rt

(2.15)

where Rt is the range of t. Kaufmann and Rousseeuw [21] later generalalized the

Gower’s distance as the complement of the similarity coefficient proposed by Gower
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in 1971 as

d(i, j) = 1− sij =

∑p
t=1 sijtδijt∑p
ijt δijt

(2.16)

The Gower coefficient came with a drawback of making one variable dominant

over the other since it assigned equal weights to either of the variable types whether

its continuous or binary. In 2006, Chae, Kim, and Yang [19] rectified the draw back

from Gower’s coefficient by assigning different weights to different variable types.

They defined the dissimilarity measure as:

d∗ij = τij

c∑
l=1

1

C

(
|xil − yjl|

Rl

)
+ (1− τij)

√
1−

∑r
l=c+1 sijl∑r
l=c+1wijl

(2.17)

where pcij is the Pearson correlation coefficient for the quantitative variable, pdij is the

product moment correlation for multiple binary variables and {τij : 0 ≤ τij ≤ 1} is a

balancing weight to prevent dominance of one attribute over the other satisfying

τij =


1.0− pcij

|pcij |+|pdij |
, if 1.0 <

pcij
pdij

1.0− pdij
|pcij |+|pdij |

, if 1.0 >
pcij
pdij

0.5, if |pcij| = |pdij|


with −1.0 ≤ pcij as the similarity measure for the quantitative variable, pdij ≤ 1.00 as

the measure of similarity for the binary variables, i = 2, 3, ..., n. and j = 1, 2, ..., n− 1

for i > j. Rl is the range of the lth variable in quantitative values and wijl = 1 for

continuous variables, sijl = 0 if xi = yj and 0 otherwise, for binary variables. wijl

could take the value of 0 or 1 for binary variables provided there is a valid comparison

between the ith and jth objects for variables in the lth position.
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In the study of Chae, Kim and Yang [19], they adopted the use of the correlation

coefficient (pcij) for the quantitative variables and the product moment correlation

(pdij) for the case of multiple binary variables. However, they indicated that any

reasonable measure of similarity between the ith and jth objects within different kinds

of variables could be used and not necessarily pcij and pdij.

Clustering with mixed data can be complex. However, a model-based method pro-

duces reasonably good partitions without prior information about the data groupings

[12]. Using a the Bayesian Information criterion (BIC), Schwartz [32] determined the

number of groups in a data set by initializing the expectation-maximization (EM)

with partitions from a model-based algorithm. Following that a good outcome from

Dasgupta and Raftery [5] on minefield and seismic fault detection, Fraley and Raftery

[11] extended to select clusters simultaneously with the use of the BIC. The BIC is

of the form

2 log p(D|Mk) ≈ 2 log p(D|θ̂k,Mk − vk log(n)) = BICk (2.18)

where vk is the number of independent parameters to be estimated in the model Mk,

p(D|Mk) is the integrated likelihood of model Mk defined as

p(D|Mk) =

∫
p(D|θk,Mk)p(θk|Mk)dθk (2.19)

where p(D|θk,Mk) is the prior distribution of θk. When independent multivariate

observations are present in the data, the likelihood for such a mixture model with G

27



components is

LMIX(θ1, ...., θG : τ1, ...., τG|y) =
n∏
i=1

G∑
k=1

τkfk(yi|θk) (2.20)

where “f k and θ are the density parameters of the kth component” as stated by

Fraley [12] with τ > 0;
∑G

k=1 τk = 1 and fk usually being the Gaussian normal distri-

bution with parameters mean(µk) and covariance matrix
∑

k. The Gaussian normal

distribution is defined as

θ(yi|µk,
∑
k

) ≡
exp{−1

2
(yi − µk)τ

∑−1
k (yi − µk)}√

det(2π
∑

k)
(2.21)

Another method to clustering using the model-based method is the finite mixture

model [23]. Supposing that a set of random variables X1, X2, ..., Xn, are indepen-

dent and identically distributed p-dimensional observations with probability density

function (pdf)

f(x : π) =
K∑
k=1

πkfk(x) (2.22)

where πk is the mixing proportion present in the kth sub-population, with π =

(π1, π2, ..., πK)′ lying in the (K-1) dimensional simplex, K the total number of com-

ponents with, fk(x) is the density function and
∑K

k=1 πk = 1. With fk(x) ≡ fk(x; vk),

(2.22) can be written in the form

f(x; v) =
K∑
k=1

πkfk(x; vk) (2.23)
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where v is the parameter to be estimated and v=(π′, v′i, v′2, ..., v′K)′. Then we

say f(x; v) is a finite mixture model density with parameter vector v given as v =

(π′, v1′, ..., vk′)[23]. Fraley and Raftery [12] stated that finite mixture models do not

conform to the fundamental regularity conditions of the proof of the BIC proposed by

Schwartz [32]. However, results show that it has a good performance in model-based

clustering [12].

Another form of the model-based method are the expectation maximization (EM)

which uses the maximum likelihood approach on multivariate data ([6],[22]). If the set

of data (xi) is independent and identically distributed with regards to a probability

function with parametization on θ and consists of k multivariate observations with

both the observed (yi) and unobserved (zi), then the complete-data likelihood function

is of the form

LC(xi|θ) =
k∏
i=1

f(xi|θ) (2.24)

When the probability that a certain variable is unobserved solely depend on the

observed y variables rather than z, then the observed-data likelihood, LO(yi|θ) is

generated by integrating z out of LC(zi|θ) to get

LO(y|θ) =

∫
LC(x|θ)dz (2.25)

The EM is cycled around two steps namely; the E−step and the M−step [12]. The

E−step is conditioned on the expectation of the log-likelihood of the complete data

provided the current parameter estimates and observed data is computed; whereas,

the M−step involves the determination of parameters that maximize the expected
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log-likelihood from the E−step. Fraley [12] stated “In a mixture model for an EM,

the ‘complete data’ are considered to be Xi = (yi, zi) where zi = (z1l, ..., ziG) is the

unobserved portion of the data” with zik equal to 1 whenever Xi belongs to group k

and 0 otherwise. If zi is assumed to be an independent and identically distributed

variable following a multinomial distribution of one draw from G categories associated

with probabilities τ1, ..., τG with the density of yi given as zi is of the form

G∏
k=1

= fk(yi|θk)zik (2.26)

then the associated complete log-likelihood becomes

l(θk, τk, Zik|X) =
n∑
i=1

G∑
k=1

Zik log[τkfk(yi|θk)] (2.27)

The E−step is set up to be

Ẑik ←−
τ̂kfk(yi|θ̂k)∑G
i=1 τ̂jfj(yi|θ̂j)

. (2.28)

To get the M−step, equation (2.27) will be maximized in terms of the parameters

τk and θk with Zijk fixed at the values computed in the E−step. Some limitations

of the EM method include the possibility of slower rate convergence even though it

gives reasonably good results. Also the EM may fail if there are few observations

present in a cluster, this typically happens when there are too many components in

the multivariate data.

Everitt [8] suggested a mixture model for mixed mode data emphasizing that with
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every observed variable (ordinal or categorical) there is an underlying factor that gives

rise to latent continuous variables. He made reference to ”threshold” of values in a

given set. Everitt [8] assumed a density function of the form

f(x) =
c∑
i=1

piMVNp+q

(
µi,
∑)

(2.29)

for a vector x that contains the set of random variables x1, x2, ..., xp, xp+1, ..., xp+q.

From the density function c represents the assumed number of clusters in the data,

p1, ..., pc are the mixing proportions such that
∑c

i=1 pi = 1,
∑

is the covariance matrix

from a (p+ q) dimensional multivariate normal with mean vector µi. To estimate the

parameters of Everitt’s [8] model, a maximum likelihood approach can be used with

a suitable optimization algorithm. Though the model gave reasonably good results,

it has a limitation of not being feasible for larger values of q, ordinal and binary

variables.
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3 RECENT COMPARATIVE WORK AND PROPOSED WORK

Much work on clustering has been geared towards single linear data sets with

very few data sets involving mixed data. Attention to include other variable structure,

particularly directional, began in 1918 by Von Mises [35] followed by other research on

spherical and hyper-spherical data attributes by Fisher [10]. In 2014, Hendrickson [18]

extended the Gower coefficient to cater to functional and directional data curtailing

the drawbacks associated with the traditional method of converting nominal variables

into numeric variables which leads to loss of information. In studies that focused on

mixed data, the most popular smoothing technique has been the B-spline. Notable

amongst these studies include the work of Laura Ferreira and David B. Hitchcock

[9], Obed Oppong [2], Augustine Koomson [25]. Several methods of clustering have

been designed for various data settings. In clustering mixed data with other variable

attributes, the choice of distance calculation and assigning weight functions are key

as it can improve the performance of the statistical function used in the clustering

process. The most common weight function is the inverse weight function which uses

the variance of the observed functional data. Chen, Reiss and Tarpey [4] proposed

a new method of adding weight to functional data called the CV optimal weighing

using the coefficient of variation. Tapey [34] elaborated on how different clustering

results can be achieved depending on how data curves are fitted and the kind of basis

function used. Tapey, asserted that clustering functional data with the L2 metric on

function produces similar results by applying a suitable clustering mechanism to a

linear transformation of the regression coefficient.
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3.1 Proposed Work

This study will entail the simulations of data generated in the same manner as

that of Hendrickson [18] with functional and directional attributes to access the per-

formance of the single, average and complete linkage hierarchical clustering using the

Fourier basis smoothing. To access how each clustering mechanism perform, we shall

use the Rand and adjusted rand index to make a determination when weights are

applied to the functional data and when they are unweighted. The weighting scheme

to use will be the proposed weighing technique by Chen et al [4]. We shall implore

the extension of the Gower coefficient as the dissimilarity measure for the functional

data in this study.

3.2 Extention of the Gower Coefficient

Hendrickson [18] extended the Gower coefficient to make room for functional and

directional data attributes. For objects i and j, the dissimilarity is defined as

d(i, j) =

∑
f δ

(f)
ij d

(f)
ij∑

f δ
(f)
ij

(3.1)

where δ
(f)
ij = 1 if the measurements xif and yjf for the fth variable are non-missing

and 0 otherwise [21].

• for binary or nominal values of f ,

dfij =

{
1 if xif 6= yjf

0 if xif = yjf

}
.

33



• If all variables are nominal or symmetric binary, then dij is equal to the matching

coefficient.

To include the directional variables, Hendrickson adopted the Ackermann [1] dissim-

ilarity measure for directional variables defined as

dfij = π − |π − |θi − θj|| (3.2)

where θ is the angle measured between variables of object i and j. Other measures

of dissimilarity for this study include:

• L1 distance for interscaled-scaled variables defined as

d
(f)
L1

(i, j) = |xif − yjf |

• L2 distance for functional variables defined as

d
(f)
L2

(i, j) =

√∫
T

w(t)[xif − yj,f ]2df

where w(t) ≥ 0 is a defined weight function.

3.3 Fourier Basis

In natural settings, data comes with some sort of observational error or noise which

can influence the outcome of analysis [28]. These noise tends to hide the underlying

trend in the data and thus causes one to underfit or overfit the underlying trend.
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A method to reduce the effects of these noise is by using a smoothing technique.

The Fourier basis is one of many ways to smooth data gathered over a period of

time whether equally intervaled or not [28]. In this study we shall adopt a linear

combination of functions to define the functional observation ϕ(i) as

ϕi(t) ≈
n∑
n=1

cinδn(t),∀t ∈ T (3.3)

where δn is defined as

δn(t) =
1√
|T|

(3.4)

δ2r−1(t) =
sin rωt√

|T|
2

(3.5)

and

δ2r(t) =
cos rωt√

|T|
2

(3.6)

for r = 1, ..., k−1
2

, ω is the period and |T| = 2π
ω

Here, t is a time variable with elements {t1, t2, ..., tj} ∈ T, δn for n = (1, 2, ...., N)

is the nth basis function of the expansion and cin is the associated coefficient. For an

N observational data, X = [XT
1 , ..., X

T
H ]T , the functional data is defined as

Xi = Zi(tj) + εi, 1 ≤ j ≤ J, 1 ≤ i ≤ N, (3.7)

where Xi is an observation with noise as a result of the stochastic process, Zi(tj)
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related to the ith functional data and εi ∼ random error with mean zero and variance

σ2
i . The stochastic process Zi(tj) is given as

Zi(t) ≈ cTi δ(t),∀t ∈ T, i = 1, ...., N (3.8)

where ci and δ(t) are N vectors. The Fourier basis has a constant value as its first

element and then alternates between the sine and cosine functions as in Equations

(3.4, 3.5 3.4)
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4 SIMULATION STUDY

The main goal of this project was to assess the performance of the various hierar-

chical clustering algorithms (Single, Average and Complete) using the Fourier basis

smoother with and without a weighing function. In our simulations, we had two con-

tinuous variables, one functional variable, one directional variable and a categorical

variable. With 1000 iterations and cluster number of four, the cluster membership

varied from being equal i.e 25 per cluster to different cluster numbers under various

conditions.

4.1 Variable Set up In R

4.1.1 Categorical

The function sample.int(n, size = n, replace = FALSE, prob=NULL)) in R was

used to simulate the categorical variables with n being the number of continuous

variables in each cluster, size is the cluster membership, replace was set to TRUE

to sample with replacement and a prob for a vector of probability weights. For the

four clusters in our study we assigned the probability vectors as follows:

Case 1: prob=c(0.8,0.05,0.05,0.05,0.05)

Case 2: prob=c(0.05,0.8,0.05,0.05,0.05)

Case 3: prob=c(0.05,0.05,0.8,0.05,0.05)

Case 4: prob=c(0.08,0.05,0.05,0.8,0.05)

and a probability vector of (0.2,0.2,0.2,0.2,0.2) for an equally likely category.
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4.1.2 Functional

The simulation of the functional data followed those of Ferriera and Hitchcock [9]

which was also adopted by Hendrickson [18], Chen, Reiss and Tarpey [34], Koomson

[25] and Oppong [2]. Ferriera and Hitchcock defined the functional signal groups as

follows:

1. Involving periodic tendencies

µ1(t) =
1

28
t+ e−t +

1

5
sin

t

3
+

1

2
, t ∈ [0, 100]

µ2(t) =
1

20
t+ e−t +

1

5
sin

t

2
, t ∈ [0, 100]

µ3(t) =
1

15
t+ e−t +

1

5
cos

t

2
− 1, t ∈ [0, 100]

µ4(t) =
1

18
t+ e−t +

1

5
cos

t

2
, t ∈ [0, 100]

2. With no periodic tendencies

µ1(t) = 50− t2

500
− 7 ln t, t ∈ (0, 100]

µ2(t) = 50− t2

500
− 5 ln t, t ∈ (0, 100]

µ3(t) = 50− t2

750
− 7 ln t, t ∈ (0, 100]

µ4(t) = 50− t2

250
− 4 ln t, t ∈ (0, 100]
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3. Involving a mixture of periodic and strictly decreasing tendencies

µ1(t) = − t
2

+ 2 sin
t

5
, t ∈ (0, 100]

µ2(t) = − t
2

+ 2 cos
t

3
, t ∈ (0, 100]

µ3(t) = − t2

250
− 4 ln t, t ∈ (0, 100]

µ4(t) = − t2

250
− 2 ln t, t ∈ (0, 100]

It should be noted that for this work, we used the signal group involving periodic

tendencies for our simulations. These signal functions were chosen so we could get

clusters with good representation which are not monotonic. With these functions,

we simulated the time vector over the range of 0 to 100 as described by Ferriera and

Hitchcock [9] with 0.5 increments. To mimic the natural variations associated with

data, we introduced random error terms to our simulated data using a process known

as the Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck is a process that follows

a continuous univariate Markov chain evolving over time [13] with zero mean and a

defined covariance between error terms over time i and j as

∑
=
σ2

2β
e(−β|ti−tj |) (4.1)

where β is the drift variable, which we kept at 0.5 and σ is the variation component

which we set at 1.75 and 1 for small and large distances between clusters respectively

as used by Hendrickson [18]. To smooth the simulated data after the introduction
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of the random error terms, we applied the Fourier basis as described in section (3.3)

with the number of basis set to 5. In R we used the function create.fourier.basis

(rangeval, nbasis) where rangeval is a 2-length vector that contains the initial and

final range values of the functional data being evaluated and nbasis is the number of

basis. Also, it should be noted that for the functional variables, simulations 1, 2, 3,

5, 6, 7, 10 and 12 contained data that had large distances between the clusters with

varying distances between the clusters for the other variables.

4.1.3 Continuous

We simulated the continuous variables from the normal distribution with mean

µ and variance σ2. In similarity to that of Hendrickson (2014) we set the mean at

standard deviations for each cluster and values of k being 5,20 and 50 as indicated in

Table 4.1.

Table 4.1: Assigned Cluster Mean and Standard Deviation

Category µ σ
Cluster 1 5000 100
Cluster 2 5000+kσ 100
Cluster 3 5000+2kσ 100
Cluster 4 5000+3kσ 100

In R we used the function abs(rnorm(n,mean,sd)). For this study n is the size of

cluster membership.
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4.1.4 Directional

To simulate the directional variable the Von Mises distribution [35] defined as

φ(θ) = (2πI0(κ))−1 exp (κ cos(θ − µ)), 0 ≤ θ ≤ 2θ, 0 ≤ µ < 2π, κ ≥ 0 (4.2)

was used with I0(κ) as the Bassels function [3] defined as

I0(κ) =
1

2π

∫ 2π

0

expκ cos θdθ (4.3)

In R we used the function rvonmises(n, m, κ, rads = TRUE) where n is the

number of cluster membership, m is the mean which we set at 0 for cluster 1, 0 + k

for cluster 2, 0 + 2k for cluster 3 and 0 + 3k for cluster 4, κ = 50 and rads is set to

TRUE if the mean angle is expressed in radians and FALSE otherwise. The values

of k were 1
2
, 1, 5

2
.

4.2 Weight Functions

In this study we will consider the proposed weighting function of Chen, Reiss and

Tarpey [34] known as the CV optimal weighting. Other weighing methods include

the inverse of the covariance matrix of error terms and the inverse weight function.

It is noted that the most common weighting scale used in mixed data clustering has

been the inverse variance function which is defined as

w(t) =

1
σ̂2(t)∫
1

σ̂2(u)
du

(4.4)
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where σ̂2(t) is the estimate of the variance of θ(t). The variance-covariance matrix or

otherwise known as the covariance matrix is a measurement to check the correlation

between variables. The diagonals of the matrix are made up of the variances whiles

the off-diagonal represent the covariance between the variables. For two variables X

and Y the covariance denoted as Cov(X, Y ) is defined as

Cov[X, Y ] = E[XY ]− E[X]E[Y ] (4.5)

In matrix notation the Covariance matrix is of the form

∑
=


σ2(x1) cov[x1, x2] ... cov[x1, xn]

cov[x2, x1] σ2(x2) ... cov[x2, xn
... cov[x3, x2] ... cov[x3, xn]

cov[xn, x1] ... ... σ2(xn)


where

∑
is the variance-covariance matrix of nxn dimension.

4.2.1 CV-Optimal Weight

The CV optimal weight function was proposed by Chen, Reiss and Tarpey [34] pur-

posely to smooth and minimize the effect of the coefficient of variation (CV) of

||θ||2w =

√∫
w(t)θ(t)2dt (4.6)

with random function θ(t) = b(t)Tz given a K− dimensional vector z with

b(t) = [b1(t)...., bk(t)]
T and [b1, ...., bk] representing basis functions defined on the

interval [L,U ] ⊂ R. Here, they define θ as the difference between the ith and jth of
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a set of observed functions x1, ..., xn. Chen, Reiss and Tarpey [34] argued that the

independence assumption underlying the the development of the L2 metric is unreal-

istic for most functional data and its applications hence their proposal. They defined

the CV-optimal weight as

w(t) = [bT
wq]2 (4.7)

where bw(t) = [bw1(t), bw2(t), ...., bwkw(t)]T is a kw− dimensional spline basis with as-

sociated vector q. In our analysis we applied the CV optimal weight to our functional

data and calculated the Rand index for the various clustering algorithms. We also

did an analysis without weights so we could compare whether the weight function im-

proves the clustering solutions or not. To apply weights to our simulated functional

data we used the metric.lp(fdata, w=1) function in R where fdata is the func-

tional data under study and w is the vector of weights. If w=1, then the functional

data is unweighted.

4.3 Rand Index and Adjusted Rand Index

The Rand index measures the similarity between clustering algorithms and tell

the researcher which method is best. For a good clustering algorithm, a high Rand

value is expected and vice versa. In this study we shall use the Rand index to test

the performance of the single, average and complete linkage algorithms. The Rand

index is defined as

R =
a+ b

a+ b+ c+ d
, 0 ≤ R ≤ 1 (4.8)

where:
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• a is a pair of subsets placed in the same cluster by clustering method I and

clustering method II

• b is a pair of subsets placed in different clusters by clustering method I and

clustering method II

• c is a pair of subsets placed in the same cluster with clustering method I but is

in a different cluster with clustering method II

• d is a pair of subsets placed in same cluster by clustering method II but in a

different cluster with clustering method I.

Another form of similarity measure to check the performance of a clustering al-

gorithm is the adjusted Rand index (ARI). A high value of the adjusted Rand index

implies that, there is similarity between the data points in the clustering algorithm

and a low value means the data points do not have much similarity or were assigned

randomly to form part of the cluster. Unlike the Rand index, the adjusted Rand

index can take on negative values. A negative adjusted Rand index value means that

there is no random selection or similarity between the data points, rather there is

some sort of underlying pattern between them. The adjusted Rand index is defined

as

ARI =

∑
ij

(
nij

2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
N
2

)
0.5[
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
N
2

) (4.9)

where nij is the the number of object in both cluster Ai and Bj, Ai is the ith cluster in

clustering method II and Bj is the jth cluster in clustering method II and
∑

ij = N .
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4.4 Monte Carlo Standard Error

The Monte Carlo standard error (MCSE) is a measure of accuracy used when

several simulations are done in a study. Ideally, the probability of varying outcomes is

indeterminable due to the interference of random variables. So, the MCSE repeatedly

collect errors in the simulation process after which the results are averaged then an

estimate is made. This measure further tells how large our estimation noise is. We

will use the MCSE to measure the variability of the Rand index across all simulation

studies. We observed that the MCSE values are very small so we rely on the mean

Rand and mean Adjusted Rand for our comparison. However the MCSE values will

be presented in the comparison tables.

4.5 Simulation Results

The means of the unweighted Rand and adjacent Rand indexes are presented in

Tables (4.2-4.5) along with their respective Monte Carlo standard errors. The perfor-

mance of the extended Gower across the average and complete linkage methods were

generally good as most of the Rand and adjusted Rand values were high but that was

not the case for the single linkage method. With regards to ranks in performance, the

single linkage performed worse across every simulation stage compared to the other

two algorithms. We observed that in some instances the average linkage performs

better than the complete linkage and vice versa. However, the approximate differ-

ences between them is not significant enough to clearly state which algorithm stands

out. We also observed that where equal cluster size is allocated, the average linkage

performs slightly better than the complete linkage even though that was not for all
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cases. This suggests that to cluster using equal cluster sizes the average linkage is

the preferred choice. In almost every simulation setting with a cluster size allocation

of (10, 20, 30 ,40) and (33, 33, 33, 1), the complete linkage method performs better.

When we applied the weight function we a saw a general improvement in the Rand

values with the single linkage method being the most improved. However, it still

performed poorly compared to the other two methods. Contrary to the observed im-

provement in Rand values after the weights were applied, the unweighted Rand values

for simulation 14 (a,b) were slightly higher than the Rand values for the weighted

simulated values. The variations within clusters were statistically good because the

MCSE values were low (< 0.02). Results for the weighted Rand and adjacent Rand

index is presented in Tables (A.1-A.4) in the appendix.
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Table 4.2: Rand Comparison for Simulation 1a-4b: Unweighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

1a Equal Single 0.5192 0.2133 0.0051
size Average 0.9706 0.9202 0.0007

Complete 0.9566 0.8920 0.0148
1b (33,33,33,1) Single 0.4981 0.1822 0.0054

Average 0.9633 0.9152 0.0009
Complete 0.9640 0.9160 0.0010

1c (10,20,30,40) Single 0.5407 0.2218 0.0058
Average 0.9714 0.9311 0.0008

Complete 0.9634 0.9132 0.0013
2a Equal sizes Single 0.5207 0.2273 0.0052

Average 0.8662 0.7079 0.0014
Complete 0.8661 0.6640 0.0016

2b (33,33,33,1) Single 0.5047 0.1832 0.0051
Average 0.8694 0.7064 0.0012

Complete 0.8768 0.7159 0.0019
2c (10,20,30,40) Single 0.5482 0.2211 0.0053

Average 0.8727 0.6971 0.0016
Complete 0.8727 0.6971 0.0017

3a Equal Sizes Single 0.4128 0.0617 0.0013
Average 0.9184 0.7872 0.0018

Complete 0.8886 0.7219 0.0024
3b (33,33,33,1) Single 0.4537 0.0737 0.0012

Average 0.9165 0.8022 0.0018
Complete 0.9164 0.8020 0.0018

3c (10,20,30,40) Single 0.4415 0.0217 0.0018
Average 0.9322 0.7824 0.0056

Complete 0.9120 0.7834 0.0024
4a Equal sizes Single 0.5018 0.2110 0.0005

Average 0.9205 0.2110 0.0013
Complete 0.9025 0.7563 0.0019

4b (33,33,33,1) Single 0.5020 0.1825 0.0052
Average 0.9008 0.8211 0.0017

Complete 0.9013 0.8157 0.0014
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Table 4.3: Rand Comparison for Simulation 4c-8a: Unweighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

4c (10,20,30,40) Single 0.5269 0.2015 0.0055
Average 0.8945 0.7978 0.0018

Complete 0.9100 0.7951 0.0015
5a Equal Single 0.5093 0.2097 0.0046

size Average 0.9487 0.8947 0.0012
Complete 0.9547 0.8988 0.0018

5b (33,33,33,1) Single 0.4623 0.2137 0.0056
Average 0.9682 0.9146 0.0018

Complete 0.9532 0.9226 0.0011
5c (10,20,30,40) Single 0.5322 0.2256 0.0051

Average 0.9624 0.9099 0.0113
Complete 0.9644 0.9100 0.0113

6a Equal sizes Single 0.5476 0.2781 0.0051
Average 0.7496 0.3781 0.0001

Complete 0.7496 0.3780 0.0001
6b (33,33,33,1) Single 0.4629 0.2244 0.0034

Average 0.7130 0.5886 0.0014
Complete 0.7131 0.3248 0.0014

6c (10,20,30,40) Single 0.4174 0.3179 0.0012
Average 0.7196 0.3181 0.0012

Complete 0.7776 0.3183 0.0012
7a Equal Sizes Single 0.5481 0.2111 0.0035

Average 0.8484 0.6115 0.0015
Complete 0.8483 0.6113 0.0015

7b (33,33,33,1) Single 0.4441 0.2397 0.0043
Average 0.8443 0.6402 0.0019

Complete 0.8446 0.6404 0.0019
7c (10,20,30,40) Single 0.4456 0.3376 0.0007

Average 0.8427 0.6308 0.0015
Complete 0.8457 0.6308 0.0015

8a Equal sizes Single 0.4986 0.2546 0.0013
Average 0.8898 0.7254 0.0024

Complete 0.8899 0.7254 0.0024
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Table 4.4: Rand Comparison for Simulation 8b-11c: Unweighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

8b (33,33,33,1) Single 0.4334 0.0651 0.0034
Average 0.9137 0.7959 0.0019

Complete 0.9136 0.7958 0.0019
8c (10,20,30,40) Single 0.4449 0.0785 0.0034

Average 0.9102 0.7962 0.0023
Complete 0.9133 0.7964 0.0023

9a Equal Single 0.4124 0.0610 0.0012
size Average 0.8879 0.7065 0.0014

Complete 0.8648 0.6609 0.0016
9b (33,33,33,1) Single 0.5019 0.1782 0.0051

Average 0.8061 0.1782 0.0019
Complete 0.8730 0.0051 0.0019

9c (10,20,30,40) Single 0.5587 0.2329 0.0052
Average 0.8818 0.6464 0.0015

Complete 0.8728 0.6963 0.0015
10a Equal sizes Single 0.4146 0.0487 0.0016

Average 0.7709 0.4781 0.0011
Complete 0.7923 0.4781 0.0011

10b (33,33,33,1) Single 0.4505 0.0607 0.0014
Average 0.7051 0.5218 0.0020

Complete 0.7151 0.5219 0.0020
10c (10,20,30,40) Single 0.4589 0.0206 0.0022

Average 0.7747 0.4502 0.0018
Complete 0.7746 0.4500 0.0018

11a Equal Sizes Single 0.5127 0.2022 0.0053
Average 0.9069 0.7645 0.0019

Complete 0.9069 0.7646 0.0019
11b (33,33,33,1) Single 0.4948 0.1729 0.0051

Average 0.8111 0.8186 0.0014
Complete 0.9101 0.9216 0.0015

11c (10,20,30,40) Single 0.5254 0.5254 0.0055
Average 0.9131 0.7918 0.0015

Complete 0.9131 0.7982 0.0015
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Table 4.5: Rand Comparison for Simulation 12a-15b: Unweighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

12a Equal sizes Single 0.5552 0.0096 0.0001
Average 0.7128 0.2589 0.0001

Complete 0.7129 0.2592 0.0009
12b (33,33,33,1) Single 0.5472 0.0084 0.0014

Average 0.5821 0.1086 0.0015
Complete 0.6256 0.1086 0.0015

12c (10,20,30,40) Single 0.5205 0.0007 0.0012
Average 0.6635 0.1881 0.0012

Complete 0.6636 0.1882 0.0012
13a Equal Single 0.5229 0.0190 0.0024

size Average 0.6947 0.0211 0.0016
Complete 0.7377 0.3401 0.0006

13b (33,33,33,1) Single 0.4930 0.0279 0.0016
Average 0.5919 0.0316 0.0008

Complete 0.7127 0.3237 0.0015
13c (10,20,30,40) Single 0.5421 0.0079 0.0018

Average 0.6696 0.3191 0.0012
Complete 0.7185 0.2053 0.0010

14a Equal sizes Single 0.5864 0.2597 0.0047
Average 0.8491 0.6141 0.0015

Complete 0.8492 0.6143 0.0015
14b (33,33,33,1) Single 0.5565 0.2318 0.0052

Average 0.8443 0.6403 0.0019
Complete 0.8835 0.6404 0.0019

14c (10,20,30,40) Single 0.5426 0.2248 0.0037
Average 0.8428 0.6251 0.0015

Complete 0.8428 0.6252 0.0015
15a Equal sizes Single 0.4776 0.4562 0.0018

Average 0.7770 0.45658 0.0018
Complete 0.7771 0.4568 0.0018

15b (33,33,33,1) Single 0.4608 0.0493 0.0027
Average 0.7000 0.5304 0.0020

Complete 0.7991 0.5307 0.0021
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Table 4.6: Rand Comparison for Simulation 15c: Unweighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

15c (10,20,30,40) Single 0.4676 0.0231 0.0019
Average 0.7034 0.3901 0.0015

Complete 0.7732 0.4469 0.0018
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5 DISCUSSION / FUTURE RESEARCH

This thesis work was carried out to compare hierarchical clustering methods (single,

average and complete) and assess their performance with functional data with mixed

attributes using the Fourier smoothing technique along with a weighted or unweighted

function.

We start by introducing clustering methods and the improvements made over the

years to include mixed data types into the clustering algorithm for better represen-

tation and understanding. We did a simulation with 1000 iterations and added noise

using the Ornstein-Uhlenbeck process then proceeded to smooth the data with the

Fourier basis function. We considered the CV optimal weight function [34] which

is designed to minimize the coefficient of variation between data with functional at-

tributes. We also employed the extension of the Gower coefficient to accommodate

functional, continuous, categorical and directional variables in our simulated datasets.

To assess how the algorithms perform under different structure, we used different

clustering sizes. First we considered the case where each sample cluster is of the same

size of 25 and moved on to when a cluster has a maximum size of 33 and minimum of

1 etc. In comparing the performance of the various clustering methods we calculated

the Rand index and adjusted Rand index of our simulated data.

In general we saw an improvement in the weighted approach as compared to the

standard unweighted approach. However, this was not so for all cases for simulation

14 (a,b). We observed that the performance of the extended Gower coefficient over

all the setting produced reasonable good results.

For future research and development of clustering mixed data, a comparative anal-
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ysis of how smoothed functional data compares to when functional data is analyzed

without smoothing can be done to ascertain how the results compare. For this work,

we focused on removing some of the noise in the data before clustering and would

be interesting to see how the results compare to those when we do not remove the

noise. We suggest that attention be geared towards correlated functional variables of

mixed structure. Also, a statistical method for simulating mixed data with cluster

structures that can accommodate more than two clusters should be explored.
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APPENDICES

A Weighted Rand Index Comparison

Table A.1: Rand Comparison for Simulation 1a-4b: Weighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

1a Equal Single 0.5366 0.2309 0.0051
size Average 0.9727 0.9258 0.0006

Complete 0.9592 0.8964 0.0016
1b (33,33,33,33,1) Single 0.5081 0.1928 0.0054

Average 0.9627 0.9138 0.0009
Complete 0.9628 0.9137 0.0011

1c (10,20,30,40) Single 0.5444 0.2288 0.0057
Average 0.9728 0.9344 0.0008

Complete 0.9637 0.9128 0.0013
2a Equal Single 0.5475 0.2140 0.0052

size Average 0.8888 0.7075 0.0014
Complete 0.8685 0.6699 0.0016

2b (33,33,33,1) Single 0.5112 0.1902 0.0051
Average 0.8694 0.8730 0.0014

Complete 0.8718 0.8818 0.0019
2c (10,20,30,40) Single 0.5495 0.2235 0.0053

Average 0.8751 0.6994 0.0012
Complete 0.8770 0.7070 0.0017

3a Equal Single 0.4148 0.0631 0.0012
size Average 0.9188 0.7885 0.0018

Complete 0.8877 0.7200 0.0024
3b (33,33,33,1) Single 0.4559 0.0758 0.0012

Average 0.9213 0.8158 0.0017
Complete 0.9138 0.9198 0.0018

3c (10,20,30,40) Single 0.4489 0.0150 0.0017
Average 0.9476 0.8739 0.0016

Complete 0.9166 0.7947 0.0023
4a Equal Single 0.5153 0.2063 0.0053

size Average 0.9233 0.7880 0.0011
Complete 0.9033 0.7534 0.0018

4b (33,33,33,1) Single 0.5020 0.1662 0.0050
Average 0.9100 0.7920 0.0012

Complete 0.9180 0.8104 0.0015
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Table A.2: Rand Comparison for Simulation 4c-8a: Weighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

4c (10,20,30,40) Single 0.5314 0.2062 0.0054
Average 0.9116 0.7869 0.0012

Complete 0.9123 0.7900 0.0015
5a Equal Single 0.5351 0.2288 0.0051

size Average 0.9726 0.9257 0.0068
Complete 0.9578 0.8933 0.0016

5b (33,33,33,1) Single 0.5003 0.1840 0.0057
Average 0.9698 0.9164 0.0009

Complete 0.9623 0.9125 0.0010
5c (10,20,30,40) Single 0.5490 0.2312 0.0058

Average 0.9723 0.9331 0.0008
Complete 0.9649 0.9159 0.0012

6a Equal Single 0.1124 0.0553 0.0014
size Average 0.7267 0.3115 0.0007

Complete 0.7485 0.3775 0.0005
6b (33,33,33,33,1) Single 0.4716 0.0394 0.0015

Average 0.5886 0.7130 0.0001
Complete 0.7167 0.3326 0.0013

6c (10,20,30,40) Single 0.5189 0.7200 0.0021
Average 0.6664 0.1983 0.0010

Complete 0.7189 0.3220 0.0013
7a Equal Single 0.5776 0.2507 0.0048

size Average 0.8426 0.6012 0.0017
Complete 0.8480 0.6115 0.0014

7b (33,33,33,1) Single 0.5404 0.2144 0.0053
Average 0.8340 0.6207 0.0019

Complete 0.8441 0.6387 0.0018
7c (10,20,30,40) Single 0.6210 0.2995 0.0047

Average 0.8427 0.6229 0.0014
Complete 0.8459 0.6320 0.0016

8a Equal Single 0.4117 0.6090 0.0018
size Average 0.9203 0.7913 0.0017

Complete 0.8858 0.7150 0.0021
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Table A.3: Rand Comparison for Simulation 8b-11c: Weighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

8b (33,33,33,1) Single 0.5533 0.7340 0.0012
Average 0.9232 0.8196 0.0017

Complete 0.9128 0.7915 0.0019
8c (10,20,30,40) Single 0.5474 0.0214 0.0018

Average 0.9447 0.8674 0.0017
Complete 0.9161 0.7904 0.0023

9a Equal Single 0.5342 0.2186 0.0051
size Average 0.8866 0.7027 0.0014

Complete 0.8688 0.6699 0.0016
9b (33,33,33,1) Single 0.5058 0.1832 0.0051

Average 0.8691 0.6970 0.0014
Complete 0.8730 0.8730 0.0018

9c (10,20,30,40) Single 0.5626 0.2276 0.0053
Average 0.8807 0.7128 0.0012

Complete 0.8710 0.6993 0.0015
10a Equal Single 0.4177 0.0502 0.0017

size Average 0.7749 0.4277 0.0010
Complete 0.7997 0.4749 0.0011

10b (33,33,33,1) Single 0.4569 0.0597 0.0014
Average 0.7460 0.4153 0.0010

Complete 0.7981 0.5281 0.0021
10c (10,20,30,40) Single 0.4619 0.0212 0.0022

Average 0.7747 0.3628 0.0015
Complete 0.7758 0.4529 0.0018

11a Equal Single 0.5198 0.2084 0.0053
size Average 0.9174 0.7801 0.0012

Complete 0.9068 0.7644 0.0018
11b (33,33,33,33,1) Single 0.4948 0.1728 0.0051

Average 0.9080 0.7875 0.0012
Complete 0.9214 0.8185 0.0016

11c (10,20,30,40) Single 0.5264 0.5264 0.0053
Average 0.9057 0.9057 0.0012

Complete 0.9204 0.8160 0.0015
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Table A.4: Rand Comparison for Simulation 12a-15b: Weighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

12a Equal Single 0.5534 0.0092 0.0023
size Average 0.6355 0.0555 0.0010

Complete 0.7148 0.2652 0.0010
12b (33,33,33,1) Single 0.5485 0.0080 0.0013

Average 0.5821 0.6256 0.0004
Complete 0.6291 0.1181 0.0016

12c (10,20,30,40) Single 0.5698 0.0021 0.0013
Average 0.6653 0.0537 0.0008

Complete 0.6690 0.1884 0.0012
13a Equal Single 0.5482 0.2237 0.0054

size Average 0.8377 0.6289 0.0019
Complete 0.6935 0.2094 0.0011

13b (33,33,33,1) Single 0.4974 0.0284 0.0054
Average 0.5897 0.0277 0.0087

Complete 0.7121 0.8576 0.0014
13c (10,20,30,40) Single 0.5428 0.0060 0.0018

Average 0.6680 0.2026 0.0011
Complete 0.7193 0.3219 0.0012

14a Equal Single 0.5678 0.2422 0.0051
size Average 0.8474 0.6111 0.0017

Complete 0.8479 0.6113 0.0015
14b (33,33,33,1) Single 0.5442 0.2183 0.0053

Average 0.8359 0.6246 0.0018
Complete 0.8415 0.6351 0.0020

14c (10,20,30,40) Single 0.6194 0.2972 0.8428
Average 0.8446 0.6293 0.0015

Complete 0.8479 0.6113 0.0015
15a Equal Single 0.4467 0.4767 0.0022

size Average 0.7337 0.7337 0.0014
Complete 0.7780 0.7780 0.0018

15b (33,33,33,1) Single 0.4608 0.0558 0.0015
Average 0.7000 0.4867 0.0032

Complete 0.7770 0.4469 0.0021
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Table A.5: Rand Comparison for Simulation 13a-15c: Weighted

Simulation Cluster Method Mean Mean Adjusted MCSE
Allocation Rand Rand

15c (10,20,30,40) Single 0.4728 0.0192 0.0021
Average 0.7347 0.3609 0.0014

Complete 0.7742 0.4479 0.0018
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